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Abstract. We study the local geometry of irreducible parabolic geometries admitting

strongly essential flows; these are flows by local automorphisms with higher-order fixed

points. We prove several new rigidity results, and recover some old ones for projective and

conformal structures, which show that in many cases the existence of a strongly essential

flow implies local flatness of the geometry on an open set having the fixed point in its closure.

For almost c-projective and almost quaternionic structures we can moreover show flatness

of the geometry on a neighborhood of the fixed point.

1. Introduction

Irreducible parabolic geometries are a family of differential geometric structures including

conformal semi-Riemannian, projective, almost c-projective, almost quaternionic, and almost

Grassmannian structures. They are Cartan geometries infinitesimally modeled on homoge-

neous projective varieties G/P , where G is a semisimple Lie group and P < G is a parabolic

subgroup with abelian unipotent radical (see Section 2 below for definitions and references).

This article continues the study, initiated in [5], of the local geometry of parabolic geome-

tries in the presence of a flow by strongly essential automorphisms. For irreducible parabolic

geometries, these are 1-parameter families {ϕt} of local automorphisms fixing a point x0 and

having trivial differential at x0. The corresponding vector field η is called strongly essential

and is said to have a higher-order zero at x0.

Nagano and Ochiai proved, using the canonical Cartan connection of a projective structure,

that a projective manifold admitting a projective vector field with higher-order zero at x0 is

projectively flat in a neighorhood of x0—that is, locally projectively equivalent to projective

space [22]. The analogous result was obtained for conformal semi-Riemannian structures by

the first author and Frances in [11], although in this case, without assuming real analyticity

of the structure, the semi-Riemannian conformal manifold may only be conformally flat on

an open set U with the higher-order zero x0 in its closure; for semi-Riemannian conformal

structures the open set U can be the interior or exterior of the light cone through x0, or a

more complicated open union of semi-cones.

The paper [5] unifies and generalizes the methods of [22] and [11] to general parabolic geome-

tries, taking advantage of the relation between parabolic geometries and the representation-

theoretic properties of the model pair (g, P ) (see also [6]). The key product of this relation

is the harmonic curvature (see Section 2 below), which arises from a completely reducible
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quotient of the curvature representation of the Cartan geometry, yet is the obstruction to

vanishing of the full curvature on an open set. The general results of [5] associate to the fixed

point x0 of a strongly essential flow an explicit, algebraically defined family of curves ema-

nating from x0 and give restrictions, in terms of the algebraic properties of the pair (g, P ),

on values of the harmonic curvature along these special curves. The general criteria of [5]

are applied to obtain rigidity results for strongly essential flows for a variety of parabolic

geometries, including almost-quaternionic, contact parabolic, and strictly pseudoconvex CR

structures. In many cases, however, the methods of [5] do not give full vanishing of the har-

monic curvature along the special curves, but only of some components; moreover, in each

case they involve a detailed analysis of the harmonic curvature module.

In this article, we develop new techniques showing vanishing of the harmonic curvature along

these special curves, which do not require precise knowledge of the harmonic curvature rep-

resentation for each type of structure. We establish a general result for irreducible parabolic

geometries infinitesimally modeled on G/P with G simple, which shows, given a strongly es-

sential flow, that the harmonic curvature vanishes along the special curves through the fixed

point x0 and moreover that the full Cartan curvature vanishes at x0. We use this theorem

to prove several new rigidity results for irreducible parabolic geometries. In fact, we show

in many cases that the existence of a strongly essential flow implies that the geometry is

locally flat on an open set U having x0 ∈ U . In some cases, such as for almost c-projective

structures, we can strengthen this local flatness to a neighborhood of x0. We also recover

some of the above mentioned results of [11] on semi-Riemannian conformal structures and the

results of [22] on projective structures, and improve the results of [5] on almost quaternionic

structures and almost Grassmannian structures of type (2, n).

1.1. Results. This section begins with the definitions relevant to our main results. Back-

ground on irreducible parabolic geometries and further definitions are given in Section 2

below.

For a parabolic subgroup P of a semisimple Lie group G, denote by p and g their respective

Lie algebras. Let (B
π→ M,ω) be a normal Cartan geometry of irreducible parabolic type

(g, P ). We denote by inf(M) the algebra of vector fields η ∈ X(M) along which the flow

{ϕtη}, where defined, is by automorphisms of (B
π→M,ω); one need not assume η complete.

The unique lift of η to B is denoted η̃.

Definition 1.1. Given η ∈ inf(M) vanishing at x0 ∈ M , the isotropy of η with respect to

b0 ∈ π−1(x0) is ωb0(η̃) ∈ p.

The P -equivariance of the Cartan connection ω implies that a different choice of b0 ∈ π−1(x0)
yields a conjugate value for the isotropy.

Remark that η is strongly essential if and only if its isotropy at x0 with respect to any b0

belongs to the nilradical p+ of p. Via the duality p+ ∼= (g/p)∗ of P -modules, the isotropy of

a strongly essential η determines α ∈ T ∗x0M , because T ∗M ∼= B ×P (g/p)∗. We will also call

α the isotropy of η at x0.
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Given b0 ∈ B and X ∈ g, there is a curve through b0

γ̃X(s) = expb0(sX), s ∈ (−ε, ε)

defined for some ε > 0; here exp is the Cartan geometry exponential map sending (b0, X)

to the image of b0 under the time-one flow along the ω-constant vector field determined by

X (see Definition 2.4 below). For γ̃X as above, γX = π ◦ γ̃X is called an exponential curve

through x0 = π(b0).

Our general results provide conditions under which the harmonic curvature vanishes along

a family of exponential curves through the fixed point x0 of a strongly essential flow, corre-

sponding to the following subset of g. The subspace g− is a vector space complement to p in

g, as defined as in Section 2.1 below.

Definition 1.2. For 0 6= Z ∈ p+ denote T (Z) the set of X ∈ g− such that Z,A = [Z,X],

and X form an sl2-triple—that is,

[A,Z] = 2Z and [A,X] = −2X

When (g, P ) is of irreducible type, then T (Z) is always nonempty; this is a consequence of the

Jacobson-Morozov Theorem and Proposition 2.16 of [5], which says that any X generating an

sl2-triple with Z is equivalent modulo p to an element of T (Z). Let Z ∈ p+ be the isotropy of

a strongly essential η ∈ inf(M) with respect to b0 ∈ π−1(x0). Via the isomorphism g− ∼= g/p

(see Section 4.2), and the bundle isomorphism TM ∼= B ×P g/p, the set T (Z) corresponds

to a subset of Tx0M , which we denote T (α). The corresponding collection of exponential

curves γX through x0 is denoted T (α). The subsets T (α) and the collection of curves T (α)

depend only on α, and not on the choice of b0 ∈ π−1(x0).

The Cartan curvature, viewed as a vector-valued function on B, will be denoted κ below,

while the harmonic curvature will be κ̂ (see Section 2 below). Given a strongly essential flow

with fixed point x0 and isotropy Z with respect to b0 ∈ π−1(x0), our first general result,

Proposition 3.1, establishes a polynomial form for κ̂ along the curves {γ̃X : X ∈ T (Z)}
through b0. This proposition is key in the proof of our main theorem, which follows:

Theorem 1.1. Suppose (B
π→M,ω) is a normal irreducible parabolic geometry of type (g, P )

with g simple. Let η ∈ inf(M) be a nontrivial infinitesimal automorphism with higher-order

zero at x0 ∈M and isotropy α ∈ T ∗x0M . Then

• κ̂ vanishes along all curves in T (α).

• κ(x0) = 0.

The equivariant functions κ and κ̂ correspond to sections of associated vector bundles. The

expression κ(x0) = 0 denotes vanishing of this section at x0, and similarly for κ̂.

We apply Theorem 1.1 to obtain two general results. The first, Proposition 5.1, establishes

that in the presence of a strongly essential flow with smoothly isolated higher-order fixed

point (see Definition 2.6 below) the curvature always vanishes on a nonempty open set with

the fixed point in its closure. Proposition 5.1 applies in particular to any strongly essential
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flow of a projective, almost c-projective, or almost quaternionic structure. As for projective

structures in [22], we can improve the curvature vanishing to a neighborhood of the fixed

point for these latter two structures; for example:

Theorem 1.2. Let M2n be endowed with an almost c-projective structure, n ≥ 2. Suppose

0 6= η ∈ inf(M) is a c-projective vector field with a higher-order zero at x0 ∈ M . Then

there exists a neighborhood of x0 on which M is locally c-projectively flat—that is, locally

isomorphic to CPn equipped with its standard c-projective structure.

We obtain the analogous result for almost quaternionic structures in Theorem 5.4 below.

Proposition 5.5 treats strongly essential flows at the other extreme from isolated zeros, rather

with maximal strongly fixed sets (see Definition 2.6 below). For these, we show that the curves

in T (α), along which the curvature vanishes by Theorem 1.1, always fill up an nonempty

open set. We thus obtain new rigidity results for almost Grassmannian, almost Lagrangean

and almost spinorial structures (see Corollary 5.6); combining Proposition 5.1 and Corollary

5.6 we obtain for example:

Theorem 1.3. Let M be endowed with a (2, n)-almost Grassmannian structure, n ≥ 2.

Suppose that 0 6= η ∈ inf(M) has a higher-order zero at x0 ∈ M . Then there is an open

subset U ⊂ M with x0 ∈ U on which M is locally flat—that is, locally equivalent to the

Grassmannian variety Gr(2, n+ 2).

1.2. Structure of the article. Section 2 provides some background on irreducible parabolic

geometries and summarizes the relevant results of [5] on strongly essential flows. The main

result of Section 3 is Proposition 3.1, which estabishes a polynomial form for the harmonic

curvature along the curves in T (α). Theorem 1.1 is proved in Section 4; the proof uses Propo-

sition 3.1 and an analysis of the decomposition of g into irreducible components under the

action of the sl2-subalgebras of g determined by T (α). Section 5 starts with a presentation of

all the significant examples of irreducible parabolic geometries. We then prove Propositions

5.1 and 5.5, which lead to new rigidity results for a variety geometries and strongly essen-

tial flows in Corollaries 5.2 and 5.6. Theorems 1.2 and 5.4 are also proved in this section.

The paper concludes with a counter example to our rigidity results for higher-graded par-

abolic geometries, due to Kruglikov and The, and with the statement of some open questions.
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2. Higher-order zeroes of irreducible parabolic geometries

We first briefly review some background on parabolic Cartan geometries. The reader is

referred to [23] for the definition and basic examples of Cartan geometries. This section briefly

presents material on parabolic Cartan geometries as it will be used below. The comprehensive

reference on parabolic geometries is [8]. Section 2.2 recalls some background on higher-order

zeroes of infinitesimal automorphisms of parabolic geometries and the techniques from [5] to

study the local geometry around higher-order zeros.

2.1. Parabolic geometries. A convenient definition of parabolic subalgebras in semisimple

Lie algebras is based on [12, Lem 4.2]. It reads as follows and is stated in this form in [3]:

Definition 2.1. Suppose g is a real or complex semisimple Lie algebra. A subalgebra p ⊂ g

is called a parabolic subalgebra if the orthogonal complement p⊥ of p in g with respect to the

Killing form coincides with the nilradical p+ of p.

It follows that the quotient p/p⊥ = p/p+ is reductive, which is called the Levi factor of p and

is denoted g0, and that the Killing form induces an isomorphism p+ ∼= (g/p)∗ of p-modules.

We will use this isomorphism without further mention to identify these two p-modules. Note

that if g has nontrivial parabolic subalgebras, it is necessarily of non-compact type.

Let k ≥ 1 be the degree of nilpotency of the nilpotent Lie algebra p+. The lower central

series of p+ then equips g with the structure of a filtered Lie algebra

g = g−k ⊃ · · · ⊃ g−1 ⊃ g0 ⊃ g1 ⊃ · · · ⊃ gk [gi, gj ] ⊆ gi+j ∀ i, j ∈ Z, (1)

where g1 = p+, gi = [gi−1, p+] for i ≥ 2 and g−j+1 = (gj)⊥ for j ≥ 1. Note that g0 = p,

whence the filtration (1) is in particular p-invariant. If p+ is abelian, the filtration takes the

simple form g = g−1 ⊃ g0 ⊃ g1 with g1 = p+.

The associated graded Lie algebra of the filtered Lie algebra (1) is a |k|-graded Lie algebra

gr(g) = g−k ⊕ · · · ⊕ g0 ⊕ · · · ⊕ gk [gi, gj ] ⊆ gi+j ∀ i, j ∈ Z (2)

where gi = gi/gi+1, and g−1 generates the subalgebra g− = ⊕i≥1g−i.

It is easy to see that there exists a unique element E0 ∈ gr(g), called the grading element of

gr(g), such that ad(E) acts by multiplication by i on gi for −k ≤ i ≤ k (see [8]). Note that

E0 must lie in the center z(g0) of g0.

Remark 2.1. The filtration (1) is split, and a choice of such a splitting gives an identification

of g with gr(g). There is however no canonical splitting. In [3] splittings of (1) are called

algebraic Weyl structures. Without further mention, we assume in this article that for any

parabolic pair (g, p), an algebraic Weyl structure is fixed, so we have fixed an identification

g ∼= gr(g). The results of this article are clearly independent of such a choice.

Suppose G is a real or complex semisimple Lie group with Lie algebra g, and let p be a

parabolic subalgebra of g. Then any subgroup P < G with Lie algebra p is isogeneous

to the stabilizer in G of the filtration (1) under the adjoint representation Ad of G and is
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called a parabolic subgroup. We write P+ = exp(p+) for the Ad-unipotent radical of P , and

G0 = P/P+ for the Levi factor. Having fixed a splitting of (1), we can identify G0 with the

subgroup of P preserving the grading on g ∼= gr(g).

Definition 2.2. Let P be a parabolic subgroup of a real or complex semisimple Lie group

G. A parabolic geometry of type (g, P ) on a manifold M is a real, smooth Cartan geometry

(B
π→M,ω) of type (g, P ) on M .

The homogeneous space G/P equipped with the Maurer–Cartan form ωG of G is called the

homogeneous model of Cartan geometries of type (g, P ). Assuming G is an algebraic group,

P is a cocompact algebraic subgroup of G, so that G/P is a closed projective variety.

Representations of P such that P+ acts trivially are in bijective correspondence with rep-

resentations of G0 = P/P+. A representation V of P is completely reducible if and only if

P+ acts trivially on V and V is completely reducible as G0-module. Since G0 is reductive,

this last condition holds if and only if the center of G0 acts by a character on V. We will

often identify sections of an associated vector bundle V = B×P V with smooth P -equivariant

functions f : B → V—that is, f(bp) = p−1f(b) for any b ∈ B and p ∈ P .

This article deals mainly with irreducible parabolic geometries, defined by the property that

the unipotent nilradical P+ of P is abelian. Such parabolic geometries are in the literature

also called abelian parabolic geometries, |1|-graded parabolic geometries, or almost hermitian

symmetric structures.

The Cartan connection of an irreducible parabolic geometry of type (g, P ) induces a mor-

phism between the G0-principal bundle B0 = B/P+ and the frame bundle of M , correspond-

ing to the group homomorphism G0 → GL(g/p). Hence, the Cartan connection induces a

first-order G0-structure on M . Under some homological condition on the pair (g, p), the

prolongation procedures of [24], [21] and [7], associate to a first-order G0 structure on M a

canonical Cartan connection of type (g, P ), called the normal Cartan connection. There is

thus an equivalence of categories between normal irreducible parabolic geometries of type

(g, P ) and first order G0-structures on M . For projective and almost c-projective struc-

tures, this homological condition is not satisfied, but these structures nonetheless determine

a canonical irreducible parabolic geometry (see [8, 3.1.16 ]).

Thanks to the categorical equivalence above, infinitesimal automorphisms inf(M) of underly-

ing geometric structures on M lift to infinitesimal automorphisms inf(B,ω) of the associated

Cartan geometry. The latter are P -invariant vector fields η̃ ∈ X(B) satisfying Lη̃ω = 0. The

flow ϕtη̃, where defined, acts by automorphisms of the Cartan geometry, which are defined

analogously.

Let us now explain the notion of normality of a parabolic geometry. The curvature of the

Cartan connection K ∈ Ω2(B, g) can be identified via ω with a P -equivariant function

κ : B → Λ2(g/p)∗ ⊗ g ∼= Λ2p+ ⊗ g.

The P -module Λ2p+ ⊗ g belongs to a complex of P -modules Λ∗p+ ⊗ g, computing the Lie

algebra homology of p+ with coefficients in g. A parabolic geometry is normal if κ has
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values in the kernel of ∂∗. The quotient ker ∂∗/im ∂∗ ∼= H∗(p+, g) is a completely reducible

representation of P (see e.g. [8]), which therefore factors through G0.

The projection of the curvature κ of a normal parabolic geometry to the quotient ker ∂∗/im ∂∗

is called the harmonic curvature. Having identified G0 with a subgroup of P , Kostant’s

description of H∗(p+, g) in [15] yields a natural identification of the G0-module H2(p+, g)

with a G0-submodule Ŵ of W = Λ2p+ ⊗ g such that as G0-modules,

ker ∂∗ = Ŵ⊕ im ∂∗. (3)

Hence, we may view the harmonic curvature as a G0-equivariant function

κ̂ : B → Ŵ ⊂ ker ∂∗ ⊂W,

which is constant along the fibers of B → B0 = B/P+.

For normal, irreducible parabolic geometries, the full curvature is related to the harmonic

curvature via a differential operator S—that is, S(κ̂) = κ. Therefore vanishing of κ̂ over on

open set U ⊂M implies vanishing of κ over U (see [8, Theorem 3.1.12], [2]).

2.2. Strongly essential infinitesimal automorphisms. We recall now some results of

[5], in the case of irreducible parabolic geometries.

The higher-order zeroes of strongly essential automorphisms can be classified by their geo-

metric types:

Definition 2.3. Suppose (B
π→ M,ω) is a normal irreducible parabolic geometry. Assume

η ∈ inf(M) is strongly essential with a higher-order zero at x0 ∈ M . Let Z be the isotropy

of η with respect to b0 ∈ π−1(x0), with corresponding α ∈ T ∗x0M . The P -orbit of Z in p+ is

called the geometric type of α.

The geometric type is clearly independent of the choice of b0 ∈ π−1(x0). For irreducible

geometries, p+ is a completely reducible P -module, so the P -orbits coincide with the G0-

orbits.

On a parabolic homogeneous model (G→ G/P, ωG) the left action of a 1-parameter subgroup

etZ , Z ∈ p+, is a strongly essential flow. The isotropy of this flow at x0 = 1GP with respect

to 1G is Z. The methods of [5] lie in a comparison of strongly essential flows with their

corresponding isotropy flows on the homogeneous model.

Any X ∈ g defines a vector field X̃ on B by ω(X̃) ≡ X. The exponential map of a Cartan

geometry is given by the time-one flow along these ω-constant vector fields.

Definition 2.4. Let (B
π→M,ω) be a Cartan geometry. The exponential map at b ∈ B is

expb(X) = ϕ1
X̃

(b) ∈ B

for X in a sufficiently small neighborhood of 0 in g.

The restriction of expb to a sufficiently small neighborhood of 0 in g is a diffeomorphism onto

a neighborhood of b in B. For an irreducible parabolic geometry, the map π ◦ expb induces a
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diffeomorphism from a neighborhood of 0 in g−1 to a neighborhood of x = π(b). Projections

to M of exponential curves s 7→ exp(b, sX) for X ∈ g−1 are called distinguished curves.

Suppose now that η ∈ inf(M) has a higher-order zero at x0 and that the isotropy of η with

respect to b0 ∈ π−1(x0) is Z ∈ p+. Assume that for any fixed t ∈ R and X ∈ g, the following

equation holds in G:

etZesX = ect(s)Xpt(s) ∀s ∈ I (4)

Here I is an interval containing 0, and ct : I
∼→ I ′ is a diffeomorphism fixing 0; pt : I → P

a smooth path with pt(0) = etZ . Hence, the flow etZ acts on the curve esXP in G/P by a

reparametrization. Then it follows from [10, Prop 4.3] or [5, Prop 2.1] that the analogous

equation holds in B:

ϕtη̃ exp(b0, sX) = exp(b0, ct(s)X)pt(s) ∀s ∈ I. (5)

Definition 2.5. The commutant of Z ∈ p+ is

C(Z) = {X ∈ g− : [Z,X] = 0}

It follows from equation (4) that for X ∈ C(Z), the curve γX consists of higher-order fixed

points of ϕtη of the same geometric type as x0; in fact, the isotropy of η at γX(s) with respect

to exp(b0, sX) equals Z (see [5, Prop 2.5]). As with T (α), the commutant with respect to b0

determines a well-defined subset C(α) ⊂ Tx0M , independent of b0 ∈ π−1(x0).

Definition 2.6. Suppose η ∈ inf(M) has a higher-order zero at x0 ∈M .

• The strongly fixed component of x0 in a neighbhorhood U is the set of all endpoints

of smooth curves in U emanating from x0 consisting of higher-order zeroes of η of

the same geometric type as x0.

• The higher-order zero x0 is called smoothly isolated if it equals its strongly fixed

component in some neighborhood.

By [5, Prop 2.5], a higher-order zero with isotropy α is smoothly isolated if and only if

C(α) = {0}.

Definition 2.1. Suppose ϕtη̃ is a flow by automorphisms of a parabolic geometry (B
π→M,ω).

A holonomy path for {ϕtη̃} at b ∈ B with attractor b0 is a path pt ∈ P, t ≥ 0, so that for

some path bt
t→∞−→ b,

ϕtη̃ btp
−1
t → b0 as t→∞.

Suppose V is a representation of P , and τ a P -equivariant, ϕtη̃-invariant function B → V. If

pt is a holonomy path at b with attractor b0, then

τ(ϕtη̃btp
−1
t ) = pt · τ(bt)→ τ(b0) as t→∞.

Since τ(bt)
t→∞−→ τ(b), it is clear that τ(b) must be bounded under pt as t → ∞. Hence, a

holonomy path at b gives restrictions on the values of an invariant section of the associated

bundle B ×P V at π(b).
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Given an irreducible normal parabolic geometry, assume η ∈ inf(M) has a higher-order zero

at x0 ∈ M , and let Z ∈ p+ be the isotropy of η with respect to b0 ∈ π−1(x0). For any

X ∈ T (Z) ⊂ g−1 as defined in Section 1.1, A = [Z,X] ∈ g0 and, by [5, Prop 2.12], the action

of etZ on esX in G satisfies

etZesX = e
s

1+st
Xat(s)ut(s) s, t ∈ R, st > 0

where at(s) = elog(1+st)A ∈ G0 and ut(s) = e
t

1+st
Z ∈ P+. Hence (5) implies the following key

equation:

ϕtη̃γ̃X(s) = γ̃X

(
s

1 + st

)
at(s)ut(s) ∀s ∈ I, st > 0 (6)

where I is the domain of γ̃X . Thus for s > 0, pt(s) = at(s)ut(s) ∈ P is a holonomy path

for ϕtη̃ at γ̃X(s) with attractor b0; for s < 0, the same holds for ϕ−tη̃ (see [5, Prop 2.12].

Alternatively, for s > 0, at(s) ∈ G0 is a holonomy path for ϕtη̃ at γ̃X(s)e−
1
s
Z with attractor

b0 (respectively for s < 0, ϕ−tη̃ ). We will use both forms of the holonomy path.

Because, as above, A ∈ g0, representation theory of sl(2) gives that A acts diagonalizably

with integer eigenvalues on any completely reducible representation of g0. The holonomy path

at(s) therefore acts diagonalizably with eigenvalues (1+st)λ on any completely reducible G0-

module V, where λ is an eigenvalue of A on V. If ` is an eigenvalue of A on V, we write

V[`](A) for the corresponding eigenspace.

Definition 2.7. The stable subspace and strongly stable subspace of A on V are, respectively,

V[st](A) = ⊕`≤0V[`] and V[ss](A) = ⊕`<0V[`]

If A is understood, we will also simply write V[st] or V[ss].

Now assume V is completely reducible P -module, so P+ acts trivially on it. Let τ : B → V
be a P -equivariant function that is invariant under a strongly essential flow ϕtη̃. Then we

deduce from equation (6) (see [5, Prop 2.15]) that for any X ∈ T (Z)

• τ(γ̃X(s)) ∈ V[st](A) for all s ∈ I (7)

• τ(γ̃X(s)) ∈ V[ss](A) for all s ∈ I provided τ(b0) = 0.

In [5] the authors apply (7) to the harmonic curvature κ̂ : B → Ŵ. They verify for various

parabolic geometries admitting strongly essential flows that Ŵ[st](A) = {0}, or that κ̂(b0) = 0

and Ŵ[ss](A) = {0}, for any X ∈ T (Z), which implies vanishing of κ̂ along the curves γX

for X ∈ T (Z). In many cases however Ŵ[ss](A) for X ∈ T (Z) is nontrivial and so stronger

techniques are required to obtain vanishing of the harmonic curvature along the curves γX .

The main result of this article, Theorem 1.1, shows that for normal irreducible parabolic

geometries the harmonic curvature always vanishes along the curves γX emanating from the

fixed point of a strongly essential flow. A key ingredient in the proof of Theorem 1.1 will be

Proposition 3.1 below, which establishes that κ̂(γ̃X(s)) is a polynomial in s with respect to

a parallel moving frame along the curve γ̃X .
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3. Polynomial expression of invariant sections along special curves

In this section (B
π→ M,ω) is an arbitrary parabolic geometry admitting an nontrivial in-

finitesimal automorphism η̃ ∈ inf(B,ω). We suppose that ω(η̃(b0)) = Z ∈ p+ for some

b0 ∈ B.

Proposition 3.1. Suppose V = B×P V is a completely reducible vector bundle and suppose

τ : B → V corresponds to a {ϕtη̃}-invariant section of V . Then for any X ∈ T (Z) such that

A = [Z,X] ∈ g0 and any integer k ≥ 0, the component of τ in V[−k](A) satisfies,

(τ̃ ◦ γ̃X)[−k](s) = skv[−k] for some v[−k] ∈ V[−k](A).

Therefore, for all s in the domain I of γ̃X ,

(τ ◦ γ̃X)(s) =
∑
k≥0

skv[−k] where v[−k] ∈ V[−k](A).

Proof. Fix X ∈ T (Z) and write γ̃ = γ̃X . By (7) the curve τ ◦ γ̃ has values in V[st] = V[st](A)

for A = [Z,X]. Let k ≥ 0 be an integer and e1, . . . , eN be a basis of V[−k] = V[−k](A). The

goal is to show that for some constants ci,

(τ̃ ◦ γ̃)[−k](s) = sk
∑
i

ciei

Begin by writing

(τ̃ ◦ γ̃)[−k](s) =
∑
i

f i(s)ei.

Complete reducibility of V and the invariance of τ gives, by formula (6),

(τ̃ ◦ γ̃)[−k](s) = τ̃ [−k](ϕtγ̃(s))

= τ̃ [−k](γ̃

(
s

1 + st

)
as(t)e

t
1+st

Z)

= as(t)
−1 · (τ̃ ◦ γ̃)[−k]

(
s

1 + st

)
= as(t)

−1 ·
∑

f i
(

s

1 + st

)
ei

= (1 + st)k
∑

f i
(

s

1 + st

)
ei

because ei ∈ V[−k]. Thus

f i
(

s

1 + st

)
= (1 + st)−kf i(s) (8)

If k = 0, then it follows already that f i equals some constant ci along γ. Now assume k > 0.

Fix i, and write f = f i.

Lemma 3.2. Then we have:
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(1) For any s > 0 in I and any nonnegative integer m ≤ k,

f (m)

(
s

1 + st

)
= (1 + st)m−k

[
p0(t)f(s) + · · ·+ (1 + st)mpm(t)f (m)(s)

]
(9)

where each pi(t), i = 0, . . . ,m, is a polynomial in t of degree m− i.
(2) Denote ρm the coefficient of tm in the bracketed expression of (1). Again for m ≤ k,

ρm satisfies the recursive relation:

ρm+1 = (m− k)ρm + s
d

ds
ρm

(3) For k ≥ m ≥ 1, the coefficient ρm vanishes if and only if f has the form f = Csk,

for some constant C ∈ R.

Proof. The proof is by induction on m. The case m = 0 is just the equation (8), for which

p0 = 1. Now assume that there are polynomials p0(t), . . . , pm(t) satisfying (9). Differentiating

(9) with respect to s yields

f (m+1)

(
s

1 + st

)
1

(1 + st)2
= t(m− k)(1 + st)m−k−1[p0(t)f(s) + · · ·+ (1 + st)mpm(t)f (m)(s)]

+(1 + st)m−k[p0(t)f
′(s) + · · ·+ tm(1 + st)m−1pm(t)f (m)(s) + (1 + st)mpm(t)f (m+1)(s)]

which gives

f (m+1)

(
s

1 + ts

)
= (1 + st)m−k+1[q0(t)f(s) + · · ·+ (1 + st)m+1qm+1(t)f

(m+1)(s)]

where

qi(t) = t(m− k + i)pi(t) + pi−1(t)

Take pi(t) = 0 if i < 0 or i > m. The degree of qi is deg pi + 1 = deg pi−1, which proves (1).

Denote by rmi,j the coefficient of ti in pj(t). From the recurrence relation above,

rm+1
i,j = (m− k + j)rmi−1,j + rmi,j−1

From part (1),

ρm = f(s)rmm,0 + sf ′(s)rmm−1,1 + · · ·+ smf (m)(s)rm0,m

The recurrence relation gives

ρm+1(s) =

m+1∑
j=0

sjf (j)(s)[(m− k + j)rmm−j,j + rmm+1−j,j−1]

= (m− k)

m∑
j=0

sjf (j)(s)rmm−j,j +

m∑
j=0

jsjf (j)(s)rmm−j,j +

m∑
j=0

sj+1f (j+1)(s)rmm−j,j

= (m− k)ρm(s) + s
d

ds
ρm(s),

which proves part (2). Part (3) also follows by induction. For m = 1, we have

ρ1 = −kf(s) + sf ′(s)

The solution of the ODE ρ1 = 0 is f(s) = Csk.
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Now suppose the statement holds for m ≤ k − 1, so Csk is a solution of ρm = 0. Then

ρm+1(s) = (m− k)ρm(s) + s
d

ds
ρm(s)

implies Csk is also a solution of ρm+1 = 0. By uniqueness of solutions of ODEs, ρm+1 = 0

only if f(s) is as claimed. �

To finish the proof of Proposition 3.1 for k > 0, take m = k in Lemma 3.2. Part (1) says

f (k)
(

s

1 + st

)
= [p0(t)f(s) + · · ·+ (1 + st)kpk(t)f

(k)(s)]

for some polynomials pi(t). In order that this expression be bounded as t → ∞, the co-

efficients of all positive powers of t on the right-hand side must vanish. In particular, the

coefficient ρk of tk must vanish. By part (3) of Lemma 3.2, that means f(s) = csk. Recall

f = f i was the coefficient of ei for any i. Thus (τ̃ ◦ γ̃)[−k] has the form claimed. �

4. Vanishing of the harmonic curvature of irreducible parabolic geometries

along special curves

This section contains the proof of Theorem 1.1. We will use Proposition 3.1 to show that for

normal irreducible parabolic geometries of type (g, P ) with g simple, existence of an infini-

tesimal automorphism with a higher-order zero implies vanishing of the harmonic curvature

along the curves in T (α). The proof of Theorem 1.1 also shows that the full Cartan curvature

vanishes at the zero. A unified proof of Theorem 1.1 for all irreducible parabolic geometries

requires first a thorough study of sl(2)-triples {X,A,Z} of simple |1|-graded Lie algebras g

that are adapted to the grading in such a way that X ∈ g−1, A ∈ g0 and Z ∈ g1. Using the

representation theory of sl(2), we prove general facts about the eigenvalues of the action of

semisimple elements A ∈ g0 of adapted sl(2)-triples on the grading components of g.

4.1. Recall of representation theory of sl(2). Let us briefly recall the representation

theory of sl(2,K) for K = C,R. It is well known that for any integer ` ≥ 0 there exists an

irreducible sl(2,K)-module V(`) of K-dimension ` + 1, unique up to isomorphism. Denote

the standard generators of sl(2,K) by

X =

(
0 0

1 0

)
, Z =

(
0 1

0 0

)
and A = [Z,X] =

(
1 0

0 −1

)
. (10)

With respect to the action of the semisimple element A the module V(`) decomposes into a

direct sum of 1-dimensional weight spaces with weights `, `−2, . . . ,−`+ 2,−`. In particular,

` is the highest weight of V(`). Let v0 be a highest weight vector of V(`) and set vj = 1
j!X

jv0

for j = 1, . . . , `. Then the elements {v0, v1, v2, . . . , v`} form a basis of V(`) that consists of

weight vectors of A. The action of the standard generators on these basis elements is given

by

Avj = (`− 2j)vj Xvj = (j + 1)vj+1 Zvj = (`− j + 1)vj−1, (11)

where we decree v−1 = 0 and v`+1 = 0. In particular, this implies that v0 = 1
`!Z

`v`.
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4.2. Adapted sl(2)-triples in |1|-graded semisimple Lie algebras. Suppose g is a com-

plex or real semisimple Lie algebra. Let 0 6= Z ∈ g be a nilpotent element, meaning ad(Z)

is nilpotent on g. We have already remarked that Z can be completed to an sl(2)-triple

{X,A,Z} of the following form:

A = [Z,X] [A,Z] = 2Z [A,X] = −2X. (12)

This implies in particular that Z has degree of nilpotency ≥ 3 in g. Conversely, by elementary

representation theory (see also Proposition 4.1 below) for any sl(2)-triple as in (12), the

element Z ∈ g is a nilpotent element in g of degree of nilpotency ≥ 3. The element A acts

diagonally on g with integer eigenvalues; the j-eigenspace is denoted g[j] (cf. Section 2.2).

We allow ourselves to write g[j] even if g[j] = {0}, whence j ∈ Z not an eigenvalue of A.

Proposition 4.1. Suppose g is a complex or real semisimple Lie algebra and let {X,A,Z}
be an sl(2)-triple in g as in (12). If Z has degree of degree of nilpotency 3, then A acts

diagonally on g with integer eigenvalues between −2 and 2. Moreover, ad(Z) and ad(X),

respectively 1
2ad(Z) and 1

2ad2(X), induce inverse isomorphisms between g[−1] and g[1], re-

spectively between g[−2] and g[2].

Proof. Suppose g is a complex or real semisimple Lie algebra, let {X,A,Z} be an sl(2)-triple

in g, and denote by a the complex or real sl(2) subalgebra generated by X, A, and Z. As

an a-module, g decomposes into irreducible components. From Section 4.1,each irreducible

component is isomorphic to V(`) for some ` ≥ 0. Choose for each component an adapted

basis of weight vectors as in (11). It is immediately apparent that Z is a nilpotent element

in g of degree `0 + 1 if and only if `0 is the largest positive integer such that V(`0) occurs as

an irreducible submodule in g. Hence, if Z has degree of nilpotency 3, then all irreducible

components in g are isomorphic to either V(0), V(1), or V(2). Thus all eigenvalues of A are

integers between −2 and 2. Moreover, provided that g[1] 6= {0}, any nonzero elements in g[1]

and g[2] are highest weight vectors of a-module g. The second claim follows from (11). �

Suppose now that g is a complex or real semisimple Lie algebra equipped with a |1|-grading.

Let Z ∈ g1 be nonzero and fix an element X ∈ T (Z). Since ad3(Z) = 0, the elements

X ∈ g−1, A = [Z,X] ∈ g0 and Z ∈ g1 form an sl(2)-triple in g such that Z has degree of

nilpotency 3. Hence, by Proposition 4.1 the semisimple element A acts diagonally on g with

integer eigenvalues between −2 and 2. Also A ∈ g0, so A preserves each gi, with eigenspace

decomposition

gi =
2⊕

j=−2
g
[j]
i i = 1, 0− 1. (13)

By the Jacobi identity,

[g
[j]
i , g

[`]
k ] ⊂ g

[j+`]
i+k (14)

for all −1 ≤ i, k ≤ 1 and −2 ≤ j, ` ≤ 2, where we decree that g
[s]
r = {0} for |r| > 2 or |s| > 3.
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Denote by a the sl(2) subalgebra of g generated by X, A and Z and by z(Z) the centralizer

of Z in g, which is given by

z(Z) = {X ∈ g : [X,Z] = 0} ⊂ g.

Note that z(Z) is precisely the subspace of all the highest weight vectors for the a-module

g. By the Jacobi identity, z(Z) is an A-invariant subalgebra of g. By Proposition 4.1 its

decomposition into eigenspaces of A is therefore given by

z(Z) = g[2] ⊕ g[1] ⊕ (g[0] ∩ z(Z)). (15)

Decomposing g into irreducible components for the action of a, Proposition 4.1 and (14)

immediately give detailed information about the eigenspace decomposition of A on the indi-

vidual grading components of g:

Proposition 4.2. Suppose g = g−1 ⊕ g0 ⊕ g1 is a complex or real |1|-graded semisimple Lie

algebra. Let Z ∈ g1 be nonzero. Fix an element X ∈ T (Z) and set A = [Z,X] ∈ g0. Then:

(a) The linear operator ad(Z) induces isomorphisms g
[−1]
−1
∼= g

[1]
0 and g

[−1]
0
∼= g

[1]
1 , the

inverses of which are induced by ad(X).

(b) The linear operator 1
2ad2(Z) induces an isomorphism g

[−2]
−1
∼= g

[2]
1 , the inverse of which

is given by 1
2ad2(X).

(c) The possible eigenvalues of A on g−1 are −2, −1 and 0; moreover, g
[0]
−1 = C(Z).

(d) The possible eigenvalues of A on g1 are 2, 1 and 0.

(e) The possible eigenvalues of A on g0 are −1, 0 and 1; moreover,

g
[1]
0 = [g

[−1]
−1 , Z] = z(Z) ∩ [g−1, Z] ⊂ g0,

which is an abelian ideal of the subalgebra z(Z) ∩ g0.

Proof. Let 0 6= Z ∈ g1, fix X ∈ T (Z) and set A = [Z,X] ∈ g0. Denote by a the sl(2)

subalgebra of g generated by X, A and Z. Since ad3(Z) = 0, we have already noticed that

Proposition 4.1 applies and hence that g decomposes as an a-module into a direct sum of

irreducibles, each isomorphic to either V(0), V(1), or V(2). In particular, the eigenvalues of A

on g are integers between −2 and 2. The fact that A ∈ g0 implies that the decomposition into

eigenspaces of A of the individual grading components is given by (13). From Proposition 4.1,

ad(Z) and ad(X), respectively 1
2ad(Z) and 1

2ad2(X), induce inverse isomorphisms between

g[−1] and g[1], respectively between g[−2] and g[2]. Since Z ∈ g
[2]
1 and X ∈ g

[−2]
−1 , we therefore

conclude from (14) that (a), (b), (d) and the first statements of (c) and (e) hold (note that

(d) also follows immediately from the first statement of (c), since g∗−1
∼= g1 as g0-modules).

To complete the proof of (c) it remains to show that g
[0]
−1 = C(Z). Suppose first that

W ∈ C(Z), so [Z,W ] = 0. Then the Jacobi identity and the fact that g−1 is an abelian

subalgebra of g immediately imply that [X,W ] = 0 and [A,W ] = 0. Hence, C(Z) ⊂ g
[0]
−1,

and if C(Z) 6= 0, any choice of basis for C(Z) identifies C(Z) with a direct sum of copies of

the trivial representation V(0) of a. Conversely, assume now that W ∈ g
[0]
−1 does not generate

a copy of the trivial representation, so W ∈ g
[0]
−1 \ C(Z). Then W has to be of the form
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W = [X,V ] for a highest weight vector V ∈ g[2], which implies that [X,W ] = [X, [X,V ]] 6= 0.

But this is impossible, since g−1 is abelian. Hence C(Z) = g
[0]
−1.

Now let us prove the second assertion in (e). Note first that (a) implies that g
[1]
0 = [g

[−1]
−1 , Z].

Since g
[0]
−1 = C(Z) by (c) and ad2(Z)(Y ) 6= 0 for any nonzero element Y ∈ g

[−2]
−1 by (b), we

deduce that z(Z)∩ [g−1, Z] = z(Z)∩ [g
[−1]
−1 , Z]. The latter space in turn equals [g

[−1]
−1 , Z] = g

[1]
0 ,

since g
[1]
0 consists of highest weight vectors. Since [g

[1]
0 , g

[1]
0 ] ⊂ g

[2]
0 = {0} by (14) and the first

statement of (e), the subspace g
[1]
0 is an abelian subalgebra of g0 and by the Jacobi identity

even an abelian ideal of z(Z) ∩ g0. �

Suppose 0 6= Z ∈ g1 for g a |1|-graded semisimple Lie algebra, and let X ∈ T (Z). From

Proposition 4.2, the 1-eigenspace g
[1]
0 of A = [Z,X] on g0 is an abelian subalgebra of g0.

Hence, the exponential group G
[1]
0 = exp(g

[1]
0 ) is an abelian subgroup of G0, which acts on

g−1 by restriction of the adjoint action of G0 on g−1. For any U ∈ g
[1]
0 and any Y ∈ g−1,

exp(U)(Y ) = Y + [U, Y ] +
1

2
[U [U, Y ]] ∈ g−1, (16)

since ad3(U)(Y ) = 0 by (14) and (c) of Proposition 4.2. The following result gives a de-

scription of the set T (Z), which can be seen as a specialization to our setting of Kostant’s

description of sl(2)-triples in semisimple Lie algebras with the same nilpositive element (The-

orem 3.6 of [14]).

Proposition 4.3. Suppose g = g−1 ⊕ g0 ⊕ g1 is a complex or real |1|-graded semisimple Lie

algebra and let Z ∈ g1 be nonzero. Fix an element X ∈ T (Z) and set G
[1]
0 = exp(g

[1]
0 ). Then

G
[1]
0 acts simply transitively on T (Z). In particular, T (Z) = Ad(G

[1]
0 )(X) ⊂ g−1.

Proof. Suppose U ∈ g
[1]
0 , and set X ′ = exp(U)X, A′ = exp(U)(A) and Z ′ = exp(U)Z. Since

[U,Z] = 0 by (e) of Proposition 4.2, we have Z ′ = Z. Moreover, the fact that exp(U)[V,W ] =

[exp(U)V, exp(U)W ] for any V,W ∈ g implies that X ′ ∈ T (Z) with A′ = [Z,X ′]. Conversely,

suppose X ′ ∈ T (Z) and set A′ = [Z,X ′]. Since [A,Z] = 2Z = [A′, Z], we have A − A′ ∈
z(Z) ∩ g0. From [Z,X −X ′] = A − A′, we see that A − A′ ∈ [Z, g−1]. Therefore, it follows

from (e) of Proposition 4.2 that A−A′ ∈ g
[1]
0 . For U = A−A′ ∈ g

[1]
0 we therefore obtain

exp(U)(A) = A+ [A−A′, A] = A+A′ −A = A′.

Set X ′′ := exp(U)(X). Then X ′′ and X ′ are both elements of T (Z) such that [Z,X ′′] =

A′ = [Z,X ′]. Hence, X ′′ − X ′ ∈ C(Z). But X ′ − X ′′ ∈ g−1 is also in an element of the

−2-eigenspace of A′ on g−1, which implies by (c) of Proposition 4.2 that X ′′ = X ′. Hence,

G
[1]
0 acts transitively on T (Z).

It remains to show that the action is free. Note that exp(U)(X) = X ∈ g
[−2]
−1 for some U ∈ g

[1]
0

if and only if the elements [U,X] ∈ g
[−1]
−1 and [U, [U,X]] ∈ g

[0]
−1 are zero. Since ad(X) induces

an isomorphism between g
[1]
0 and g

[−1]
−1 by (a) of Proposition 4.2, these elements vanish if and

only if U = 0. Since the action is transitive, it now follows that the action is free. �

For simple |1|-graded Lie algebras, the description of T (Z) in Proposition 4.3 implies:
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Corollary 4.4. Suppose g = g−1⊕g0⊕g1 is a complex or real |1|-graded simple Lie algebra,

and let 0 6= Z ∈ g1. Denote by S the set of all elements in g−1 that are contained in the

−2-eigenspace of a semisimple element A = [Z,X] for some X ∈ T (Z). Then the linear span

of S coincides with g−1. In particular, if α is an element of Λ2g∗−1 such that αyY = 0 for

all elements Y ∈ S, then α = 0.

Proof. Fix X ∈ T (Z) and set A = [Z,X]. By Proposition 4.3,

S = {exp(g
[1]
0 )(Y ) : Y ∈ g

[−2]
−1 }.

Note that for any U ∈ g
[1]
0 and Y ∈ g

[−2]
−1 ,

exp(U)(Y ) = Y + [U, Y ] +
1

2
[U [U, Y ]] ∈ g−1, (17)

where [U, Y ] ∈ g
[−1]
−1 and 1

2 [U [U, Y ]] ∈ g
[0]
−1 = C(Z). By definition S contains g

[−2]
−1 , which obvi-

ously equals exp(0)(g
[−2]
−1 ). By (a) of Proposition 4.2 the map ad(X) induces an isomorphism

g
[1]
0
∼= g

[−1]
−1 . Since exp(U)(X)− exp(−U)(X) = 2[U,X] for any U ∈ g

[1]
0 , we therefore deduce

that g
[−1]
−1 is contained in the span of S. This immediately implies that also all elements in

g
[0]
−1 of the form

[U [U, Y ]] for U ∈ g
[1]
0 and Y ∈ g

[−2]
−1 (18)

are contained in the span of S.

It remains to show that the elements in (18) span g
[0]
−1 = C(Z). Let U1 and U2 be elements

in g
[1]
0 and Y be an element in g

[−2]
−1 . Then by Jacobi identity and (d) of Proposition 4.2 we

have [U1, [U2, Y ]] = [U2, [U1, Y ]], which implies that

[U1 + U2, [U1 + U2, Y ] = [U1[U1, Y ]] + 2[U1[U2, Y ]] + [U2, [U2, Y ]].

Therefore, [U1, [U2, Y ]] can be written as a linear combination of elements of the from (18).

Since [g
[1]
0 , g

[−2]
−1 ] = g

[−1]
−1 by (a) of Proposition 4.2, it is therefore sufficient to show that

[g
[1]
0 , g

[−1]
−1 ] = g

[0]
−1. By the Jacobi identity one verifies directly that

[g[−2], g[2]]⊕ [g[−1], g[1]]⊕
⊕
j 6=0

g[j]

is an nonzero ideal in g. Since g is simple, we therefore deduce that [g[−2], g[2]] and [g[−1], g[1]]

span g[0]. Hence, (d) of Proposition 4.2 implies in particular that [g
[−1]
−1 , g

[1]
0 ] = g

[0]
−1. �

Remark 4.1. Suppose g is a simple Lie algebra equipped with a |1|-grading. This implies

z(g0) is 1-dimensional. Note that for any 0 6= Z ∈ g1 and X ∈ T (Z) the action of the

corresponding semisimple element A = [Z,X] ∈ g0 on g might not have 1 as an eigenvalue

implying that −1 is also not an eigenvalue, i.e. g[1] = g[−1] = {0}. By (d) of Proposition 4.2

we therefore have g0 = g
[0]
0 and hence A ∈ z(g0). So A must be twice the grading element

and hence g−1 = g−2−1, which confirms in particular that {0} = [g
[−1]
−1 , g

[1]
0 ] = g

[0]
−1 in this case.

Recall that for any irreducible parabolic geometry the curvature has values in the P -module

W = Λ2(g/p)∗ ⊗ g ∼= Λ2g1 ⊗ g,
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Since (g/p)∗ is completely reducible as a P -module and isomorphic to g∗−1 as G0-module, we

can make g∗−1 into a P -module isomorphic to (g/p)∗, if we define the action of P+ on g∗−1 to

be trivial. In this way Λ2g∗−1 ⊗ g can be viewed as a P -module, which is isomorphic to W.

Moreover, identifying Λ2g∗−1⊗ g with W, the grading on g induces a vector space grading on

W by homogeneities as follows:

W = W1 ⊕W2 ⊕W2, (19)

where Wi = Λ2g∗−1 ⊗ g−2+i for i = 1, 2, 3. Note that Wi is a G0-submodule of W.

We shall later need some facts about the eigenspace decomposition of W under the action

of A = [Z,X], for Z ∈ g1 and X ∈ T (Z). Since A ∈ g0, the action of A preserves the

decomposition (19) of W. The eigenspace decomposition of each homogeneous component of

W with respect to the action of A is therefore of the form:

Wi =
⊕
j∈Z

W[j]
i with W[j]

i = Wi ∩W[j] i = 1, 2, 3.

Proposition 4.5. Suppose g = g−1 ⊕ g0 ⊕ g1 is a complex or real |1|-graded semisimple Lie

algebra and let Z ∈ g1 be nonzero. Fix an element X ∈ T (Z) and set A = [Z,X]. Then for

the action of A on W the following holds:

(a) W[st] ∩ (Λ2g∗−1 ⊗
⊕

i≥−1 g
[i]) ⊂ ker(xY ) for all Y ∈ g

[−2]
−1

(b) W[ss] ⊂ ker(xY ) and ZW[ss] ⊂ ker(xY ) for all Y ∈ g
[−2]
−1

(c) W[1]
3 ⊂ ker(xY ) for all Y ∈ g

[−2]
−1 ,

Proof. (a) Suppose first that α is an element of W[−j]∩ (Λ2g∗−1⊗
⊕

i≥−1 g
[i]) for some integer

j ≥ 0. Recall that by (c) of Proposition 4.2 the possible eigenvalues of A on g−1 are −2,

−1 and 0. Now let Y be an element of g
[−2]
−1 and V be an element of g

[−`]
−1 for some integer

0 ≤ ` ≤ 2. Then

−jα(Y, V ) = (A · α)(Y, V ) = [A,α(Y, V )]− α(AY, V )− α(Y,AV )

and so

[A,α(Y, V )] = −(j + 2 + `)α(Y, V ). (20)

But −(j + 2 + `) ≤ −2, which contradicts the assumption that α has values in
⊕

i≥−1 g
[i]

unless α(Y, V ) = 0. Hence, by linearity (a) holds.

(b) Note that for α ∈ W[−j] ⊂ W[ss] with j > 0 some integer, the equation (20) takes the

form [A,α(Y, V )] = −(j + 2 + `)α(Y, V ) with −(j + 2 + `) < −2. Since all eigenvalues on

g are ≥ −2 by Proposition 4.1, we conclude that α(Y, V ) = 0. Hence, by linearity the first

statement of (b) holds. Since Z acts trivially on Λ2g∗−1, its action on W preserves the space

of forms in W that vanish upon insertion of an element of g
[−2]
−1 , which completes the proof

of (b). To see that (c) holds just note that for a form α ∈W[1]
3 the equation (20) reads as

[A,α(Y, V )] = −(1 + `)α(Y, V ),

which implies that α(Y, V ) = 0, since A has nonnegative eigenvalues on g1 by (d) of Propo-

sition 4.2. Hence, again by linearity α ∈ ker(xY ) for all Y ∈ g
[−2]
−1 . �



18 KARIN MELNICK AND KATHARINA NEUSSER

4.3. Fundamental derivative. In the sequel we will use the notion of the fundamental

derivative of parabolic geometries. Let us therefore recall its definition and basic proper-

ties, for more details see for instance [8], [2] or [20]. Suppose (B
π→ M,ω) is a parabolic

geometry. Consider an associated vector bundle V = B ×P V and identify its space of sec-

tions with P -equivariant smooth functions C∞(B,V)P . Differentiating equivariant functions

f ∈ C∞(B,V)P in direction of ω-constant vector fields gives rise to a differential operator

D : C∞(B,V)P → C∞(B, g∗ ⊗ V)P

Df(b)(X) = (X̃ · f)(b),

where X̃ denotes the ω-constant vector field with value X ∈ g. It is called the fundamental

derivative on V .

Since the fundamental derivative is defined on any associated bundle, we can iterate it and

define the m-th fundamental derivative on V by

Dm : C∞(B,V)P → C∞(B, g∗ ⊗ V)P

Dmf(b)(X1, . . . , Xm) = (X̃1 · ... · X̃m · f)(b).

Observe first that for any X ∈ p the corresponding ω-constant vector field X̃ is the funda-

mental vector field ζX generated by X. Hence,

Df(b)(X) = (ζX · f)(b) = −X(f(b)) for all X ∈ p, (21)

which implies that for all m ≥ 1,

Dmf(b)(X1, . . . , Xm) = −Xm(Dm−1(b)(X1, . . . , Xm−1)) (22)

for all X1, . . . , Xm−1 ∈ g and Xm ∈ p.

Since the curvature κ of a Cartan geometry satisfies ω−1([X1, X2] − κ(X1, X2)) = [X̃1, X̃2],

the second fundamental derivative satisfies the following property for all X1, X2 ∈ g, which

is sometimes referred to as the Ricci identity of the fundamental derivative:

D2f(X1, X2)−D2f(X2, X1) = Df([X1, X2])−Df(κ(X1, X2)). (23)

Because κ is horizontal, it follows that

D2f(X1, X2)−D2f(X2, X1) = Df([X1, X2]) ∀X1 ∈ g, X2 ∈ p. (24)

Recall that a vector field η̃ ∈ inf(B,ω) commutes with all ω-constant vector fields. Hence, if

η̃ · f = 0 for some equivariant function f ∈ C∞(B,V)P , then η̃ · (Dmf) = 0 for all m ≥ 0,

which in turn is equivalent to

(Dmf)(ϕtη̃b) = (Dmf)(b) for all b ∈ B.

Since any infinitesimal automorphism of a Cartan geometry preserves the curvature function

κ ∈ C∞(B,W)P = C∞(B,Λ2(g/p)∗ ⊗ g)P , we conclude that for any η̃ ∈ inf(B,ω)

η̃ ·Dmκ = 0 for all m ≥ 0. (25)
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Assume now that η̃ ∈ inf(B,ω) has a higher-order zero at x0 ∈M , and let Z be the isotropy

with respect to b0 ∈ π−1(x0). Then equations (21) and (25) imply that that at the point b0

the following identity holds:

0 = (η̃ ·Dmκ)(b0) = −Z(Dmκ(b0)). (26)

Note that for any X ∈ g the derivative Dmκ(b0)(X, . . . ,X) equals the m-th derivative at 0

of the curvature along the exponential curve exp(b0, sX))—that is,

Dmκ(b0)(X, . . . ,X) =
dm

dsm
|s=0κ(exp(b0, sX).

The properties of the fundamental derivative mentioned above and the identity (26) give the

following information on the derivatives at 0 of the curvature along the curves in T (α)

Proposition 4.6. Suppose (B
π→ M,ω) is a parabolic geometry of type (g, P ). Assume

0 6= η̃ ∈ inf(B,ω) has a higher-order zero at x0 ∈ M . Let Z be the istropy with respect to

b0 ∈ π−1(x0). Assume in addition that there exists X ∈ T (Z) ⊂ g− such that A = [Z,X] ∈
g0. Then:

(a) Zκ(b0) = 0

(b) Z(Dκ(b0)(X)) = −Aκ(b0)

(c) Z(D2κ(b0)(X,X)) = −2(A+ Id)(Dκ(b0)(X))

Proof. The identity in (a) is just the identity (26) for m = 0. Hence, it remains to show that

(b) and (c) hold. By the identity (26) and equation (21) we have

0 = (ZDκ(b0))(X) = Z(Dκ(b0)(X))−Dκ(b0)([Z,X]) = Z(Dκ(b0)(X)) +Aκ(b0),

which proves (b). For (c) note that (26) implies that

0 = (ZD2κ(b0))(X,X) = Z(D2κ(b0)(X,X))−D2κ(b0)([Z,X], X)−D2κ(b0)(X, [Z,X]).

By the Ricci identity (24) and equation (22) we obtain

D2κ(b0)([Z,X], X) +D2κ(b0)(X, [Z,X]) =

2D2κ(b0)(X,A) +Dκ(b0)([A,X]) = −2A(Dκ(b0)(X))− 2Dκ(b0)(X).

and hence (c) holds. �

4.4. Curvature vanishing result for irreducible parabolic geometries. Suppose now

that (B
π→ M,ω) is a normal irreducible parabolic geometry. Assume 0 6= η ∈ inf(M) has a

higher-order zero at x0 ∈M , with isotropy Z with respect to b0 ∈ π−1(x0).

Recall from (3) that the harmonic curvature can be viewed as a G0-equivariant function

κ̂ : B → Ŵ ⊂ ker(∂∗) ⊂W,

which is constant along the fibers of B → B/P+.
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In accordance with the grading of W into homogeneous components as in (19) we write κi for

i = 1, 2, 3 for the components of the curvature. Since the grading (19) on W is G0-invariant,

it induces a grading on the G0-submodule Ŵ as follows:

Ŵ = Ŵ1 ⊕ Ŵ2 ⊕ Ŵ3, Ŵi = Ŵ ∩Wi, i = 1, 2, 3 (27)

Accordingly, we can decompose the harmonic curvature into three components, which we

denote by κ̂i for i = 1, 2, 3. Moreover, note that, since for any element X ∈ T (Z) the

corresponding semisimple element A lies in g0, the action of A preserves each component Ŵi

of Ŵ. Hence, the decomposition of Ŵi for i = 1, 2, 3 into eigenspaces of A is of the form:

Ŵi =
⊕
j∈Z

Ŵ[j]
i with Ŵ[j]

i = Ŵ ∩W[j]
i . (28)

Proposition 4.7. Suppose (B
π→ M,ω) is a normal irreducible parabolic geometry of type

(g, P ) with g simple. Let 0 6= η ∈ inf(M) have a higher-order zero at x0 ∈ M , with isotropy

Z with respect to b0 ∈ π−1(x0). Then for any X ∈ T (Z),

(κ̂ ◦ γ̃X)(s) ∈ Ŵ[ss] ⊂W[ss] for all s ∈ I,

where I is the domain of γ̃X . Therefore, for all s ∈ I,

• κ̂1(γ̃X(s)) = sw
[−1]
1 + s2w

[−2]
1

• κ̂2(γ̃X(s)) = sw
[−1]
2

• κ̂3(γ̃X(s)) = 0,

for some elements w
[−1]
1 ∈ Ŵ[−1]

1 , w
[−2]
1 ∈ Ŵ[−2]

1 and w
[−1]
2 ∈ Ŵ[−1]

2 .

Proof. By (a) of Proposition 4.6 we have Zκ(b0) = 0. Since Z acts trivially on (g/p)∗ ∼= g∗−1,

this implies that κ(b0) has values in z(Z). From (15), κ(b0) is an element of Λ2g∗−1⊗
⊕

i≥0 g
[i].

Since Ŵ is a g0-submodule of W, the semisimple element A ∈ g0 preserves Ŵ. Hence,

κ̂(b0) ∈ Λ2g∗−1 ⊗
⊕
i≥0

g[i].

By (7), we have κ̂(γ̃X(s)) ∈ Ŵ[st] ⊂ W[st] for all s ∈ I. From (a) of Proposition 4.5, for all

elements Y ∈ g
[−2]
−1 , we therefore obtain

κ̂(b0)yY = 0.

Since this must hold for the −2-eigenspace on g−1 of A = [Z,X] for any element X ∈ T (Z),

Corollary 4.4 gives that κ̂(b0) = 0. Hence, (7) implies

(κ̂ ◦ γ̃X)(s) ∈ Ŵ[ss] ⊂W[ss]

for all s ∈ I as claimed. Now note that by (c)− (e) of Proposition 4.2 the possible negative

eigenvalues on W1 are −2 and −1, on W2 just −1 and on W3 all eigenvalues are nonnegative.

Hence, the second statement follows immediately from (28) and Proposition 3.1. �

From the Bianchi identities of the Cartan curvature κ it follows that the lowest homogeneous

component of κ always coincides with the lowest homogeneous component of the harmonic

curvature (see [8, Theorem 3.1.12]). The lowest possible homogeneous component of the
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curvature is κ1, which coincides with the torsion of the geometry. Hence, we conclude that

that κ1 = κ̂1. Now Proposition 4.7 implies that

κ1(γ̃X(s)) = κ̂1(γ̃X(s)) = sw
[−1]
1 + s2w

[−2]
1 .

Let us remark that κ1 might be identically zero implying that κ̂1 is identically zero. In this

case, the Bianchi identity again gives κ2 = κ̂2 [8, Theorem 3.1.12]. If κ2 is also identically

zero, then similarly κ3 = κ̂3.

We now give the proof of Theorem 1.1.

Proof of Theorem 1.1. Fix a point b0 ∈ π−1(x0) to identify the isotropy of η ∈ inf(M) with

Z ∈ p+. Fix X ∈ T (Z) and write I for the domain of γ̃X . We already know from Proposition

4.7 that κ1(b0) = κ̂1(b0) = 0, κ̂2(b0) = 0, and that κ̂3 ◦ γ̃X ≡ 0. To prove the remaining

claims of the theorem we will proceed in 3 steps.

1. Step: κ2(b0) = 0 and w
[−1]
1 = 0 in the polynomial expression of κ1(γ̃X(s)) = κ̂1(γ̃X(s))

in Proposition 4.7.

From equation (6) we know that as(t) is a holonomy path for the flow of η̃ at γ̃X(s)e−
1
s
Z for

s 6= 0. Therefore, κ(γ̃X(s)e−
1
s
Z) = e

1
s
Zκ(γ̃X(s)) is in W[st] for all s 6= 0. The action of Z

on W raises homogeneities by 1, so we can write e
1
s
Z = 1 + 1

sZ + 1
2s2
Z2 when viewed as an

operator on W. Using the polynomial expression of κ1(γ̃X(s)) = κ̂1(γ̃X(s)) in Proposition

4.7, we therefore conclude that the component of homogeneity 2 of κ at γ̃X(s)e−
1
s
Z is given

by

κ2(γ̃X(s)) +
1

s
Zκ1(γ̃X(s)) = κ2(γ̃X(s)) + Zw

[−1]
1 + sZw

[−2]
1 , (29)

where Zw
[−1]
1 ∈W[1]

2 and Zw
[−2]
1 ∈W[0]

2 . Since the expression (29) lies in W[st]
2 for all s 6= 0

and the term Zw
[−1]
1 on the right hand side is unstable, Zw

[−1]
1 must cancel with a term of

κ2(γ̃X(s)). By continuity, we therefore conclude that for all s ∈ I we have

κ2(γ̃X(s)) ∈ −Zw[−1]
1 + W[st]

2 . (30)

We then deduce from (e) of Proposition 4.2, and (a) and (b) of Proposition 4.5 that the

expression (30) lies in ker(xY ) = 0 for all Y ∈ g
[−2]
−1 . Varying X ∈ T (Z) we conclude from

Corollary 4.4 that κ2(b0) = 0 as desired. Moreover, it follows that

Zw
[−1]
1 = 0 and κ2(γ̃X(s)) ∈W[st]

2 for all s ∈ I.

Now recall that all eigenvalues of A on g∗−1 are nonnegative by Proposition 4.2, hence the

fact that w
[−1]
1 ∈ Ŵ[−1]

1 ⊂ Λ2g∗−1 ⊗ g−1 implies that w
[−1]
1 takes values in g

[ss]
−1 . On the other

hand, Z acts trivially on g∗−1, so Zw
[−1]
1 = 0 implies that w

[−1]
1 takes values in C(Z), which

by (c) of Proposition 4.2 equals g
[0]
−1. Hence, we conclude that w

[−1]
1 = 0 and that

κ1(γ̃X(s)) = s2w
[−2]
1 for all s ∈ I. (31)

2. Step: κ3(b0) = 0 and w
[−2]
1 = 0 in the polynomial expression of κ1(γ̃X(s)) = κ̂1(γ̃X(s))

in Proposition 4.7, which implies κ1 ◦ γ̃X ≡ 0.
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From (31) we deduce that D2κ1(b0)(X,X) = 2w
[−2]
1 . By (c) of Proposition 4.6 we therefore

have

−2(A+ Id)(Dκ2(b0)(X)) = Z(D2κ1(b0)(X,X)) = 2Zw
[−2]
1 ∈W[0]

2 ,

which implies that

Dκ2(b0)(X) ∈ −Zw[−2]
1 + W[−1]

2 . (32)

By (a) of Proposition 4.6 we have

Z(Dκ2(b0)(X)) = −A(κ3(b0)). (33)

Since Z2w
[−2]
1 belongs to W[2]

3 and ZW[−1]
2 ⊂W[1]

3 , we conclude from (32) and (33) that

κ3(b0) ∈ −
1

2
Z2w

[−2]
1 + W[1]

3 + W[0]
3 .

Since all eigenvalues of A on g1 are nonnegative by (d) of Proposition 4.2, we deduce from

(a)− (c) of Proposition 4.5 that

κ3(b0) ∈ ker(xY ) for all Y ∈ g
[−2]
−1 .

Varying X ∈ T (Z) we deduce from Corollary 4.4 that κ3(b0) = 0 as claimed. In particular,

Z2w
[−2]
1 = 0. Since all eigenvalues of A on g∗−1 are nonnegative by (c) of Proposition 4.2

the element w
[−2]
1 must have values in g

[−2]
−1 . Because Z acts trivially on g∗−1, the identity

Z2w
[−2]
1 = 0 implies that the image of w

[−2]
1 in must be annihilated by Z2. Hence, we conclude

from (b) of Proposition 4.2 that w
[−2]
1 = 0.

3. Step κ̂2 ◦ γ̃X ≡ 0

Since w
[−2]
1 = 0, we see from (32) that Dκ2(b0)(X) = v

[−1]
2 for some element v

[−1]
2 ∈ W[−1]

2 .

Recall that by Proposition 4.7 we have κ̂2(γ̃X(s)) = sw
[−1]
2 ∈ Ŵ[−1]

2 ⊂ W[−1]
2 . Since the

decomposition (3) of ker(∂∗) is invariant under the action of A ∈ g0, we therefore conclude

that v
[−1]
2 = w

[−1]
2 + w̄

[−1]
2 , where w̄

[−1]
2 ∈ im(∂∗). By (c) and (e) of Proposition 4.2 the

elements w
[−1]
2 and w̄

[−1]
2 must have values in g

[−1]
0 . On the other hand, since κ3(b0) = 0,

the equation (33) implies that Zv
[−1]
2 = 0. Hence v

[−1]
2 = 0, since ad(Z) defines isomorphism

from g
[−1]
0
∼= g

[1]
1 by (a) of Proposition 4.2. Since w

[−1]
2 and w̄

[−1]
2 are linearly independent,

we must have in particular that w
[−1]
2 = 0, which completes the proof. �

5. Rigidity results for irreducible parabolic geometries

In this section we apply Theorem 1.1 to prove new rigidity results for various irreducible par-

abolic geometries admitting strongly essential flows. We prove general curvature vanishing

results for flows with smoothly isolated zeroes in Proposition 5.1, and for flows with maxi-

mal strongly fixed sets in Proposition 5.5. These are applied to various specific geometries

in Corollaries 5.2 and 5.6, respectively. We also prove Theorem 1.2 and the quaternionic

counterpart, Theorem 5.4.
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5.1. Classification of irreducible parabolic geometries. The complete classification of

parabolic subalgebras with abelian nilradical in simple Lie algebras can be found in [8]. In

Sections 5.1.1–5.1.4 below, we describe the irreducible parabolic geometries modeled on (g, P )

with g simple, neglecting only a few obscure examples. We shall write P for any parabolic

subgroup with Lie algebra p, but we will classify geometric types in p+ assuming that P is

maximal with Lie algebra p. For isogenous P ′ < P , geometries modeled on (g, P ′) have some

additional geometric data on the underlying geometric structure, such as an orientation.

Since our results concern the local geometry around a higher-order zero, finer choices of P

will not make a difference.

5.1.1. Type An. Assume n ≥ 2. In g = sl(n + 1,K) for K = R,C or H there exist up

to conjugation n parabolic subalgebras with abelian nilradical, which can be realized as

the stabilizers p(p) in g of Kp ⊂ Kn+1 for 1 ≤ p ≤ n. Fix p ≥ 1 and set p = p(p)

and q = n + 1 − p. Identifying the Levi factor g0 ⊂ p with the subalgebra preserving the

decomposition Kp ⊕ Kq = Kn+1, g can be identified with a |1|-graded Lie algebra of the

following form

g = g−1 ⊕ g0 ⊕ g1 = LK(Kp,Kq)⊕ s(gl(p,K)× gl(q,K))⊕ LK(Kq,Kp), (34)

where p = g0 ⊕ g1. The action of (A,B) ∈ g0 on X ∈ g−1 is given by (A,B)X = BX −XA;

on Z ∈ g1, it is (A,B)Z = AZ − ZB. The bracket g1 × g−1 → g0 is [Z,X] = (ZX,−XZ).

We will assume below that p ≤ q, since q ≤ p leads to isomorphic geometries. The following

table lists the parabolic geometries corresponding to the pair (g, P (p)) and the possible types

of isotropies of non-trivial infinitesimal automorphisms at higher order zeroes.

Geometric structure Number of types of isotropies

of strongly essential flows

p = 1 projective, almost c-projective, 1

and almost quaternionic structures

2 ≤ p ≤ q almost Grassmannian structures of type (p, q) p, corresponding to K-ranks

and their complex and quaternionic analogues of non-zero maps in

g1 = LK(Kq,Kp)

Structures in the first row are infinitesimally modeled on KPn, and those in the second row

on Grassmann varieties GrK(p, n + 1). For detailed descriptions of these geometries, with

the exception of almost c-projective structures, we refer to Section 4.1 of [8]. An almost

c-projective structure consists of an almost complex structure and a complex projective class

of minimal complex connections—for which the torsion is a multiple of the Nijenhuis tensor.

If the complex structure is integrable, these are also called h-projective structures; see [19],

[13], and [4].

5.1.2. Type Bn. Let m ≥ 1 be an integer. Up to conjugation, there is only one parabolic

subalgebra with abelian nilradical in o(2m+ 3,C). It is the stabilizer of the highest weight

line in the standard representation C2m+3. This parabolic subalgebra admits real forms in
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all the real forms o(p + 1, q + 1) of o(2m + 3,C), where p + q = 2m + 1, which we shall all

denote by p. Choosing a realization of the Levi factor of such p as a subalgebra of p gives

the following |1|-grading on g:

g = g−1 ⊕ g0 ⊕ g1 = Rp,q ⊕ co(p, q)⊕ (Rp,q)∗, (35)

where p = g0 ⊕ g1 and co(p, q) = R⊕ o(p, q) denotes the conformal Lie algebra of signature

(p, q). An element (a,A) ∈ g0 acts on X ∈ g−1 by (a,A)X = −aX + AX. The Lie bracket

between Z ∈ g1 and X ∈ g−1 is

[Z,X] = (ZX,−XZ + I(XZ)tI), where I = Idp ⊕ -Idq. (36)

Parabolic geometries of type (o(p + 1, q + 1), P ) correspond to semi-Riemannian conformal

structures of signature (p, q) on manifolds of dimension 2m+ 1. The standard homogeneous

model is the space of null lines in R2m+3 equipped with its standard conformal structure,

which is called the Möbius spaces of signature (p, q).

For pq 6= 0 there are three possible types of isotropies of higher-order zeroes of conformal

Killing fields. These correspond to time-like, space-like, and null elements in g1 = (Rp,q)∗.

Light-like isotropies are called isotropic, while space-like and time-like isotropies are referred

to as non-isotropic. If pq = 0, then there is only one type of isotropy.

5.1.3. Type Cn. Let n ≥ 2 be an integer and assume K = R or C. Let K2n be equipped with

the standard K-linear symplectic form. The symplectic Lie algebra g = sp(2n,K) has up to

conjugation a unique parabolic subalgebra p with abelian nilradical. It is the stabilizer in g

of the isotropic subspace span{e1, . . . , en} ⊂ K2n. Identifying the Levi factor g0 ⊂ p with

the stabilizer of the complementary isotropic subspace span{en+1, . . . , e2n} ⊂ K2n gives an

identification of g with the following |1|-graded Lie algebra:

g = g−1 ⊕ g0 ⊕ g1 = S2Kn ⊕ gl(n,K)⊕ S2Kn∗, (37)

where p = g0 ⊕ g1. The action of an element A ∈ g0 on X ∈ g−1 corresponds to the action

of gl(n,K) on S2Kn. The Lie bracket between Z ∈ g1 and X ∈ g−1 is [Z,X] = −ZX, where

the right-hand side is the product of symmetric matrices.

Parabolic geometries of type (sp(2n,K), P ) correspond to almost Lagrangean structures (and

their complex analogues when K = C). The standard homogeneous model is the variety of

Lagrangean subspaces of K2n. For K = R, such a structure on Mn(n+1)/2 is given by an

isomorphism TM ∼= S2E, for an auxiliary rank-n vector bundle E. For more details about

almost Langrangean structures see Section 4.1.11 of [8].

For K = R, the possible types of isotropies of higher-order fixed points of non-trivial strongly

essential flows are parametrized by the possible signatures (p, q, r) of non-zero quadratic forms

on Rn of rank p+q 6= 0. If K = C, the possible types of isotropies correspond to the possible

ranks of nonzero complex-bilinear quadratic forms.
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5.1.4. Type Dn. Let m ≥ 2 be an integer. Up to conjugation, there are three parabolic

subalgebras with abelian nilradical in o(2(m+1),C). The first can be realized as the stabilizer

p of the highest weight line in the standard representation of o(2(m+ 1),C); the others are

the stabilizers q1 and q2 of the highest weight lines in the half-spin representations. Since q1

and q2 are apparently isomorphic Lie algebras, we restrict to q = q1.

The subalgebra p admits real forms in o(p + 1, q + 1) for each p + q = 2m, all of which

we shall denote again by p. Parabolic geometries of type (o(p + 1, q + 1), P ) correspond to

semi-Riemannian conformal structures of type (p, q) on manifolds of dimension 2m. The

description of these structures and the possible types of strongly essential isotropies is com-

pletely analogous to the discussion in Section 5.1.2.

Under the isomorphism D3
∼= A3, the algebras q1, p and q2 correspond to p(1), p(2), and

p(3), respectively. For the split real forms o(3, 3) ∼= sl(4,R), this isomorphism in particular

reflects the well-known relation between conformal geometry of signature (2, 2) and real (2, 2)

almost Grassmannian structures. Because of the triality of the Dynkin diagram D4, the class

of geometries corresponding to p and q in this rank are isomorphic; both give rise to conformal

geometry in dimension 6.

Now assume m = n − 1 ≥ 4. Equip R2n with the standard inner product of signature

(n, n). The algebra q has a real form in o(n, n), which we also denote by q. To avoid the

more complicated spinor description, realize q as the stabilizer in g of the highest weight

line in the representation of self-dual n-forms on (Rn,n)∗—that is, of the self-dual isotropic

subspace span{e1, . . . , en} ⊂ Rn,n. Identifying the Levi factor g0 of q with the stabilizer of

the complementary isotropic subspace span{en+1, . . . , e2n} ⊂ Rn,n gives an identification of

g with the |1|-graded Lie algebra

g = g−1 ⊕ g0 ⊕ g1 = Λ2Rn ⊕ gl(n,R)⊕ Λ2Rn∗, (38)

where q = g0⊕g1. The Lie bracket between elements in g0 and g−1 corresponds to the action

of gl(n,R) on Λ2Rn. The bracket between elements Z ∈ g1 and X ∈ g−1 is [Z,X] = −ZX,

where the right-hand side is the product of skew-symmetric matrices.

Parabolic geometries on Mn(n−1)/2 of type (o(n, n), Q) are almost spinorial structures. The

standard homogeneous model is the variety of self-dual isotropic subspaces of Rn,n. Such a

geometry is given by an isomorphism TM ∼= Λ2E, for E an auxiliary rank-n vector bundle.

For more details about almost spinorial structures, see Section 4.1.12 of [8].

The possible types of isotropies of higher-order fixed points of non-trivial strongly essential

flows correspond to the possible ranks p = 2` of nonzero skew-symmetric n × n matrices,

0 < ` ≤ n
2 ; hence, there are precisely bn2 c geometric types of isotropies of strongly essential

flows.

5.2. Smoothly isolated higher order zeroes. Suppose (B
π→ M,ω) is a normal irre-

ducible parabolic geometry of type (g, P ) admitting a nontrivial infinitesimal automorphism

η with a smoothly isolated higher-order zero at x0 ∈ M . Then its isotropy α ∈ T ∗x0M satis-

fies C(α) = {0}. Choose a point b0 ∈ π−1(x0) to identify α with an element Z ∈ g1 and fix
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X ∈ T (Z). By (c) of Proposition 4.2 the eigenspace decomposition of g−1 with respect to

the action of A = [Z,X] is of the form g−1 = g−2−1 ⊕ g−1−1. Hence, (d) and (e) of Proposition

4.2 imply that the W[ss](A) = {0}. Since A ∈ g0, we conclude that also Ŵ[ss](A) = {0}. If g

is simple, Theorem 1.1 implies that κ̂(x0) = 0 (in fact κ̂ vanishes along the curves of T (α)).

Therefore we deduce from Corollary 2.14 of [5] (compare [5, Prop 2.2]):

Proposition 5.1. Suppose (B
π→ M,ω) is a normal irreducible parabolic geometry of type

(g, P ) with g simple. Let 0 6= η ∈ inf(M) with smoothly isolated higher-order zero at x0 ∈M .

Then there exists an open set U ⊂M such that x0 ∈ U on which the geometry is locally flat.

Looking at the Lie brackets g1 × g−1 → g0 of the various geometries in Section 5.1, one can

easily see which types of strongly essential zeroes are smoothly isolated. Then Proposition

5.1 yields the following Corollary, which in particular recovers some of the results on strongly

essential flows on conformal structures in [11] (see also [6]) and Theorem 3.7 on almost

quaternionic structures in [5].

Corollary 5.2. Suppose (B
π→ M,ω) is a normal, irreducible, parabolic geometry. Let

0 6= η ∈ inf(M) with a higher-order zero at x0 ∈ M . Let α be the isotropy of η at x0. Then

the higher-order zero x0 is smoothly isolated, and the geometry locally flat on an open set

U ⊂M with x0 ∈ U , for the following model pairs (g, P ) and geometric types of α:

(1) An : g = sl(n+ 1,K) for K = R,C or H, n ≥ 2, and p = p(1) as in Section 5.1.1

(2) An : g = sl(p + q,K) for K = R,C or H, 2 ≤ p ≤ q, p = p(p) as in Section 5.1.1,

and rkK(α) = p

(3) Bn/Dn : g = o(p+ 1, q + 1) or o(m+ 2,C), m = p+ q ≥ 3 and pq = 0, and p as in

Sections 5.1.2 and 5.1.4

(4) Bn/Dn : g = o(p + 1, q + 1) or o(m + 2,C), m = p + q ≥ 3 and pq 6= 0, p as in

Sections 5.1.2 and 5.1.4, and α non-isotropic

(5) Cn : g = sp(2n,K), n ≥ 3, p as in Section 5.1.3, and rkK(α) = n.

(6) Dn : g = o(n, n) or o(2n,C), n ≥ 5, p = q as in Section 5.1.4, and rkK(α) = n for n

even, rkK(α) = n− 1 for n odd.

Note that (1) of Corollary 5.2 includes projective, almost c-projective, and almost quater-

nionic structures. For projective structures, this curvature vanishing has been shown in

[22] to hold on a neighborhood of x0. We can prove the same improvement for almost c-

projective structures and almost quaternionic structures. Here we will appeal to some results

and techniques of Section 2 of [5].

5.2.1. Improvement for almost c-projective structures. If g has a complex structure, then

any semisimple element in g acts by C-linear maps, and has eigenspaces that are complex

subspaces. Moreover, for any Z ∈ g1 and any X ∈ T (Z), the corresponding sl2-triple

{X,A,Z} gives rise to a Lie algebra homomorphism sl(2,C) → g, which integrates to a

group homomorphism φ : SL(2,C) → G, for any choice of G with Lie algebra g. For any
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z, w ∈ C the following identity holds in in SL(2,C):(
1 z

0 1

)(
1 0

w 1

)
=

=

(
1 0

w(1 + wz)−1 1

)(
1 + wz 0

0 (1 + wz)−1

)(
1 (1 + wz)−1z

0 1

)
. (39)

Fix v ∈ C. For s, t ∈ R, set

ât(s) =

(
1 + stv 0

0 1
1+stv

)
ût(s) =

(
1 t

1+stv

0 1

)
.

These paths are smooth in s for all t ∈ R provided v /∈ R, which we will assume below. Denote

by at(s) and ut(s) the images of these paths in G0 and P+ under the smooth embedding φ,

and set pt(s) = at(s)ut(s). Setting z = t and w = sv the identity (39) implies that the

following product decomposition in G holds

etZesvX = ect(s)Xat(s)ut(s) s, t ∈ R, v ∈ C, (40)

where ct(s) = sv(1 + stv)−1. Note that ct(s)X traces a path in the abelian subalgebra

CX ⊂ g−1. It follows that

ωG

(
d

ds
ect(s)X

)
= c′t(s)X =

v

(1 + stv)2
X.

Differentiating equation (40) with respect to s and evaluating with ωG shows that

vX = Ad pt(s)
−1(c′t(s)X) + ωG(p′t(s)). (41)

Suppose now that (B
π→ M,ω) is a real, irreducible, normal, parabolic geometry of type

(g, P ) where g has a complex structure. Assume also that η ∈ inf(M) has a higher-order

zero at x0 ∈ M . Choose b0 ∈ π−1(x0) to identify the isotropy with Z ∈ g1. Then the proof

of Proposition 2.1 of [5] (see also [10]) can be modified in this setting as follows.

The smooth 1-form ω trivializes TB ∼= B×g. Consider the family of ODEs expressed in this

trivialization as

Et : β′t(s) = (βt(s), c
′
t(s)X) =

(
βt(s),

v

(1 + stv)2
X

)
βt(0) = b0

Suppose v ∈ C \R has non-negative real part. Then on any compact interval [0, ε] for ε > 0,

we have |c′t(s)| ≤ |v| for all s ∈ [0, ε] and all t ∈ [0,∞). By the Picard–Lindelöf Theorem

(see [25]), there exists ε0 > 0 so that for any t ≥ 0 the unique solution βt of Et is defined on

[0, ε0]. If Re v < 0, just replace t by −t. Now Equation (41) implies that in B,

ϕtη̃ exp(b0, svX) = βt(s)at(s)ut(s) ∀s ∈ [0, ε0] (42)

With respect to any positive definite inner product on g, the norms ||c′t(s)X|| → 0 uniformly

on compacts of (0, ε0] as t → ±∞. In the corresponding smooth Riemannian metric on

TB ∼= B × g, the arc lengths L(βt) → 0. Therefore βt(s) → b0 as t → ∞, for any fixed
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s ∈ [0, ε0]. Then, as in Proposition 2.12 of [5], at(s) is a holonomy path with attractor b0 at

b(s) = exp(b0, svX)u∞(s)−1, where

u∞(s) = lim
t→∞

ut(s) = φ

(
1 1

sv

0 1

)

The eigenspaces of at(s) in Ŵ are independent of the choice of nonzero v, and so is the

question of boundedness of at(s) on these spaces. Then as in Proposition 2.9 of [5], whenever

v ∈ C \R,

κ̂(exp(b0, svX)) ∈ Ŵ[st](A) ∀s. (43)

When v ∈ R, then replacing s by sv in Proposition 2.12 of [5] and again applying Proposition

2.9 gives the same stability along exp(b0, sX), wherever the curve is defined. We have proved:

Proposition 5.3. Let (M,B, ω) be a real, irreducible, normal, parabolic Cartan geometry

modeled on (g, P ). Suppose that g admits the structure of a complex Lie algebra. Let 0 6= η ∈
inf(M) have higher order zero at x0, and suppose the isotropy with respect to b0 ∈ π−1(x0)
equals Z. Then, for any X ∈ T (Z) and sufficiently small s, for A = [Z,X],

κ̂(exp(b0, svX)) ∈ Ŵ[st](A) for any v ∈ C.

If κ̂(b0) = 0, then

κ̂(exp(b0, svX)) ∈ Ŵ[ss](A) for any v ∈ C

Whenever g is simple, then κ̂(b0) = 0 by Theorem 1.1. From Proposition 5.3 we now deduce

Theorem 1.2 about almost c-projective structures:

Proof of Theorem 1.2. Almost c-projective structures on M2n, n ≥ 2, are equivalent to real

normal parabolic geometries modeled on (sl(n+1,C), P ), where P is the stabilizer of complex

line in Cn+1. The Lie algebra g = sl(n + 1,C) has a complex structure and there is only

one geometric type of isotropy (see Subsection 5.1.1). By (1) of Corollary 5.2, this higher-

order zero is necessarily smoothly isolated. Suppose η ∈ inf(M) has a higher-order zero at

x0 ∈M , with isotropy with respect to b0 ∈ π−1(x0) equal Z. Then C(Z) = {0}, which means

Ŵ[ss](A) = {0}, as in the discussion at the beginning of Section 5.2, for any X ∈ T (Z). Since

g is a real simple Lie algebra, κ̂(x0) = 0 by Theorem 1.1. So Proposition 5.3 implies that the

harmonic curvature vanishes along all curves of the form π(exp(b0, svX)) for any X ∈ T (Z)

and v ∈ C. It remains only to show that these curves fill a dense subset of a neighborhood

of x0. For any X ∈ T (Z) the eigenspace decomposition of g−1 with respect to A is given by

g−1 = g
[−2]
−1 ⊕ g

[−1]
−1 = CX ⊕ ker(Z)

and T (Z) = {X + Y : Y ∈ ker(Z)}. Since the set of nonzero complex multiples of T (Z)

equals g−1 \ ker(Z), it forms a dense open subset of g−1. Hence, the curves π(exp(b0, svX))

fill up a dense open subset of a neighborhood of x0, which implies the claim. �
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5.2.2. Improvement for almost quaternionic structures. Almost quaternionic structures on

M4n, n ≥ 2, are reduction of structure group to G0 = GL(n,H) ×Z2 Sp(1), comprising

prequaternionic vector space isomorphisms Hn ∼= R4n. They correspond to normal parabolic

geometries modeled on (sl(n + 1,H), P ), where P is the stabilizer of a quaternionic line in

Hn+1. Our arguments are slightly more subtle, since the real Lie algebra g = sl(n+1,H) has

no quaternionic structure. From Section 5.1.1, there is only one geometric type of isotropy

α of strongly essential flows on these geometries, all with C(α) = 0 by (1) of Corollary 5.2.

Suppose now that (B
π→M,ω) is an irreducible, normal, parabolic geometry of type (sl(n+

1,H), P ), and assume η ∈ inf(M) has a higher-order zero at x0 ∈ M . For a suitable choice

of b0 ∈ π−1(x0), the isotropy of η will be the dual Z of the first standard basis vector e1 of

Hn ∼= g−1. From (34), T (Z) = e1+ker(Z). For any X ∈ T (Z), the eigenspace decomposition

of the action of A = [Z,X] on g−1 is

g−1 = g
[−2]
−1 ⊕ g

[−1]
−1 = XH⊕ ker(Z). (44)

This shows that although elements of g0 in general do not act by H-linear maps on g−1, the

semisimple element A ∈ g0 does. The right H-module spanned by {X,A,Z} is thus contained

in g, and so is the sl(2,H) subalgebra they generate. Hence, for any X ∈ T (Z), the triple

{X,A,Z} induces a Lie algebra homomorphism sl(2,H) → g, which locally integrates to a

group homomorphism φ : SL(2,H)→ G.

For z ∈ R and w ∈ H the identity (39) holds in SL(2,H). Hence the equality (40) is still

valid in G = PGL(n+ 1,H) for v ∈ H and s, t ∈ R, and reads as

etZeXsv = eXct(s)at(s)ut(s) s, t ∈ R, v ∈ C, (45)

where at(s) and ut(s) are defined analogously as in the almost c-projective case. As before,

XH ⊂ g−1 is an abelian subalgebra of g, so we compute

ωG

(
d

ds
eXct(s)

)
= Xc′t(s) = X(v − sv(1 + stv)−1tv)(1 + stv)−1

Define the curves βt(s) in B as before, and note that the corresponding functions in the ODE

are given by

Ft(y, s) = (y,X(v − sv(1 + stv)−1tv)(1 + stv)−1).

As for almost c-projective structures, one deduces that for any v ∈ H\R there exists ε0 > 0

such that the family of curves βt is defined on [0, ε0] and that in B,

ϕtη̃ exp(b0, Xsv) = βt(s)at(s)ut(s) ∀s ∈ [0, ε0]. (46)

The norms ||Xc′t(s)|| in g still tend uniformly to 0, and we conclude that

κ̂(exp(b0, Xsv)) ∈ Ŵ[st](A) (47)

for any v ∈ H (since it was previously known for v ∈ R). Theorem 1.1 gives κ(b0) = 0, which,

together with Ŵ[ss](A) = 0 gives vanishing of κ̂ along all curves of the form π(exp(b0, Xsv))

for X ∈ T (Z) and v ∈ H. Nonzero quaternionic multiples of T (Z) form an open dense subset

of g−1 by (44), so the following theorem is proved:
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Theorem 5.4. Let M4n, n ≥ 2, be an almost quaternionic manifold, and let 0 6= η ∈ inf(M)

with higher-order zero at x0. Then there exists a neighborhood U of x0 on which the geometry

is locally flat—that is, locally isomorphic to PHn with its standard quaternionic structure.

5.3. Higher order zeros with maximal strongly fixed component. This section con-

cerns the opposite extreme from isolated zeroes, namely, higher-order zeroes for which the

isotropy α has C(α) of maximal possible dimension.

Let (B
π→M,ω) be modeled on one of the geometries of Section 5.1. Suppose η ∈ inf(M) has

higher-order zero at x0 ∈ M with isotropy Z with respect to b0 ∈ π−1(x0). The dimension

of C(Z) is maximal if and only if, for X ∈ T (Z) and A = [Z,X], the dimension of g
[−2]
−1 is

minimal. Indeed, recall that C(Z) ⊂ g−1 equals the kernel of ad(Z) : g−1 → g0. For almost

all the geometries of Section 5.1, elements of g0 can be identified with pairs of matrices (A,B)

such that the bracket g1 × g−1 → g0 is given by [Z,X] = (ZX,−XZ). The exception is in

the conformal case, where the second matrix is −XZ+ I(XZ)tI. For almost Lagrangean and

almost spinorial structures, there is only the second term, −XZ. Then for 0 6= Z ∈ g1, the

map ad(Z) : g−1 → g0 has maximal kernel if and only if Z is maximally degenerate—that is,

for type An or Cn, the K-rank of Z is 1; for almost spinorial structures, Z has rank 2; and for

pseudo-Riemannian conformal structures, Z is null. (For Riemannian conformal structures,

C(Z) = {0} for any Z ∈ g1). From the descriptions of the gradings in Section 5.1, it is easy

to see that T (Z) comprises the matrices X ∈ g−1 such that ZX is the identity on im(Z)

and XZ is the identity on im(X), except in the conformal case where the description is a

bit different and can be found in [6]. Then for all these geometries, all X ∈ T (Z) have the

same degree of degeneracy as Z. Moreover, when Z ∈ g1 is maximally degenerate, so C(Z)

has maximal dimension, then g
[−2]
−1 is 1-dimensional over K, for any A = [Z,X], X ∈ T (Z).

Again, Riemannian conformal structures are an exception; here T (Z) consists of a single

element and A is twice the grading element, so g−1 = g
[−2]
−1 (see also [6]). Conversely, for all

the geometries in Section 5.1, the elements Z ∈ g1 yielding g
[−2]
−1 of minimal dimension are

the maximally degenerate isotropy classes, for which C(Z) is of maximal dimension.

Proposition 5.5. Suppose (B
π→M,ω) is a normal, irreducible, parabolic geometry modeled

on (g, P ) with g simple. Let 0 6= η ∈ inf(M) with higher-order zero at x0 ∈M . Let Z be the

isotropy of η with respect to b0 ∈ π−1(x0). Assume that g
[−2]
−1 = RX for some X ∈ T (Z).

Then there exists an open set U ⊂M with x0 ∈ U on which the geometry is locally flat.

Proof. By Proposition 3.5(2a) of [5], for a sufficiently small neighborhood U of 0 in C(Z)

the set N = π(exp(b0, U)) defines a submanifold of M that consists of higher-order zeroes of

η; moreover, the isotropy of η with respect to points of exp(b0, U) ⊂ π−1(N) equals Z. By

Theorem 1.1, κ̂ vanishes on N and along the family of curves T (α) associated to each point

in N . More precisely, let, where it is defined,

ψ̃ : C(Z)× T (Z)×R→M

ψ̃ : (Y,X, t) 7→ π ◦ exp(exp(b0, Y ), tX)

and let ψ = π ◦ ψ̃. Then Theorem 1.1 implies that κ̂ vanishes on the image of ψ.
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We wish to show that for any X ∈ T (Z), there are a neighborhood U ⊆ C(Z) of the origin

and ε∗ > 0 such that D(Y,X,ε)ψ is onto Tψ(Y,X,ε)M for any Y ∈ U and 0 < ε < ε∗. Then

by the Inverse Function Theorem, the image of ψ contains a neighborhood of ψ(Y,X, ε);

varying 0 < ε < ε∗ yields an open set in the image of ψ containing x0 in its closure. To show

surjectivity of D(Y,X,ε)ψ, it suffices to show that the image of ω ◦D(Y,X,ε)ψ̃ projects onto g/p.

First note that, for any X ∈ T (Z),

ω ◦D(0,X,0)ψ̃(C(Z)) = ω ◦D0(expb0)(C(Z)) = C(Z).

Therefore, by making Y and ε sufficiently small, we can make ω ◦D(0,X,0)ψ̃(C(Z)) arbitrarily

close to C(Z). Moreover,

ω ◦D(0,X,ε)ψ̃(TεXRT (Z)) = DεX(logexp(b0,εX) ◦ expb0)(TεXRT (Z)).

As ε→ 0, the expression on the right approaches TXRT (Z), since the tangent space to the

cone RT (Z) is the same along the line RX. Thus for Y and ε sufficiently small, we can make

ω ◦D(Y,X,ε)ψ̃(TεXRT (Z)) arbitrarily close to TXRT (Z).

By the characterization of C(Z) in Proposition 4.2 (c), we know that

g−1 = RX ⊕ g
[−1]
−1 ⊕ g

[0]
−1

= RX ⊕ g
[−1]
−1 ⊕ C(Z)

for any X ∈ T (Z). Proposition 4.2 (a) implies that this direct sum in turn equals

RX ⊕ g
[−1]
−1 ⊕ C(Z) = RX ⊕ ad(X)g

[1]
0 ⊕ C(Z).

Recall from Proposition 4.3 that Ad(G
[1]
0 )X = T (Z). Therefore,

TXT (Z) = ad(g
[1]
0 )X = ad(X)(g

[1]
0 )

Now TXRT (Z) = RX ⊕ TXT (Z), so we conclude

g−1 = TXRT (Z)⊕ C(Z),

which implies that D(Y,X,ε)ψ is surjective. �

As a consequence of Proposition 5.5 and the discussion at the beginning of this subsection,

we obtain the following Corollary, which in particular recovers some results of [11] (see also

[6]) on strongly essential Killing fields of pseudo-Riemannian conformal structures with null

isotropy:

Corollary 5.6. Suppose (B
π→ M,ω) is a normal irreducible parabolic geometry of type

(g, P ) with g simple. Let 0 6= η ∈ inf(M) with higher-order zero at x0 ∈ M , with isotropy

Z with respect to b0 ∈ π−1(x0). Then g
[−2]
−1 = RX for any X ∈ T (Z), and the geometry is

locally flat on an open set U ⊂M such that x0 ∈ U , in the following cases:

(1) An : g = sl(p+ q,R), 2 ≤ p ≤ q, p = p(p) defined as in Section 5.1.1 and rk(α) = 1

(2) Bn: g = o(p+ 1, q + 1), where m = p+ q ≥ 3 and pq 6= 0, p as in Sections 5.1.2 and

5.1.4, and α isotropic

(3) Cn: g = sp(2n,R) for n ≥ 3, p as in Section 5.1.3 and rk(α) = 1.
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(4) Dn: g = o(n, n), n ≥ 5, p = q defined as in Section 5.1.4 and rk(α) = 2.

Putting Corollary 5.2 and 5.6 together yields Theorem 1.3 for almost Grassmannian struc-

tures of type (2, n), which provides an improvement of Theorem 3.1 of [5]:

Proof of Theorem 1.3. Almost Grassmannian structures are equivalent to normal irreducible

parabolic geometries of type (sl(n + 2,R), P (2)). There are only two types of isotropies α

of strongly essential infinitesimal automorphisms in this case, namely α having rank 1 or 2.

Hence, the statement of Theorem 1.3 follows directly from the Corollaries 5.2 and 5.6. �

6. Outlook: Irreducible and higher-graded parabolic geometries

6.1. Questions about automorphisms of irreducible parabolic geometries. An ob-

vious question stemming from our results is:

Question 1. For any irreducible parabolic geometry admitting a flow by strongly essential

automorphisms, must the curvature vanish on an open set containing the fixed point in its

closure?

We conjecture that the answer is yes. The shortfall between our techniques and this result

is, roughly speaking, the difference between TXRT (Z) for X ∈ T (Z) and g
[ss]
−1 —that is, for

a fixed X ∈ T (Z), there are in general other directions in g
[−2]
−1 along which we are not able

to show curvature vanishing. These curves are, however, contracted under the flow. A proof

of this conjecture will likely require adapting the precise result of Proposition 3.1 and the

ensuing proof of Theorem 1.1 to a coarser dynamical argument.

If the question above has a positive answer, this says that for any irreducible parabolic

geometry, on any open set where the curvature does not vanish, any η ∈ inf(M) is determined

by its 1-jet. Such a statement is the first step towards finding normal forms for arbitrary

flows by automorphisms of these geometries, in the neighborhood of a fixed point (as in [11]).

A more ambitious question is thus:

Question 2. On an open subset of an irreducible parabolic geometry where the curvature is

nonvanishing, are there flows by local automorphisms that are not linearizable?

Here we suppose the answer is yes.

Lastly, we remark that the geometric structures underlying parabolic geometries can be

defined with lower regularity: C0 or C1 semi-Riemannian conformal structures, for example,

are well known. These do not, however, determine a Cartan geometry, so our results do

not apply to them. With A. Čap, we have constructed a C1 deformation of the flat (2, n)

Grassmannian model space, which still admits a strongly essential flow, with isotropy a rank

one element in p+ ∼= L(Rn,R2). We believe we can show this geometry is not locally flat on

any nonempty open set, so it should be a counterexample to Theorem 1.3 for low regularity

(2, n) almost Grassmannian geometries.
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6.2. Submaximal path geometry of Kruglikov and The. There are nowhere flat higher-

graded parabolic geometries admitting a flow by strongly essential automorphisms. Examples

are given by the non-prolongation rigid submaximal geometries constructed in [16]. We

briefly describe one family of such examples, due to Casey, Dunajski and Tod [9] in the lowest

dimension five, and proved submaximal by Kruglikov and The in higher odd dimensions. The

reader is referred to Section 5.3 of [16] for more details and references.

The underlying manifold M2m+1 carries a Cartan geometry modeled on the homogeneous

space SL(m + 2,R)/P1,2, where P1,2 is the stabilizer of a flag consisting of a line contained

in a plane in Rm+2. This geometry is 2-graded with g0 ∼= R2 ⊕ sl(m,R). Note that the flat

model fibers over both RPm+1 = SL(m+ 2,R)/P1 and the Grassmannian GrR(2,m+ 1) =

SL(m+ 2,R)/P2 of 2-planes in Rm+2.

The geometric structure corresponding to these Cartan geometries encodes a system of

second-order ODEs with m dependent variables, {x1(t), . . . , xm(t)}, modulo point trans-

formations, which are roughly changes of the coordinates (t, x1, . . . , xm) (for m = 2 one

needs to require that the homogeneity 1 component of the harmonic curvature vanishes).

The flat model corresponds to the system ẍi = 0, i = 1, . . . ,m, which, after compactifying in

projective space, has solutions comprising the projective lines. The model SL(m+2,R)/P1,2

is the projectivized tangent bundle of RPm+1.

The results of [9] and [16] establish the bound m2 + 5 on the dimension of the symmetry

algebra of a non-flat (SL(m+ 2,R), P1,2)-geometry, and they exhibit a model for which this

bound is achieved. It corresponds to the system of ODEs ẍ1 = · · · = ẍm−1 = 0, ẍm = (ẋ1)
3.

The full symmetry algebra acts transitively, with stabilizer isomorphic to q1 ⊕ qm, where

q1 and qm are parabolic subalgebras of sl(2,R) and sl(m,R), respectively. The intersection

with g0 is R ⊕ qm, leaving a 1-dimensional subspace of the stabilizer lying in g1. We note

that this geometry fibers over a (2,m)-almost-Grassmannian manifold, where this strongly

essential flow becomes inessential.

6.3. Questions on automorphisms of higher-graded parabolic geometries. There

are rigidity theorems for strongly essential automorphisms of some higher graded parabolic

geometries. For Cω, integrable CR structures of hypersurface type, Beloshapka [1] and

Loboda [18] proved that strongly essential automorphisms can occur only on locally flat

geometries. Their proof involves rather elaborate calculations with Moser’s normal forms,

which are Taylor series expansions of automorphisms. We wonder whether our approach

could lead to a different proof of this result, perhaps also valid for C∞ structures. Note

that for strictly pseudo-convex CR structures—that is, those modeled on ∂CHn—there are

theorems that any automorphism with a fixed point of a non-flat geometry is linearizable

(see [26], [17], [5]).

In light of the example in Section 6.2 above, it seems that existence of strongly essential flows

may not be the appropriate criterion for rigidity theorems in general. A stronger hypothesis

on a flow, which agrees with strongly essential for irreducible parabolic geometries, is having

trivial 1-jet—that is, ϕt(x0) = x0 and Dx0ϕ
t = Id for all t. This condition corresponds to
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the isotropy of the corresponding vector field η lying in gk ⊂ p+, the smallest subspace in

the filtration defining p.

Question 3. On an open subset of a parabolic geometry where the curvature is nonvanishing,

is any infinitesimal automorphism determined by its 1-jet at a point?
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