MATH 221 (Washington) Review Exam 2 Fall 2008

1. Solve $y^{\prime}=(2 t+3) y^{2}, y(0)=4$.
2. Solve the differential equation $y^{\prime}=t+2-y, y(0)=5$.
3. Sketch the graphs of the solutions to the following differential equations:
(a) $y^{\prime}=30-5 y, y(0)=0$.
(b) $y^{\prime}=-.03 y(4-y), y(0)=3$
4. The rate of growth of a certain population is proportional to the difference between the population and the square of the population. Write a differential equation that is satisfied by the population at time t and sketch a typical solution.
5. A hot liquid cools at a rate proportional to the difference between the temperature y of the liquid and the room temperature T. Set up (but do not solve) the differential equation satisfied by the temperature y. State whether the constant of proportionality you use is positive or negative.
6. Consider the differential equation $y^{\prime}=(y+1)(y-4)$. Sketch the solution corresponding to the initial condition $y(0)=4$ and the solution for $y(0)=0$.
7. Calculate the following: (a) .08/. 4
(b) $(2 / 3) /(1 / 2)$
(c) $.001 \times .034$
8. Determine the fourth Taylor polynomial of $f(x)=\ln (x)$ at $x=1$.

The following might be useful:

$$
A(t)=\int a(t) d t, \quad y=e^{-A(t)}\left[\int e^{A(t)} b(t) d t+C\right]
$$

