## Solutions to some problems

6(b). First dose is 4 . During the next 24 hours, $1 / 4$ of it disappears, leaving $4(3 / 4)$. After the second dose, there is $4+4(3 / 4)$. In the next 24 hours, $1 / 4$ of it disappears, leaving $(3 / 4)(4+4(4 / 3))=4(3 / 4)+4(3 / 4)^{2}$ remaining. After the thrid dose, there is $4+4(3 / 4)+4(3 / 4)^{2}$. After many weeks, there is $4+4(3 / 4)+4(3 / 4)^{2}+4(3 / 4)^{3}+\cdots=16$ (from part (a)) in the bloodstream immediately after a dose is given.
8.(a) The derivative of the cdf is the pdf, so $f(x)=F^{\prime}(x)=\frac{1}{2} k x^{-1 / 2}$. For this to be a pdf, we need

$$
1=\int_{1}^{4} f(x) d x=\int_{1}^{4} \frac{1}{2} k x^{-1 / 2} d x=\left.\frac{k}{2} \frac{x^{1 / 2}}{1 / 2}\right|_{1} ^{4}=\left.k x^{1 / 2}\right|_{1} ^{4}=k\left(4^{1 / 2}-1^{1 / 2}\right)=k
$$

Therefore, $k=1$ and the pdf is $f(x)=\frac{1}{2} x^{-1 / 2}$. Since $F(x)=\int_{1}^{x} f(x) d x$, we have $F(1)=\int_{1}^{1} f(x) d x=0$. Therefore, $0=F(1)=\sqrt{1}+C=1+C$. This means that $C=-1$.
(b)

$$
E(X)=\int_{1}^{4} x f(x) d x=\int_{1}^{4} x \frac{1}{2} x^{-1 / 2} d x=\int_{1}^{4} \frac{1}{2} x^{1 / 2} d x=\left.\frac{1}{2} \frac{x^{3 / 2}}{3 / 2}\right|_{1} ^{4}=\frac{7}{3} .
$$

10. We are told that $p_{0}=.5$. Since $p_{0}=e^{-\lambda}$, we have $e^{-\lambda}=.5$, so $-\lambda=\ln (.5)$ and $\lambda=-\ln (.5)$.
(a) The probability that a page has more than one error is $p_{2}+p_{3}+p_{4}+\cdots=$ $1-\left(p_{0}+p_{1}\right)$. It is given that $p_{0}=.5$. Also,

$$
p_{1}=\lambda e^{-\lambda}=-\ln (.5) e^{-\lambda}=-\ln (.5)(.5)
$$

where we used the fact that $e^{-\lambda}=.5$ from earlier. Putting this together, we find that

$$
1-\left(p_{0}+p_{1}\right)=1-p_{0}-p_{1}=1-.5-(-\ln (.5)(.5))=.5+.5 \ln (.5)
$$

(b) The average number of errors is $E(X)=\lambda=-\ln (.5)$.

