No proof is needed for TRUE-FALSE questions; just write clearly. You may assume given matrix expressions are well defined (i.e. the matrix sizes are compatible).

1. (a) Below are a matrix A and the matrix $\text{rref}(A)$ produced by MATLAB.

$$A = \begin{pmatrix} 22 & -22 & 44 & 14 & 7 & 182 \\ 4 & -4 & 8 & 5 & 2 & 37 \\ 14 & -14 & 28 & 4 & 3 & 108 \\ 0 & 0 & 0 & 0 & 10 & 20 \\ 15 & -15 & 30 & 10 & 25 & 165 \end{pmatrix}, \quad \text{rref}(A) = \begin{pmatrix} 1 & -1 & 2 & 0 & 0 & 7 \\ 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Write down a basis for each of the following (no justification required).

i. (4 points) $\text{Row}(A)$, the row space of A.

SOLUTION: The first three rows of $\text{rref}(A)$.

(The first three rows of A are NOT a basis.)

ii. (4 points) $\text{Col}(A)$, the column space of A.

SOLUTION: Columns 1, 4 and 5 of A.

iii. (6 points) $\text{Nul}(A)$, the null space of A.

SOLUTION: The following vectors form a basis:

$$\begin{pmatrix} -7 \\ 0 \\ -1 \\ -2 \\ 1 \end{pmatrix}, \begin{pmatrix} -2 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}.$$

(b) (6 points) For each of the following, answer TRUE or FALSE.

i. **FALSE** $\text{rank}(A + B) \geq \text{rank}(A)$ whenever A and B are 10×21 matrices.

ii. **TRUE** $\text{rank}(AB) \leq \text{rank}(A)$ whenever A and B are 10×10 matrices.

2. (a) (15 points) Define

$$A = \begin{pmatrix} -3 & -2 \\ 1 & 3 \end{pmatrix} \quad \text{and} \quad D = \{x \in \mathbb{R}^2 : \sqrt{(x_1 - \pi)^2 + (x_2 - 17)^2} \leq 3\}.$$

Compute the area of the set $E = \{Ax : x \text{ is in } D\}$.

SOLUTION:

area(E) = $|\text{det}(A)||\text{area}(D)| = |-7|(|\pi|2)^2 = 63\pi$.

(b) (5 points) Suppose A and B are 5×5 matrices with $\text{det}(A) = 10$ and $\text{det}(B) = 4$.

Compute the determinant of the matrix $M = -2A^3B^{-1}$.

SOLUTION

$\text{det}(M) = (-2)^5(\text{det}(A))^3(1/\text{det}(B)) = (-32)(10^3)(1/4) = -8000$.

3. (a) (14 points) Let \(\mathbb{P}^1 \) denote the vector space of polynomials of degree at most 1; then \(B = \{3 + t, 5 + 5t\} \) is a basis of \(B \).

Find the coordinates vector \(x = [-7 + t]_B \) of the polynomial \(-7 + t\).

SOLUTION. This vector is the vector \(\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \) such that \(x_1 (3 + t) + x_2 (5 + 5t) = -7 + t \). This \(x \) is the solution of

\[
\begin{pmatrix} 3 & 5 \\ 1 & 5 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -7 \\ 1 \end{pmatrix}
\]

and this solution is \(x = \begin{pmatrix} -4 \\ 1 \end{pmatrix} \).

(b) (6 points) For each of the following, answer TRUE or FALSE.

i. **FALSE.** \(\mathbb{R}^2 \) is a subspace of \(\mathbb{R}^3 \).

ii. **FALSE.** If \(C \) is a set of 14 vectors which span \(\mathbb{R}^5 \), then \(C \) contains every basis of \(\mathbb{R}^5 \).

4. (a) (8 points) Suppose that \(A \) and \(B \) are similar matrices. Prove that their characteristic polynomials are equal.

SOLUTION:

We have \(U^{-1}AU = B \) for some invertible \(U \). Therefore

\[
\det(tI - B) = \det(tI - U^{-1}BU) = \det(U^{-1}(tI - A)U) = \det(U^{-1})\det(tI - A)\det(U) = \frac{1}{\det(U)}\det(tI - A)\det(U) = \det(tI - A).
\]

(b) (12 points) Let \(V \) be the vector space of differentiable functions from \(\mathbb{R} \) to \(\mathbb{R} \).

For each of the following, answer TRUE or FALSE.

i. **TRUE** The set of functions \(\{\cos^2 t, \sin^2 t\} \) is a linearly independent subset of \(V \).

ii. **TRUE** The map \(T : V \to \mathbb{R} \) defined by the rule \(T(f) = f'(1) \) is a linear transformation.

iii. **FALSE** The map \(T : V \to \mathbb{R} \) defined by the rule \(T(f) = f(1) - 1 \) is a linear transformation.

iv. **TRUE** If \(S \) is a nonempty subset of a vector space \(V \), then the set of all linear combinations of \(S \) is a subspace of \(V \).

5. (a) (8 points) The determinant of an \(n \times n \) matrix \(A \) is a polynomial function of the entries of \(A \).

i. What is the degree of this polynomial, if \(n = 5 \)?

Solution. The degree is 5.

ii. This polynomial is a sum of monomials; how many monomials are there in this sum, if \(n = 5 \)?

Solution. The number of monomials here is \(5! = 120 \).
(b) (12 points) For each of the following, answer TRUE or FALSE.

i. **TRUE** If A is a 2×2 matrix with no eigenvalue, then $\det(A) > 0$.

ii. **TRUE** If 3 is an eigenvalue of a 4×4 matrix A, then 15 is an eigenvalue of $5A$.

iii. **FALSE** If A and B are 2×2 matrices with equal characteristic polynomials, then A and B are similar matrices.

iv. **TRUE** Two finite dimensional vector spaces are isomorphic vector spaces if they have the same dimension.