Following Justin’s Guide to MATLAB in MATH240 - Part 3

1. Method

You may want to review the first two guides whilst reading this one; the assumption is that you are comfortable with all those commands though not all are necessary.

2. New Commands

(a) Rank(A) will compute the rank of a matrix A.

(b) Eigenvalues can be found easily. If A is a matrix then:

\[\text{eig}(A) \]

will return the eigenvalues. Note that it will return complex eigenvalues too, which we’re not so concerned about. So keep an i open for those.

(c) However the characteristic polynomial is interesting in its own right. To begin with note the useful command \text{eye}(n) which returns the \(n \times n \) identity (eye-dentity?) matrix:

\[\text{eye}(5) \]

(d) So now let use L for \(\lambda \) and if we have a matrix like:

\[
\begin{bmatrix}
8 & -10 & -5 \\
2 & 17 & 2 \\
-9 & -18 & 4
\end{bmatrix}
\]

we can symbolically define L:

\[\text{syms L} \]

and then:

\[\text{det}(A-L\cdot \text{eye}(3)) \]

to get the characteristic polynomial for A.

(e) We can solve it using \text{solve}. One useful fact is that \text{solve} will assume the expression equals 0 unless specified and will solve for the single variable. Therefore we can do:

\[\text{solve(det(L\cdot \text{eye}(3) - A))} \]

to get the solutions to the characteristic equation.

(f) Of course if we have an eigenvalue \(\lambda \) we can use \text{rref} on an augmented matrix \([A - \lambda I|0] \) to lead us to the eigenvectors.

(g) Even better: MATLAB can do everything in one go. If you recall from class, \textit{diagonalizing} a matrix A means finding a diagonal matrix D and an invertible matrix P with A = PDP\(^{-1}\). The diagonal matrix D contains the eigenvalues along the diagonal and the matrix P contains eigenvectors as columns, with column \(i \) of P corresponding to the eigenvalue in column \(i \) of D.

To do this we use the \text{eig} command again but demand different output. The format is:

\[[P, D] = \text{eig}(A) \]

which assigns P and D for A, if possible. If it’s not possible MATLAB returns very strange-looking output.
1. Let A be the matrix \[
\begin{pmatrix}
1 & -3 & 7 \\
2 & 5 & 6 \\
7 & 1 & 33
\end{pmatrix}.
\]
(a) Compute $\text{rref}(A)$ and $\text{rank}(A)$.
(b) \star What are the pivot positions of A?
(c) \star For a general $m \times n$ matrix B with k pivot positions, what are $\text{dim}(\text{nul}B)$, $\text{rank}(B)$ and $\text{dim}(\text{range}B)$ in terms of k, m, n?
(We use Lay’s terminology for range: it is the space of outputs, not necessarily the codomain.)

2. Let $[x]_B$ denote the coordinate vector of x with respect to a basis B.
For bases B and C, $P_{c\leftarrow b}$ denotes the matrix P such that $P[x]_B = [x]_C$.
(P is the change of coordinates matrix.) The following are bases for the vector space \mathbb{P}_3:
\[E = \{1, t, t^2, t^3\},\]
\[B = \{1, 2 - 2t, 2 - t - t^2, 1 + 2t + t^3\},\quad \text{and}\]
\[C = \{1 + 2t + t^3, 2 - t, 3t - 4t^2 + t^3, t\}.\]
(a) Let $\{b_1, b_2, b_3, b_4\}$ denote the vectors of B. Exhibit the 4×4 matrix B for which column i is $[b_i]_E$.
(b) Let $\{c_1, c_2, c_3, c_4\}$ denote the vectors of C. Exhibit the 4×4 matrix C for which column i is $[c_i]_E$.
(c) Compute the matrices $P = P_{E\leftarrow B}$ and $Q = P_{E\leftarrow C}$.
[Better alternative: compute a different Q, which is $Q = P_{C\leftarrow E}$. Otherwise the transition to the next step is a little mysterious. But you can compute the original Q if you wish.]
(d) Compute the matrix R such that $R[p]_B = [p]_C$ for every p in \mathbb{P}_3.
(e) What is the B coordinate vector of the polynomial t?

3. For this problem, we define \[
A = \begin{pmatrix}
-3 & -4 & 20 & -8 & -1 \\
14 & 11 & 46 & 18 & 2 \\
6 & 4 & -17 & 8 & 1 \\
11 & 7 & -37 & 18 & 2 \\
18 & 12 & -60 & 24 & 6
\end{pmatrix}.
\]
(a) Use the eig command to find the eigenvalues of A.
(b) Write $p = \text{det}(\text{I} \cdot \text{eye}(n) - A)$ to find the characteristic polynomial of A.
(c) Use $\text{factor}(p)$ to factor this characteristic polynomial.
(Problems continue on the next page.)
4. Consider the matrix

\[
C = \begin{bmatrix}
1 & 2 & 3 & 4 \\
2 & 3 & 2 & 3 \\
3 & 2 & 5 & 0 \\
4 & 3 & 0 & 3
\end{bmatrix}.
\]

(This is a symmetric matrix – equal to its transpose – and we will have a theorem that such a matrix has a basis of eigenvectors.)

(a) Find the eigenvalues of \(C \) using \texttt{eig}.

(b) Find matrices \(P, D \) such that \(D \) is diagonal and \(P^{-1}CP = D \).

(c) The equation means \(CP = PD \), which is a way of writing that the columns of \(P \) are eigenvectors.

(Moreover, because the columns of \(P \) are linearly independent, they form a basis of eigenvectors.)

Exhibit \(CP \) and \(PD \).

(d) \star \text{MATLAB chose the eigenvectors (columns of } P) \text{ so that every column would have a certain length. What is it?}

(e) Exhibit \(P \ast P' \). What is the relation between the inverse and the transpose of \(P \)? Check by exhibiting \texttt{inv(P)}. (If we begin with any symmetric matrix \(C \), then Theorem 2 in Section 7.1 of Lay shows we can always find a \(P \) of this type.)

5. (a) Exhibit \(A = \begin{bmatrix} 3 & 1 \\ 0 & 3 \end{bmatrix} \).

(b) Exhibit \([P, D]=\text{eig}(A)\).

(c) * Do we have \(P^{-1}AP = D \)?

(d) * Does \(A \) have a basis of eigenvectors? Justify your answer.

6. (a) Exhibit \(A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \).

(b) Exhibit \texttt{eig(A)}.

(c) Exhibit \([P, D]=\text{eig}(A)\).

(d) Exhibit \texttt{inv(P)*A*P}.

(If the matrix is diagonalizable but with some nonreal eigenvalues, then MATLAB just goes to work with complex coefficients.)

The last problem is on the next page.
7. A **stochastic** matrix is a square matrix with every entry nonnegative and every row sum equal to one. (In Section 4.9, Lay uses a transposed convention that every column sum is 1, but the row sum definition is the more standard choice.

A stochastic matrix P can be used to define a Markov process: the entry $P(i,j)$ is interpreted as the probability of going from state i to state j, and $P^n(i,j)$ is interpreted as the probability of going from state i to state j in n steps. For example, for $P \times 2$, state 1 might mean “sunny weather” and state 2 might mean “rainy weather”, with $P^n(1,2)$ interpreted as the probability of rainy weather after n days given that today’s weather is sunny. Markov models are used a lot. There is more on this in Lay’s Section 4.9.

In this problem we examine the likelihood of moving from one state to another after a delay.

(a) Exhibit the stochastic matrix $P = \begin{pmatrix} .8 & .2 \\ .3 & .7 \end{pmatrix}$.

(b) Exhibit a column vector v with positive entries such that $Av = v$ for every 2×2 stochastic matrix A. (This vector v is a right eigenvector of A for the eigenvalue 1.)

(c) Use MATLAB commands to compute a row vector u with positive entries such that $uP = u$ and the entries of u sum to 1. (This vector u is a left eigenvector of P for the eigenvalue 1.)

(You might use $[Q,D]=\text{eig}(P')$, define w to be the transpose of an appropriate column of Q, and then multiply w by a suitably defined scalar.)

(d) Exhibit the matrices $P, P^2, P^5, P^{10}, P^{20}$.

(e) Interpreting $P^n(i,j)$ as for a Markov model: you should be seeing in the example that the probability of being in state j after n steps approaches a constant independent of the initial state. What is that constant, in terms of an eigenvector?

(f) Repeat parts (a), (c) and (d) of the problem for the matrix $P = \begin{pmatrix} .6 & 0 & .2 & .2 \\ .1 & .7 & .1 & .1 \\ 0 & .2 & .5 & .3 \\ 0 & .3 & .1 & .6 \end{pmatrix}$.

Here is a remark for your information, in case you are interested.

The behavior above in the powers of a stochastic matrix P is guaranteed, as long as that matrix P has a power for which all entries are positive. Without that condition, the powers of a stochastic matrix P won’t necessarily approach a matrix with equal rows (although it might). For examples, you could consider which of the stochastic matrices below have powers converging to a matrix with all rows equal.

\[
\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.
\]