Some terminology:
\mathbb{C}^* is the group of nonzero complex numbers under multiplication.
\mathbb{R}^* is the group of nonzero real numbers under multiplication.
\mathbb{Z}_n is the group of integers (mod n) under addition (mod n).
For n a positive integer, S_n denotes the group of all permutations of $\{1, 2, \ldots, n\}$.
$\{k \in \mathbb{Z}_n : \gcd(k, n) = 1\}$ under multiplication (mod n).

1. (5 points) Let H be the subgroup of S_4 generated by the cyclic permutation (123). How many distinct cosets of H are contained in S_4?

2. (5 points) Let H and K be normal subgroups of G. By definition, G is the internal direct product of H and K if two statements are true. What are they?

3. (10 points) Suppose $\phi : G \to \overline{G}$ is a homomorphism of groups.
 (a) Give the definition of $\ker \phi$, the kernel of ϕ.
 (b) Prove that $\ker \phi$ is a normal subgroup of G.

4. (5 points) State the First Isomorphism Theorem.

5. (10 points) Prove there is no homomorphism from $\mathbb{Z}_8 \oplus \mathbb{Z}_2$ onto $\mathbb{Z}_4 \oplus \mathbb{Z}_4$.

6. (20 points)
 (a) Let $H = \{(1), (123), (132)\}$. Is H normal in S_4? Justify your answer.
 (b) Find a subgroup of $\mathbb{Z}_{12} \oplus \mathbb{Z}_{18}$ which is isomorphic to $\mathbb{Z}_9 \oplus \mathbb{Z}_3$.
 (c) Prove S_5 has no subgroup of order 7.
 (d) Suppose $n > 4$ and H is a normal subgroup of S_n. What numbers can be the order of S_n/H? (No proof required.)

7. (10 points) Give a list of groups such that every abelian group of order 200 is isomorphic to exactly one group on your list.

8. (10 points) Suppose p and q are prime numbers and G is a group.
 (a) Suppose $|G| = p$. Prove G is cyclic.
(b) Suppose $|G| = pq$. Prove that every proper subgroup of G is cyclic.

9. (10 points) (a) What is the kernel of the homomorphism $\phi : \mathbb{C}^* \to \mathbb{C}^*$ defined by the rule $\phi(z) = z^4$?
(b) What is the kernel of the homomorphism $\psi : \mathbb{R}^* \to \mathbb{R}^*$ defined by the rule $\psi(x) = x^4$?

10. (15 points) For each statement below, write TRUE or FALSE. No proof necessary.
(a) Suppose $G = H \oplus K$ is a finite group. Then $|(h, k)| = |h| \cdot |k|$.
(b) If G and H are cyclic groups, then $G \oplus H$ is a cyclic group.
(c) If G is an abelian group, then every subgroup of G is normal.
(d) Let H be the subgroup of D_6 consisting of its rotations. Then H is a normal subgroup of D_6.
(e) If the center of G is trivial, then G is isomorphic to $\text{Inn}(G)$, the group of inner automorphisms of G.