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I. NUMBERS

”What is a number?”

We take a lot of our knowledge of numbers

for granted. So much seems easy – counting,

zero, negative numbers, fractions, real num-

bers, etc. What’s the problem!

But, these were hard-won advances over mil-

lenia. Even brilliant mathematicians (e.g. Brah-

magupta, Leibniz, Euler) made mistakes in strug-

gles with new numbers. [Perhaps an example

could comfort a student?] Even after success-

ful introduction, there were often long delays

before the advances were fully accepted and

used.
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Also, in the history of numbers we can see

some pro’s and con’s of the stereotypical ”physi-

cist’s approach” and ”mathematician’s approach”.

”The physicist” grabs a mathematical idea which

seems to help and goes with it. Those bean

counter mathematicians will get around to cross-

ing the t’s and dotting the i’s.

”The mathematician” cares for Truth and strug-

gles to produce definitions and arguments which

are clear, sensible and reliable. So what if non-

sense works – it is still nonsense!

In the end we need both approaches. Mathe-

matics is like a tree, with roots and branches,

and both keep growing.
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1. COUNTING

There is a famous quote of Kronecker (1823-

1891): ”God created the integers, all else is

the work of man.”

I disagree!

Of all the great steps forward with numbers,

I’m most impressed by the conception of the

abstract counting numbers 1,2,3,4,... .

It was not automatic to think of two doves

and two wolves as having something in com-

mon. A counting number makes a conceptual

Thing out of the process of being able to put

two sets into one to one correspondence. Not

all cultures have had a systematic way of nam-

ing arbitrarily large numbers. We have not ob-

served this capability in a nonhuman species.
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There is some history of the evolution of the

idea of counting numbers, with reasoned spec-

ulation on how this capability emerged in hu-

man evolution, e.g.

• ”Number, the language of science”, Tobias

Dantzig

• ”Number words and Number Symbols”, Karl

Menninger

• ”The Math Gene”, Keith Devlin .
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2. NEGATIVE NUMBERS

The Babylonians around 2000 BC were solving

many problems which boiled down to solving

a quadratic equation. But their problems were

rooted in geometry and the material world, and

they ignored negative number solutions.

The ancient Greeks likewise considered only

positive number solutions. (The great Greek

mathematician Diophantus, 3rd century AD,

in ”Arithmetica” referred to a negative solu-

tion of a problem as being ”absurd”.) For

those Greeks, numbers were attached to ex-

plicit counting and ratios.
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By 200 BC, in China, red and black counting

rods were used for money held and owed.

By the Han dynasty (circa 200BC-200AD) there

were written Chinese works with rules for ma-

nipulating negative quantities appearing in cal-

culations (for problems which had positive so-

lutions).

Circa 620 A.D. Brahmagupta in India essen-

tially wrote down rules of arithmetic for nega-

tive and positive numbers (e.g. ”the product

or quotient of a fortune and a debt is a debt”).

By the 1300’s such rules had appeared in writ-

ing in Europe.

Cardano’s Ars Magnus (1545) showed a clear

acceptance of negative numbers as possible so-

lutions to equations.
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But even in the 18th century (!), there was

still some resistance to negative numbers. The

British mathematician Francis Maseres wrote

(1759) that negative numbers

”darken the very whole doctrines of the equa-

tions and make dark of the things which are in

their nature excessively obvious and simple”.

Maseres was probably heretical among mathe-

maticians for this view – but still, he was made

a Fellow of the Royal Society in 1771, over 100

years after Newton invented calculus.
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Much ado about nothing

3. ZERO

It was hard to invent counting numbers. Much

harder still to make a Thing which is nothing

– i.e. to invent zero.

Zero appeared in numbers as a placeholder in

place value systems. E.g. in our base 10 sys-

tem, in 7105, the ”0” means we add no multi-

ple of 10: 7105 = 7(1000) + 1(100) + 5(1).

But it is a big extra step to make zero a Thing

and to integrate zero into arithmetic.

By the 7th century AD, the Hindus had begun

to recognize ”sunya”, the absence of quantity,

as a quantity in its own.right. I.e., zero was

treated as a number.
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Brahmagupta (7th century A.D.), was the first

known mathematician to try to extend the rules

of arithmetic to include zero. His rules for

arithmetic involving zero were fine, apart from

the problem of defining division by zero. There

he and his Hindu successors had a heck of a

time.

4. TRYING TO DEFINE DIVISION BY

ZERO

• Brahmagupta (7th century A.D.) ” A zero

divided by a zero is zero” and ”a negative or

a positive divided by zero has that zero as its

divisor”.

• Mahavira (9th century A.D.)

“A number remains unchanged when divided

by zero.”
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• Bhaskara (II) (12th century A.D.)

”A quantity divided by zero becomes a frac-

tion the denominator of which is zero. This

fraction is termed an infinite quantity. In this

quantity consisting of that which has zero for

its divisor, there is no alteration, though many

may be inserted or extracted; as no change

takes place in the infinite and immutable God

when worlds are created or destroyed, though

numerous orders of beings are absorbed or put

forth.”

(He seems to be saying that n/0 = infinity.

But that would mean that n = 0 x infinity ,

for every number n ... )
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In his text, Bhakskara (II) posed problem of

finding an unknown number ”... whose multi-

plier is 0. Its own half is added. Its multiplier

is 3; its divisor 0. The given number is 63.”

We can translate this problem as: Find the

number x such that

3

0x+ (1/2)0x

0

 = 63 .

It seems we are supposed to cancel 0’s (!) to

get 3(x + (1/2)x) = 63 and then solve to get

x = 14.

The correct resolution of these miseries is to

give up. It’s impossible to give a satisfactory

definition of division by zero – so don’t try.
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5. WHY CAN’T WE DIVIDE BY ZERO?

This is a case where an axiomatic approach is

crucial.

We write down some properties of arithmetic

we consider essential. These are assumptions.

Then we show it’s impossible to define division

by zero and keep these properties. I’ll write ×
for multiplication.

One consequence of the properties is that zero

times any number is zero, because

a× 0 = a× (0 + 0) = (a× 0) + (a× 0)

and then after subtracting a×0 from both sides

we conclude 0 = a× 0.
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Next, however we consider division by a num-

ber b, we insist that it reverses multiplication

by b:

(a× b)÷ b = a .

We choose to regard this as an essential prop-

erty of division. Multiplying by b and then di-

viding by b doesn’t change a number. For ex-

ample,

(3× 2)÷ 2 = 3

(−5× 2)÷ 2 = −5

(0× 2)÷ 2 = 0

(a× 2)÷ 2 = a for any number a .
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So if we can define division by zero, then for

any number a,

(a× 0)÷ 0 = a

(0)÷ 0 = a .

Therefore every number equals (0)÷ 0 (what-

ever that is). Therefore all numbers are equal.

That is a contradiction.

So we can’t define division by zero without los-

ing the property (a× b)÷ b = a.

Score one for ”the mathematicians”. It is use-

ful to know what is impossible (rather than

continuing to try ... ).
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By the way: in a careful modern construction

of numbers, there are just TWO fundamental

operations, addition and multiplication. Sub-

traction and division are not fundamental.

In the end, the ONLY property connecting ad-

dition and multiplication is the distributive law:

a× (b+ c) = (a× b) + (a× c)
(a+ b)× c = (a× c) + (b× c) .
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5. IS ZERO AN EVEN NUMBER?

Ask, “What is the key to love?”

A philosopher or poet replies with many words.

A mathematician replies,

“what is your definition of love?”

After a while, you realize you can’t answer

some questions without definitions.

To make a claim about something, you want

to know what it is you are talking about.
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Definition. An even number is an integer n

such that there is an integer k such that

n = 2× k.

Examples:

n = 2× k

−4 = 2× (−2)

−2 = 2× (−1)

0 = 2× 0

2 = 2× 1

4 = 2× 2 . . .

Zero is an even number.
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6. ”HARRIOT’S PRINCIPLE”

Before moving on let’s appreciate that ”zero”

allows a useful technique for solving polyno-

mial equations. It was proposed by Thomas

Harriot in the early 1600s and popularized later

by Descartes. (The author Tobias Dantzig re-

ferred to this technique as ”Harriot’s Princi-

ple”.)

The technique: subtract a polynomial from

both sides to make one side zero. (This does

not change the solution set.) Then find a root

of the resulting polynomial.
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Example. Solve

9x5 + 3x2 + 2x− 5 = 9x5 + 2x2 − 2

Subtract the right side from both sides:

(9x5 + 3x2 + 2x− 5)− (9x5 + 2x2 − 2) = 0

x2 + 2x− 3 = 0

Much easier ...

This method is a triviality today, but it was a

great leap forward back in the day.

It is another example of how we can forget the

difficulty of progress (until we see our students

struggle?).

22



Beyond rationality

7. THOSE RATIONAL ANCIENT GREEKS

The remarkable ancient Greeks thought very

carefully about mathematics. They introduced

formal axioms and theorems.

A Greek would think of a magnitude as per-

haps the length of a stick. Two sticks would

have commensurable lengths if, for example, 3

copies of one stick would give the same total

length as 5 copies of the other.

More formally, suppose x and y are the mag-

nitudes (lengths of the sticks). They would

be commensurable if 3x = 5y. Or if 8x = 7y.

Or if there are any positive integers such that

px = qy.
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Another way to say px = qy is to say x =

(p/q)y. That is, y is a rational number multiple

of x. In particular: x and 1 are commensurable

if and only if x is a rational number.

These Greeks thought of numbers as commen-

surable magnitudes. The Pythagoreans circa

550 BC thought number was the basis for ev-

erything: “all is number”. So they naturally

felt all magnitudes should be commensurable.

But by 400 BC, they had learned this is false.

(For example, in a square, the lengths of a

side and the diagonal are not commensurable.

Their ratio is
√

2.)

For those Greeks, this was a dramatic fact of

great philosophical import.
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8. A PROOF THAT THE SQUARE ROOT

OF 2 IS NOT A RATIONAL NUMBER.

Suppose
√

2 = p/q, with p and q positive inte-
gers. After cancelling 2’s as much as possible,
we can assume also that at least one of the
numbers p and q is an odd integer.

Since
√

2 = p/q, after squaring we get 2 =
p2/q2, and therefore 2q2 = p2.

This tells us p2 is divisible by 2. If p were odd,
then p2 would be odd; so, p is even.

Now, because p is even, we can divide the
equation 2q2 = p2 by 2 and get that q2 =
p2/2 = (p/2)p. Since p is even, this tells us
that q2 is even, and again that implies q is
even.

Therefore both p and q are even. That is a
contradiction. So our original assumption that
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we could write
√

2 = p/q, with p and q positive

integers, must be wrong.

Therefore
√

2 is irrational.

9. THE REAL NUMBERS

Today, we have an intuitive idea of a real num-

ber as indicating a point on a number line. In-

tuitively, a positive real number x indicates a

point at a certain distance (or magnitude) to

the right of zero, and a negative number indi-

cates a point at a certain distance to the left

of zero. We multiply, add, etc. these mag-

nitudes with impunity. The existence of irra-

tional numbers just means that some of these

magnitudes aren’t commensurable. No prob-

lema.

Euclid thought of numbers as magnitudes com-

mensurable with some given unit. If we take
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that unit to be the number 1, then those mag-

nitudes correspond to the postive rational num-

bers. Euclid did not define an arbitrary mag-

nitude as a number and he didn’t multiply in-

commensurable magnitudes. (What would it

mean?)

This careful distinction between magnitude and

number turned out to be unnecessary. Even-

tually Islamic mathematicians (specifically, abu

Kamil ibn Aslam, circa 900 AD) did useful

arithmetic with irrational numbers given by ex-

pressions like

√
1/2 +

√
5/4 and simply disre-

garded the cautions of Euclid. No problema.

(Score one for the physicists.)

Only in the 1800s–long after calculus was invented–

was there at last a satisfactory rigorous devel-

opment of the real numbers and their arith-

metic.
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On to the imaginary

10. THE COMPLEX NUMBERS

Square roots of negative numbers (“imaginary
numbers”) show up when one tries to solve
polynomial equations. For example x2 = −1,
or equivalently x2 + 1 = 0.

Already the Babylonians by 2000 BC were es-
sentially solving quadratic equations. You might
think that they would have discovered complex
numbers. Not so. For them, solutions were
positive numbers.

A complex number is (informally) a number
such as 3 + 2

√
−5, a real number plus a real

multiple of an imaginary number. Complex
numbers appeared in print in Cardano’s ”Ars
Magnus” (The Great Work) (1545 AD).
(Cardano’s summation in the book: ”Written
in 5 years, may it last as many thousand”.)
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Cardano’s book contained a problem: divide

10 into parts such that the product is 40. If

one of those parts is named x, then the other

part is 10− x, and that number x must satisfy

the equation

x(10− x) = 40 .

Cardano solved this equation. The solutions

are complex numbers; they are not real num-

bers. He wrote

”So progresses arithmetic subtlety the end of

which, as is said, is as refined as it is useless.”

29



11. COMPLEX NUMBERS AND THE

CUBIC

Cardano considered these numbers because his

book gave a solution to the ancient problem

of finding a root of a cubic polynomial with

real coefficients. In Cardano’s formula, square

roots of possibly negative numbers appeared,

but nevertheless one could produce from the

formula roots which were real numbers.

For the equation x3 = 15x+ 4, Cardano’s for-

mula for a solution gave

x =
3
√

2 +
√
−121 +

3
√

2−
√
−121 .

But how does that lead to the solution x = 4?
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Let us simplify notation a bit and use the sym-

bol i to denote a new number (i.e., a number

which is not a real number) whose square is

-1.

Then in Cardano’s formula

x =
3
√

2 +
√
−121 +

3
√

2−
√
−121

we could replace
√
−121 with (

√
121)i = 11i

and get

x = 3
√

2 + 11i+ 3√2− 11i .

You can compute (2 + i)3 = 2 + 11i (just do

it!) and likewise (2 − i)3 = 2 − 11i. Then we

can think of the formula as giving x = (2 +

i) + (2− i) = 4. We can also get the solutions

−2 +
√

3 and −2−
√

3 by finding different cube

roots of 2− 11i.

Cardano didn’t understand these ”fictitious”

numbers very well; but he used them to good

effect. Score another for ”the physicists” ...
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12. TROUBLE WITH COMPLEX ROOTS

Before the 1800s (with Gauss, Cauchy, Rie-

mann ... ) understanding of complex num-

bers developed slowly. Euler (1707-1783) in-

troduced the symbol i for
√
−1 and found the

magic formula eiπ + 1 = 0.

Even Euler had some trouble. At one point

Euler wrote that the general rule for square

roots (he meant the rule
√
a
√
b =
√
ab) shows

√
−1
√
−4 =

√
(−1)(−4) =

√
4 = 2 .

But this reasoning leads to contradictions such

as

−1 =
√
−1
√
−1 =

√
(−1)(−1) =

√
1 = 1 .

Evidently that “general rule” cannot be ex-

tended from the positive real numbers to the

complex numbers.
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The problem has to do with thinking clearly
about roots. The words “i is the square root
of -1” contain the trap. If i2 = −1, then
the square of −i is also -1. But “the” square
root of -1 suggests there is only number whose
square is -1.

We get the complex numbers right by intro-
ducing just one special number i (which satis-
fies i2 = 1) and then letting the complex num-
bers be combinations a+ ib, where a and b are
real numbers.

Now every nonzero complex number will have
exactly 2 square roots and exactly 3 cube roots.
For example, to find the three cube roots of 1,
you can solve x3−1 = 0 by factoring x3 = 1 =
(x−1)(x2+x+1) and then using the quadratic
formula on the second factor.

So the cube root in Cardano’s formula is not
well defined! No wonder his formula was con-
fusing.
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Even “a physicist” benefits from the clarity

achieved by the precise formal definition of the

complex numbers. Sometimes it does help to

make sense.
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13. THE GEOMETRIC INTERPRETA-

TION OF COMPLEX NUMBERS

A big step toward selling and understanding

the complex numbers was their geometric in-

terpretation as elements in the plane, and the

geometric interpretation of complex addition

and multiplication. This only happened around

1800 (!), in publications of Wessel (1797) and

Argand (1806). We consider the complex num-

bers as numbers of the form a+ib, where a and

b are real numbers. Then we picture the num-

bers a+ ib as the points (a, b) in the plane.

For an exposition of the basic properties of

complex numbers, with connection to calcu-

lus, and exercises for students, see the notes

of myself or Professor Hamilton on our depart-

mental course page for MATH 141 at

www-math.umd.edu/undergraduate/courses/
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14. THE FUNDAMENTAL THEOREM

OF ALGEBRA

Today the complex numbers are indispensable
to mathematics. One reason is the Fundamen-
tal Theorem of Algebra (FTA): every noncon-
stant polynomial has a root which is a complex
(possibly real) number. (A fully correct proof
was not given until the 1800’s). An equiva-
lent statement is that a nonconstant polyno-
mial can be written as a product of factors of
the form (x-a), where a is a complex number
(possibly real). (Equivalent because (x−a) is a
factor if and only if a is a root.) For example,

x5 + x4 + x3 + x2

= x2(x+ 1)(x2 + 1)

= (x− 0)(x− 0)(x− [−1])(x− i)(x+ i) .

Leibniz was smart enough to invent the calcu-
lus (independently of Newton). Even Leibniz
had troubles here.
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Leibniz claimed (for a little while) that for a

positive real number a, the polynomial x4 + a4

has no complex number root.

Let us use a = 1 as an example here, that

is we consider the polynomial x4 + 1. Leibniz

noted that a solution would be x =
√√
−1.

He thought this could not be a number of the

form a+ b
√
−1 (with a and b real numbers).

Leibniz was wrong. Problem: find a complex

number x such that x4 + 1 = 0.

This again shows “
√
−1” is not very good for

a definition.
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Numbers and infinity

15. ADDING UP INFINITELY MANY NUM-
BERS

Suppose a1, a2, . . . are nonnegative numbers.
Then a1 + a2 + . . . will either be infinity or a
nonnegative real number (called the ”sum” of
the the infinite series a1 + a2 + . . . ).

Many infinite series were ”summed” long ago,
for example

• (“Zeno”)
1/2 + (1/2)2 + (1/2)3 + (1/2)4 + · · · = 1.

• (Oresme, ca. 1350)
(1

2)1 + (1
4)2 + (1

8)3 + ( 1
16)4 + · · · = 2 .

• (1/4) + (1/4)2 + (1/4)3 + · · · = 1/3 .
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The last three sums can be explained with sim-

ple pictures.

The next one is harder.

• (Nilikantha ∼ 1500; Madhava 1300s?;

Leibniz, Gregory 1670s)

1− (1/3) + (1/5)− (1/7) + · · · = π/4

After a while summing series is as natural as

adding up finitely many numbers.
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16. NUMBER AND THE FOUNDATIONS

OF PROBABILITY

In probability, if you have a (possibly infinite)

list of disjoint (nonoverlapping) events

A1, A2, A3, . . .

and if A is the union of all these events,

then it is a fundamental axiom that the prob-

ability of the union is the sum of the probabil-

ities:

Prob(A) = Prob(A1) + Prob (A2) + ... .

40



Example. An immortal works on a problem.

Let An be the event he succeeds on day n.

Suppose Prob(An) = (1/4)n.

Now let A be the event that the immortal suc-

ceeds at all, i.e. on some day. Then A is the

union of the nonoverlapping events An, and

Prob(A) = 1/4 + (1/4)2 + (1/4)3 + ... = 1/3 .

On the other hand, if in the example Prob(An) =

0 for every n, then Prob(A) = 0 + 0 + · · · = 0.

If the immortal has probability zero of solv-

ing the problem on every nth day, well, he has

probability zero of solving the problem at all.
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Now suppose you are explaining probability in

your stat class.

You tell a student that if you pick a number

randomly from the unit interval [0,1], and if

0 ≤ a < b ≤ 1, then the probability of the num-

ber being in [a, b] equals b − a. (For example,

the probability of the number being between

1/3 and 1/2 is 1/6.)

In particular, the probability of picking some

number in [0,1] is 1 (of course!) and the prob-

ability of picking any particular number is zero.

But suppose your student is smart, and ob-

jects:
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This is ridiculous! Consider an infinite list of
all the numbers in [0,1]. Say An is the event
that the nth number on the list is picked.

Let A be the event that some number from
[0,1] is picked. You said Prob(A) = 1.

Since we have listed all the numbers, the event
A that a number gets picked is the union of the
events An. And since the probability of picking
any particular number is zero, that fundamen-
tal axiom would say

1 = Prob(A)

= Prob(A1) + Prob(A2) + ...

= 0 + 0 + ...

= 0 .

Contradiction ...

What’s wrong with your student’s argument?

To answer that we need cardinal numbers.
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17. CARDINAL NUMBERS

The counting numbers describe the sizes of

finite sets. They are a special case of ”cardi-

nal numbers”, which describe the sizes of sets,

which might be finite or infinite.

Two sets are defined to have the same cardi-

nality (size) if the elements inside them can be

put into one to one correspondence.

Example: the set of fingers on my left hand

and the set of fingers on my right hand have

the same cardinality (5).

Example of Galileo: the set of positive integers

and the set of even positive integers have the

same cardinality ! The rule n 7→ 2n gives the

one-to-one correspondence:

1, 2, 3, 4, 5, 6, . . .

2, 4, 6, 8, 10, 12 . . . .
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A set is called countable if it is finite or has the

same cardinality as the set of positive integers

1,2,3,... .

A set of numbers is countable if and only if it is

possible to make an infinite list of the numbers

from the set such that every number is on the

list.

The set of all integers is countable.

Here’s a list: 0,1,-1,2,-2,3,-3, . . .

Clearly every integer appears on this list, ex-

actly once.

The set of rational numbers is also countable.

This is a little harder to show (next page)
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Here’s one way to make a list of all the rational

numbers:

-1, 0, 1,

-2, 2,

-3/2, -1/2, 1/2, 3/2,

-3, 3,

-5/2, 5/2,

-8/3, -7/3, -5/3, -4/3, -2/3, -1/3, 1/3, 2/3,

4/3, 5/3, 7/3, 8/3,

and so on. At the nth stage, we are adding

to the growing list all the rational numbers in

[−n, n] which can be written with denomina-

tors 1,2, . . . , n, and which are not yet on the

list. Eventually every rational number gets on

the list.

46



BUT! Cantor’s genius was to conceive of and

prove the following (late 1800s):

Not all infinite sets are countable. In particular:

The interval [0,1] is not countable.

and this is the problem with your good stu-

dent’s argument. That fundamental axiom of

probability tells you that the probabability of

the sum is the sum of the probabilities for

COUNTABLY MANY disjoint events. There

is no axiom for adding up probabilities of un-

countably many events. We just have to stay

away from that, just as we have to stay away

from division by zero.
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18. Proof that [0,1] is uncountable.

We prove the unit interval [0,1] is not count-

able by the method of contradiction, using ”Can-

tor’s Diagonal Argument”.

For [0,1] to be countable would mean that

there is some (infinite) listing of numbers from

[0,1] such that every number in [0,1] appears

on the list.

So suppose we have such a listing of all the

numbers in [0,1]. All we have to do is exhibit

a number from [0,1] which is not on the list.

That contradiction proves no such list exists.
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For example suppose we have (in decimal nota-

tion) an infinite list of numbers x1, x2, . . . from

[0,1]:

x1 = . 6 24453 . . .

x2 = .3 5 8711 . . .

x3 = .33 4 229 . . .

x4 = .458 7 28 . . .

x5 = .0015 2 2 . . .

x6 = .22756 6 . . .

and so on. We just pick a number y such that

the nth digit in its decimal represenation is not

the nth digit of xn. (I put boxes around the

numbers xn for easier viewing). For example,

take y = .448488 . . . . Now y can’t be on the

list, because it can’t be any of the xn. QED.

(This is called the “diagonal argument” be-

cause those numbers xn lie on some diagonal

line.)
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19. CONCLUSION.

So what is a number? There are lots of num-

bers, including more we haven’t considered.

Quaternions, ordinal numbers, surreal numbers,

algebraic numbers ... They have various differ-

ent meanings.

In all cases we have two ingredients.

• Rigor. We have symbols and rules for ma-

nipulating them which are allowed to pro-

duce proofs. This is rigor. In principle a

mindless machine can check the proof by

checking if each manipulation is legal.

• Meaning. We have – in some “Platonic

reality” – in some shared dream world of

human experience – an idea of what those

symbols and rules mean.

50



All the kinds of numbers have the same basic

status for rigor (scribblings a machine could

check), and for meaning, as fragments in the

evolving human imagination.

Some kinds of numbers are easier for us than

others. But just as you don’t see
√
−1 out your

window, so also you don’t see an infinite set

of counting numbers. Let alone uncountably

many real numbers. You don’t even see the

number 5: this is an abstraction about two

sets being in one to one correspondence.

The “unreasonable effectiveness of mathemat-

ics” is the amazing fact that our scribblings

and dream world have such powerful applica-

tion in the real world.

One more number ...
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The number on the clock means my time is

up.
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