1983
University of Washington

Doctor of Philosophy

of the requirements for the degree of
A dissertation submitted in partial fulfillment

Mackenzie Michael Boyle

By

Factor Maps in Symbolic Dynamics
Topological Orbit Equivalence and
mixing, overall stability, then S need not be isomorphic to I or T−1.
result fails for soft shifts. If S and I are orbit equivalent
by bounded jumps, then S is isomorphic to I or T−1.
This equivalent by bounded jumps, then S is isomorphic to I or T−1.
By continuous jumps, then S is isomorphic to I or T−1.

Chapter II. Homeomorphisms S and I on compact metric spaces are
called (topologically) orbit equivalent if some homeomorphism takes
orbits of S onto orbits of I. A topological analogue of Belykh’s
theorem is obtained: if S and I are continuous and orbit equivalent,
some orbit type of S is orbit type of I. A topological analogue of Belykh’s
Chapter I, “lower entropy factors of soft systems”, will appear as

Department of Mathematics
Chairman of the Supervisory Committee: Professor Douglas A. Lind

By Michael Michele Boyle

FACTOR MAPS IN SYMBOLIC DYNAMICS
TOPOLOGICAL ORBIT EQUIVALENCE AND

Abstract

University of Washington
Marcus. A soft cold which is not "almost finite type" in the sense of other pathology. In Chapter III, an example is given of equivalence does not respect expansiveness or specification, and shuttles must have the same range of values on cylinder sets. Orbit however, the maximal measures of orbit equivalence mixing soft.
Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Introduction: Lower Entropy Factors of Sofic Systems</td>
<td>1</td>
</tr>
<tr>
<td>II</td>
<td>Definitions and Background</td>
<td>4</td>
</tr>
<tr>
<td>II</td>
<td>The Main Result:</td>
<td>9</td>
</tr>
<tr>
<td>II</td>
<td>The Sofic Situation:</td>
<td>19</td>
</tr>
<tr>
<td>III</td>
<td>Introduction: Topological Orbit Equivalence</td>
<td>34</td>
</tr>
<tr>
<td>III</td>
<td>Background, Discussion and General Observations:</td>
<td>35</td>
</tr>
<tr>
<td>III</td>
<td>A Topological Analogue of Belinskaya's Theorem</td>
<td>45</td>
</tr>
<tr>
<td>III</td>
<td>Examples</td>
<td>58</td>
</tr>
<tr>
<td>III</td>
<td>A Sofic Shift Which is not AT</td>
<td>68</td>
</tr>
<tr>
<td>III</td>
<td>Introduction and Background</td>
<td>89</td>
</tr>
<tr>
<td>III</td>
<td>The Example</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>99</td>
</tr>
</tbody>
</table>
I learned how to swim.

Questions and conferences and keep me alert while I was there.

He got me interested in ergodic theory, stimulated me with
discussions and conferences, and kept me alert while I
was there.

I would like to thank my advisor, Prof. Lind.

ACKNOWLEDGMENT
CHAPTER II

Topological Orbic Equivalence
We guarantee the most of the examples in Section 5. In addition, other flip conjugacies must exist.

Soft orbit tiling must coincide with support, whether some of the results fall in the soft case, here we do not know. If the map which preserves the given correspondence of orbits, by example, the jump function $u(x)$ bounded, then they are flip conjugate by a orbit type. If two subshfits of flip type are orbit equivalent with no conjugacy between them can respect the given correspondence of subshifts of flip type may be orbit equivalent in such a way that we must leave the issue unresolved. By example, two isomorphic flip conjugacy for mixing soft shifts (or subshfits of flip type zero function. By example, we find orbit equivalent does not imply mixing subshifts of flip type which are not distinguished by the measure on cylinder sets must be the same for orbit equivalent soft shifts. Using pressure, we find that the range of the maximal h is a subshift.

If S is a subshift, $a(x)$ is continuous on $x-p$. We also show that I must be a subshift the conjugating map f can be given the form $f(x) = T_a(x)$, where $a(x)$ is the set of periodic points whose periods are uniformly bounded, and they are flip conjugate after restriction to the component $X-P$ of a function $u(x)$. Here S and I need not be flip conjugate. However, $S^n(x)$ for some bounded generalized to the case where S and I are transitive homeomorphisms.
ports, and other technical pathologies.

An orbit conjugacy which does not respect bilaterally untransitive
spectrification orbit conjugate to a shift without spectrification:

orbit conjugate to a subshift which is not soft: a shift with
homeomorphisms with the same orbits as the 2-shift; a soft shift
conjugate of the 2-shift which is not expansive: uncountably many
S and T are nonstandard measurable invertible transformations.

1. The measurable case.

A. A homeomorphism which takes S-orbits onto T-orbits.

S and T are homeomorphisms of compact metric spaces. There is

1'). The homeomorphism case.

connected. S and T have the same orbits.

the complement of the periodic points of S and T is dense and path-

S and T are homeomorphisms of a topological space such that

III. The connected case.

manifold which have the same orbits.

S and T are continuous flows (actions of the reals) on a

2. The flow case.

takes S-orbits onto T-orbits.

ergodic probability. There is a measure-preserving bijection which

S and T are invertible ergodic transformations which preserve a

I. The measure-preserving case.

correspondence.

First we give examples of orbit equivalence in various

I. Background, Discussion and General Observations

38
Suppose S and T are ergodic automorphisms of a Lebesgue probability
space (X,μ) which have the same orbits. Where $X = S(x)$ and

$X_T = T^{-1} x$. Then S is isomorphic to T or T^{-1}.

[8] Belinskaya's Theorem

We state three landmark theorems for subsequent comparisons.
The object of our study, Ω, has received little attention.
Perhaps the most natural equivalence relation for real flows, the
example, [11] orbit equivalence with respect to action as for A and B,
assolate have been done on Ω (see, for A and D, but A has been done on each; see, for example, [17].
hold off some set of measure zero. We make no further mention of
The measure-theoretic conditions above are only required to

which have the same orbits.

G and H are groups acting measurably on a Lebesgue space

X. Actions of other groups,

which takes S-orbits onto T-orbits.

of Lebesgue spaces. There is a nontrivial measurable bijection

39