
Nonlinear Equations

1 Introduction

In applications we usually need to find several unknown values x1, . . . ,xn. We have n equations for x1, . . . ,xn

f1(x1, . . . ,xn) = 0
...

fn(x1, . . . ,xn) = 0

and we want to find the solutions.

In many cases the problem can be (approximatively) described by linear equations. In this case we have n linear equations
for n unknowns. We will get a unique solution if the matrix is nonsingular.
Example with n = 2: Find x1,x2 such that

2x1 + x2−1 = 0

x1 +2x2−1 = 0

x
1

x
2

zero contours of f
1
 (red) and f

2
 (green)

−4 −3 −2 −1 0 1 2
−4

−3

−2

−1

0

1

2
f
1
=0

f
2
=0

Here we have one solution
[

x1
x2

]
=

[1
3
1
3

]
which is the intersection of the red and the green line.

In other cases the problem is nonlinear, and we obtain n nonlinear equations.

Example with n = 2: Find x1,x2 such that

2x1 + x2 + x1x2−1 = 0

x1 +2x2 + x2
1−1 = 0

x
1

x
2

zero contours of f
1
 (red) and f

2
 (green)

−4 −3 −2 −1 0 1 2
−4

−3

−2

−1

0

1

2
f
1
=0

f
2
=0

Here we have three solutions
[
.3028
.3028

]
,
[

1
−.5

]
,
[
−3.3028
−3.3028

]
. Here is how I found the first solution in Matlab:

f = @(x) [2*x(1)+x(2)+x(1)*x(2)-1 ; x(1)+2*x(2)+x(1)^2-1] % Define function f
xs = fsolve(f,[0;0]) % Find solution near [0;0]

1

2 One nonlinear equation

2.1 Bisection Method

Assume that the function f is continuous. If we have two function values f (a), f (b) with opposite signs then the intermediate
value theorem guarantees that there must be a point x∗ ∈ (a,b) with f (x∗) = 0. This motivates the bisection method:

Bisection method Find x∗ ∈ [a0,b0] such that f (x∗) = 0.
Given:

• subroutine to evaluate f (x)

• initial guesses a0,b0 where f (a0) and f (b0) have different signs

this algorithm computes a sequence of intervals [ak,bk] such that x∗ ∈ [ak,bk]

Algorithm: For k = 0,1,2, . . .:
ck := (ak +bk)/2
evaluate f (ck)
If f (ck) = 0: stop
If f (ck), f (ak) have different sign: [ak+1,bk+1] := [ak,ck]
If f (ck), f (ak) have same sign: [ak+1,bk+1] := [ck,bk]

Example: For f (x) = x3− x−1 and a0 = 1, b0 = 2 we obtain the following intervals: f (1) =−1 < 0, f (2) = 5 > 0
k [ak,bk] bk−ak
0 [1.0 , 2.0] 1 f (1.5) = .875 > 0
1 [1.0 , 1.5] 0.5 f (1.25) =−.29688 < 0
2 [1.25 , 1.5] 0.25 f (1.375) = .22461 > 0
3 [1.25 , 1.375] 0.125 f (1.3125) =−.051514 < 0
4 [1.3125 , 1.375] 6.3 ·10−2 f (1.34375) = .082611 > 0
5 [1.3125 , 1.34375] 3.1 ·10−2 f (1.328125) = .014576 > 0
6 [1.3125 , 1.328125] 1.6 ·10−2

...
...

...
50 [1.3247179572447454, 1.3247179572447463] 8.9 ·10−16

51 [1.3247179572447458, 1.3247179572447463] 4.4 ·10−16

52 [1.3247179572447458, 1.3247179572447461] 2.2 ·10−16

x

1 1.2 1.4 1.6 1.8 2

-1

0

1

2

3

4

5

In practice we assume that the function is given as a subroutine which we can call (in Matlab we can specify a function in an
m-file). Then the only substantial cost for each step is this call to this external function:

2

The cost of one bisection step is one function evaluation.

In theory we can let this continue forever, unless we hit for some k the solution x∗ exactly. Then we get an infinite sequence
ak with ak+1 ≥ ak and an infinite sequence bk with bk+1 ≤ bk.

Theorem 2.1. Assume that the function f is continuous on [a0,b0]. If f (a0) and f (b0) have different sign, then the bisection
method converges:

lim
k→∞

ak = lim
k→∞

bk = x∗ with f (x∗) = 0.

Proof. As bk−ak = 2−k(b0−a0) goes to zero as k→ ∞ we must have that both ak and bk converge to the same point x∗ as
k→ ∞. Since f (ak)≤ 0 and f (bk)≥ 0 we must have f (x∗) = 0 by the continuity of f .

Note that the midpoint ck satisfies |ck− x∗| ≤ (bk−ak)/2, therefore we have decreasing error bounds Ek satisfying

|ck− x∗| ≤ Ek, Ek+1 =
1
2

Ek

For each step we have Ek+1 =
1
2 Ek, so the error is reduced by at least a factor 1

2 .

Essentially, we obtain one new binary digit of the result with each bisection step, or about 3 new decimal digits with 10
bisection steps.

If for some method we get approximations xk satisfying |xk− x∗| ≤ Ek where the error bounds satisfy

Ek ≤CEk

with a fixed factor C < 1 we say that the method is convergent of order 1 (since we have Ek+1 ≤C ·E1
k with exponent 1).

Bisection method:

• assumption: f (x) is continuuous, we have a0,b0 where f (a0), f (b0) have different sign

• cost per step: 1 function evaluation

• improvement of error bound for each step: Ek+1 =
1
2 Ek

• “bracketing”: we can guarantee ak ≤ x∗ ≤ bk for each step

2.2 Secant Method

Assume that we have two function values f (a) and f (b). Based on this information we want to find a good guess c for the
solution x∗: We can approximate f (x) by the linear interpolation

p(x) = f (b)+ f [a,b](x−b)

where f [a,b] = f (b)− f (a)
b−a . Then we find c such that p(c) = 0: Solving f (b)+ f [a,b](c−b) = 0 for c gives

c = b− f (b)/ f [a,b].

If we have two initial guesses x0,x1 we can use this to find an improved guess x2. Using x1,x2 we find x3, etc.

Algorithm: Secant Method Find x∗ ∈ [a0,b0] such that f (x∗) = 0.
Given:

• subroutine to evaluate f (x)

• two initial guesses x0,x1

Then this algorithm computes a sequence xk which may or may not converge to a root x∗.

Algorithm: For k = 1,2,3, . . .:
xk+1 := xk− f (xk)/ f [xk−1,xk]

3

Example: Consider the function f (x) = x3− x−1 and the initial guesses x0 = 1, x1 = 2. We can measure the “number of
correct digits” as Nk :=− log10 |xk− x∗|. We want to see how Nk grows with each step.

k xk Nk Nk/Nk−1

2 1.1667 0.8
3 1.25311203319502074688796680497925311203319502074688796680 1.1 1.4292
4 1.33720644584165640039570185142407424920450200352602540210 1.9 1.6624
5 1.32385009638764090385381405944349497906016891171355395298 3.1 1.6084
6 1.32470793653208797064174666448878197322217786129602539372 5.0 1.6329
7 1.32471796535381767575939715803702106931272485403036767120 8.1 1.6185
8 1.32471795724467030158200181494839983320960900093813494824 13.1 1.6216
9 1.32471795724474602596033662546920425813781535049399611421 21.2 1.6190

10 1.32471795724474602596090885447809738111461705368557107541 34.4 1.6191
11 1.32471795724474602596090885447809734073440405690173336451 55.7 1.6185

Errors of the secant method

During the algorithm we have a = xk−1 and b = xk. We then compute c = xk+1 using the secant. We want to show that the
new error |c− x∗| is small:

From the interpolation error we know that

f (x∗)− p(x∗) = R(x∗), R(x∗) =
1
2

f ′′(t) · (x∗−a)(x∗−b)

(where t is somewhere between a,b,x∗). If | f ′′(t)| ≤C2 we have |R(x∗)| ≤ C2
2 |x∗−a| · |x∗−b|.

Note that f (x∗) = 0 = p(c). Hence

p(c)− p(x∗)︸ ︷︷ ︸
f [a,b] · (c− x∗)

= R(x∗)

since p(x) is a linear function with slope f [a,b]. Therefore

c− x∗ =
R(x∗)
f [a,b]

We have f [a,b] = f ′(s) with s ∈ [a,b]. If | f ′(s)| ≥C1 > 0 we therefore have with D := C2
2C1

|c− x∗| ≤ D |a− x∗| · |b− x∗| (1)

Since a = xk−1, b = xk, c = xk+1 we obtain

|xk+1− x∗| ≤ D |xk−1− x∗| · |xk− x∗|

Let ek := D |xk− x∗|. Multiplying by D gives
ek+1 ≤ ek−1ek.

Now assume that
e0 ≤ q, e1 ≤ q with q < 1

Then we obtain
e0 ≤ q1, e1 ≤ q2, e2 ≤ q3, e3 ≤ q5, . . . ek ≤ qFk

with the Fibonacci number Fk (defined by F0 = 1, F1 = 1, Fk+1 = Fk +Fk−1). Since q < 1 and Fk→ ∞ for k→ ∞ we obtain
convergence ek = D · |xk− x∗| → 0 if our assumptions∣∣ f ′′(t)∣∣≤C2,

∣∣ f ′(t)∣∣≥C1 > 0 (2)

are satisfied. The order of convergence corresponds to the ratio Fk/Fk−1 which converges to the golden ratio
√

5+1
2 .

4

Theorem 2.2. Assume that f (x∗) = 0 and

• f ′(x) and f ′′(x) exist and are continuous near x∗

• f ′(x∗) 6= 0.

Then there exists δ > 0, C > 0 such that for |x0− x∗| ≤ δ , |x1− x∗| ≤ δ we have

• lim
k→∞

xk = x∗ (convergence)

• |xk− x∗| ≤ Ek and Ek+1 ≤CEα
k with α =

√
5+1
2 (convergence with order α > 1)

Proof. Pick ε > 0 such that on the interval Bε = [x∗− ε,x∗+ ε] we have that | f ′(x)|> 0 and f ′′ is continuous:

For x ∈ Bε :
∣∣ f ′(x)∣∣≥C1 > 0,

∣∣ f ′′(x)∣∣≤C2 (3)

with some constants C1,C2. Let D = C2
2C1

. Pick q < 1 such that δ := q/D≤ ε .

Now assume |xk−1− x∗| ≤ δ , |xk− x∗| ≤ δ . Since δ ≤ ε we have xk−1,xk,x∗ ∈ Bε . We now have

|xk+1− x∗|=
| f ′′(t)|
2 | f ′(s)|

|xk− x∗| · |xk−1− x∗|

where the intermediate points s, t are located between x0,x1,x∗. Hence we have s, t ∈ Bε and (3) gives

|xk+1− x∗| ≤ D |xk− x∗| · |xk−1− x∗| ≤ Dδ︸︷︷︸
q<1

·δ < δ

so that we also have |xk+1− x∗| ≤ δ .

Therefore we obtain by induction that |xk− x∗| ≤ δ for k = 0,1,2, . . ., and that

|xk+1− x∗| ≤ D |xk− x∗| · |xk−1− x∗|

As we saw above, this implies that ek := D |xk− x∗| satisfies ek ≤ qFk where Fk are the Fibonacci numbers. Since q < 1 and
Fk→ ∞ we obtain convergence limk→∞ xk = x∗.

It remains to prove convergence of order α =
√

5+1
2 : We have shown ek ≤ Ẽk := qFk . Since the Fibonacci numbers satisfy

Fk+1−αFk = (1−α)k+1 ≥−1 we have

Fk+1 ≥ αFk−1

⇒ qFk+1 ≤ qαFk ·q−1

⇒ Ẽk+1 ≤ Ẽα
k ·q−1

2.3 Newton Method

For the secant method we used the interpolating polynomial with the nodes a,b. Now assume that a = b, and that we know
f (a) and f ′(a). We can approximate f (x) by the linear interpolation

p(x) = f (a)+ f [a,a](x−a)

where f [a,a] = f ′(a). Then we find c such that p(c) = 0: Solving f (a)+ f [a,a](c−a) = 0 for c gives

c = b− f (a)/ f [a,a].

If we have an initial guesses x0 we can use this to find an improved guess x1, etc.:

Algorithm: Newton Method

• Initial guess x0

• For k = 1,2,3, . . .:
xk+1 := xk− f (xk)/ f ′(xk)

5

Example: Consider the function f (x) = x3− x− 1 and the initial guess x0 = 1. We can measure the “number of correct
digits” as Nk :=− log10 |xk− x∗|:

k xk Nk Nk/Nk−1

1 1.5000 0.8
2 1.34782608695652173913043478260869565217391304347826086957 1.6 2.1636
3 1.32520039895090687451516382845111004395847955376602268110 3.3 2.0269
4 1.32471817399905373435873101429361486184335021364673358323 6.7 2.0093
5 1.32471795724478980823964747415808243636452539861027911560 13.4 2.0046
6 1.32471795724474602596090885626441930491868291749622751396 26.7 2.0023
7 1.32471795724474602596090885447809734073440405690173336751 53.5 2.0011

Errors of the Newton method

For the errors we obtain from (1) with a = b = xk, c = xk+1 that

|xk+1− x∗| ≤ D |xk− x∗|2

if the assumptions (2) hold. Multiplying this by D gives with ek := D |xk− x∗| that

ek+1 ≤ e2
k

If e0 ≤ q < 1 we therefore obtain e1 ≤ q2, e2 ≤ q4, e3 ≤ q8, . . .

ek ≤ q(2k)

This means that the error converges to zero as k→ ∞, and we obtain the following theorem:

Theorem 2.3. Assume that f (x∗) = 0 and

• f ′(x) and f ′′(x) exist and are continuous near x∗

• f ′(x∗) 6= 0.

Then there exists δ > 0, C > 0 such that for |x0− x∗| ≤ δ we have

• lim
k→∞

xk = x∗ (convergence)

• |xk+1− x∗| ≤C |xk− x∗|2 (convergence of order 2)

Proof. Exactly like the proof of Theorem 2.2.

2.4 Local Convergence

Note that for both the secant and the Newton method we can only guarantee convergence if the initial guesses are sufficiently
close to the solution x∗. This type of result is called “local convergence”: If the initial guess is to far away we may not have
convergence at all. If however the initial guess satisfies |x0− x∗| ≤ δ then the accuracy increases very quickly (doubling the
number of correct digits with each step for the Newton method).

This is in contrast to the bisection method which is guaranteed to converge, no matter how large the initial interval [a0,b0] is
(but we need f (a0) f (b0)< 0). This type of result is called “global convergence”.

Example 1: Consider the Newton method for the function f (x) = tan−1(x) which has the zero x∗ = 0.

For |x0| ≤ 1.39 the Newton method converges to 0.

For |x0| ≥ 1.4 the Newton method diverges, with |xk| → ∞ as k→ ∞.

For x0 = 1.39174520027073 . . . the Newton method gives x1 =−x0, x2 = x0, x3 =−x0,. . .

6

Example 2: Consider the Newton method for f (x) = tan−1 (5sinx) which has zeros kπ , k ∈ Z.

For x0 = 0.6 we obtain

k xk

1 -2.07458463997807
2 -13.3266896191295
3 -8.74903429240199
4 -12.2345381742364
5 -13.0229622940453
6 -11.5280491387632
7 -21.8729923205714
8 -22.0175237627052
9 -21.9908377144459

10 -21.9911485756392
11 -21.9911485751285526692385036807

012 345 678

This illustrates a typical behavior for the Newton and secant methods: First the values jump around wildly. Then we hit “by
chance” one of the δ -intervals around a zero. Now the superlinear convergence sets in, and we get full machine accuracy in
about 4 iterations.

2.5 Hybrid methods and the Matlab command fzero

The bisection method has several advantages:

• it is guaranteed to converge, even if the function is not differentiable (only continuity is needed)

• it gives at each step an interval containing the zero x∗ (“bracketing”)

However, the bisection method converges very slowly (one new binary digit of accuracy with each step).

The Newton and secant method converge much faster (“superlinear convergence”: the number of correct digits gets multi-
plied by α > 1 with each step), however this only works if

• f ′(x) and f ′′(x) exist and are continuous

• f ′(x∗) 6= 0

• we are already close to the zero (δ in Theorem 2.2, Theorem 2.3).

7

If not all of these conditions are satisfied the Newton or secant method may be worse than the bisection method, or may not
converge at all.

Therefore we would like to use a hybrid method which combines the secant method and the bisection method such that it
combines the best properties of both methods:

• it is guaranteed to converge, even if the function is not differentiable (only continuity is needed)

• it gives at each step an interval containing the zero x∗ (“bracketing”)

• if f ′ and f ′′ are continuous and f ′(x∗) 6= 0 we will have superlinear convergence

The Matlab command fzero uses a “hybrid method” which combines a secant-like method with the bisection method (it
uses interpolation with a quadratic polynomial instead of a linear polynomial, “Brent algorithm”).

• xs = fzero(f,[a,b]) : give interval [a,b] such that f (a), f (b) have different sign. This will return a solution xs
in this interval.

• xs = fzero(f,x0) : give initial guess x0. This may return a solution xs far away from x0, or may not converge at
all.

Example: Find x such that x10− .01 = 0.

>> f = @(x) x^10-.01
>> xs = fzero(f,[0,1])
xs =

0.630957344480193

If the function is given in an m-file f.m we have to use fzero(@f,[a,b]) .

We can specify options with the optimset command (use doc fzero in Matlab for details):

>> opt = optimset(’Display’,’iter’); % show information about each iteration
>> xs = fzero(f,[0,1],opt)

Func-count x f(x) Procedure
2 0 -0.01 initial
3 0.01 -0.01 interpolation
4 0.505 -0.00892127 bisection
5 0.505 -0.00892127 bisection
6 0.543642 -0.00774509 interpolation
7 0.648071 0.0030685 bisection
8 0.618438 -0.00181609 interpolation
9 0.629455 -0.000235499 interpolation
10 0.63098 3.59311e-06 interpolation
11 0.630957 -3.86467e-08 interpolation
12 0.630957 -6.24737e-12 interpolation
13 0.630957 0 interpolation

Zero found in the interval [0, 1]
xs =

0.630957344480193

We see that the algorithm uses three times a bisection step because the interpolation method does not make much progress.

8

3 Review of Taylor theorem

Tangent line approximation for a function g(x)

For a function g(x) the first order Taylor polynomial p(x) is the tangent line at the point x(0):

p(x) = g(x(0))+g′(x(0))(x− x(0)).

Taylor’s theorem gives for the error R(x) := g(x)− p(x)

|R(x)| ≤ c2

∣∣∣x− x(0)
∣∣∣2 (4)

Here we need that g′′ exists and is continuous on some interval B. If |g′′(t)| ≤M for t ∈ B and x(0),x ∈ B then (4) holds with
c2 =

1
2 M.

Tangent plane approximation for a function g(x1,x2)

For a function g(x1,x2) the first order Taylor polynomial p(x1,x2) is the tangent plane at the point (x(0)1 ,x(0)2):

p(x1,x2) = g(x(0)1 ,x(0)2)+
∂g
∂x1

(x(0)1 ,x(0)2) · (x1− x(0)1)+
∂g
∂x2

(x(0)1 ,x(0)2) · (x2− x(0)2).

We then have for the error R(x1,x2) := g(x1,x2)− p(x1,x2)

|R(x1,x2)| ≤ c2

∥∥∥x− x(0)
∥∥∥2

∞

Here we need that all first order partial derivatives
∂g
∂x1

,
∂g
∂x2

and all second order partial derivatives
∂ 2g
∂x2

1
,

∂ 2g
∂x1∂x2

,
∂ 2g
∂x2

2

exist and are continuous in some convex region B. If
∣∣∣∣ ∂ 2g
∂xi∂x j

(t)
∣∣∣∣≤Mi j for t ∈ B and x(0),x ∈ B then (4) holds with c2 =

1
2(M11 +M12 +M21 +M22). (Note that M12 = M21)

Linear approximation of a function g(x1, . . . ,xn)

For a function g(x1, . . . ,xn) of n variables the first order approximation p(x) at a point x(0) is given by

p(x) = g(x(0))+
∂g
∂x1

(x(0)) · (x1− x(0)1)+ · · ·+ ∂g
∂xn

(x(0)) · (xn− x(0)n)

= g(x(0))+
[

∂g
∂x1

(x(0)), . . . ,
∂g
∂xn

(x(0))
]
(x− x(0))

and we have for the error R(x) := g(x)− p(x)

|R(x1,x2)| ≤ c2

∥∥∥x− x(0)
∥∥∥2

∞

Here we need that all first order partial derivatives
∂g
∂xi

for i = 1, . . . ,n and all second order partial derivatives
∂ 2g

∂xi∂x j
for

i, j = 1, . . . ,n exist and are continuous in some convex region B. If
∣∣∣∣ ∂ 2g
∂xi∂x j

(t)
∣∣∣∣≤Mi j for t ∈ B and x(0),x ∈ B then (4) holds

with c2 =
1
2 ∑

n
i=1 ∑

n
j=1 Mi j. (Note that Mi j = M ji)

9

4 Nonlinear system

We have n nonlinear equations f1(x1, . . . ,xn) = 0, . . . , fn(x1, . . . ,xn) = 0. We define the vector-valued function f (x) as

f (x) =

 f1(x1, . . . ,xn)
...

fn(x1, . . . ,xn)

The Jacobian f ′(x) (often denoted by D f (x)) is the n×n matrix of first partial derivatives

f ′(x) =

∂ f1
∂x1

· · · ∂ f1
∂xn

...
...

∂ fn
∂x1

· · · ∂ fn
∂xn

Then Taylor’s theorem for functions g(x1, . . . ,xn) gives that

f (x) = f (x(0))+ f ′(x(0))(x− x(0))︸ ︷︷ ︸
p(x)

+R(x)

We assume that the second order partial derivatives
∂ 2 fi

∂x j∂xk
(x) exist and are continous. Then the remainder term R(x) =

f (x)− p(x) satisfies

‖R(x)‖
∞
≤ c2

∥∥∥x− x(0)
∥∥∥2

∞

if we have bounds
∣∣∣ ∂ 2 fi

∂x j∂xk
(x)
∣∣∣≤Mi jk for i, j,k = 1, . . . ,n and

c2 :=
1
2

max
i=1...n

(n

∑
j=1

n

∑
j=1

Mi jk

)
. (5)

We start with an inital guess x(0) and compute b := f (x(0)) and A := f ′(x(0)). Then we can approximate the function f (x) by
the Taylor approximation p(x) = b+A(x− x(0)). Instead of f (x) =~0 we solve solve p(x) =~0 as follows: Let d = x− x(0) ,
solve the linear system Ad =−b, then let x(1) := x(0)+d.

Algorithm: Newton Method

• Initial guess x(0)

• For k = 0,1,2, . . .:
b := f (x(k))
A := f ′(x(k))
solve Ad =−b for d (use Gaussian elimination with pivoting)
x(k+1) := x(k)+d

Example

We want to solve the nonlinear system

2x1 + x1x2 = 2

2x2− x1x2
2 = 2

We therefore define f (x) =
[

2x1 + x1x2−2
2x2− x1x2

2−2

]
and obtain the Jacobian matrix f ′(x) =

[
2+ x2, x1
−x2

2, 2−2x1x2

]
.

10

We use the initial guess x(0) =
[

0
0

]
.

Step 1: b = f (x(0)) =
[
−2
−2

]
, A = f ′(x(0)) =

[
2 0
0 2

]
. Solving Ad =−b gives d =

[
1
1

]
and x(1) = x(0)+d=

[
1
1

]
.

Step 2: b = f (x(1)) =
[

1
−1

]
, A = f ′(x(1)) =

[
3 1
−1 0

]
. Solving Ad =−b gives d =

[
−1
2

]
and x(2) = x(1)+d=

[
0
3

]
.

Step 3: b= f (x(2)) =
[
−2
4

]
, A= f ′(x(2)) =

[
5 0
−9 2

]
. Solving Ad =−b gives d =

[
.4
−.2

]
and x(3) = x(2)+d=

[
.4
2.8

]
.

We can perform the Newton method in Matlab:

f = @(x) [2*x(1)+x(1)*x(2)-2; 2*x(2)-x(1)*x(2)^2-2]; % define the function f(x)
fp = @(x) [2+x(2), x(1) ; -x(2)^2, 2-2*x(1)*x(2)]; % define the Jacobian f’(x)
x = [0;0]; % initial guess
for i=1:7
b = f(x);
A = fp(x);
d = -A\b;
x = x+d % print out x

end

Running this gives the output

x =
1
1

x =
0
3

x =
0.4
2.8

x =
0.483870967741935
1.99354838709677

x =
0.50009892401114
1.99939860092483

x =
0.499999985726356
1.99999999518732

x =
0.5
2

All the following iterates are the same in machine precision. Here the exact solution is x∗ =
[1

2
2

]
. We obtain for the errors

k 3 4 5 6 7∥∥x(k)− x∗
∥∥

∞
0.8 1.6 ·10−2 6.0 ·10−4 1.4 ·10−8 2.2 ·10−16

It seems that we have
∥∥x(k+1)− x∗

∥∥
∞
≤C

∥∥x(k)− x∗
∥∥2

∞
, i.e., convergence of order 2.

11

Errors of the Newton method

For p(x) = f (x(k))+ f ′(x(k))(x− x(k)) Taylor’s theorem gives for x = x∗

f (x∗)− p(x∗) = R(x∗)

Since f (x∗) =~0 = p(x(k+1)) we get
p(x(k+1))− p(x∗) = R(x∗)

From p(x) = b+A(x− x(0)) we get p(x(k+1))− p(x∗) = A
(
x(k+1)− x∗

)
so that

x(k+1)− x∗ = A−1R(x∗)∥∥∥x(k+1)− x∗
∥∥∥

∞

≤
∥∥A−1∥∥

∞
‖R(x∗)‖

∞∥∥∥x(k+1)− x∗
∥∥∥≤ ∥∥A−1∥∥

∞
c2

∥∥∥x(k)− x∗
∥∥∥2

∞

with c2 from (5). If
∥∥A−1

∥∥
∞
≤ c1 we obtain with D := c1c2∥∥∥x(k+1)− x∗

∥∥∥
∞

≤ D
∥∥∥x(k)− x∗

∥∥∥2

∞

Therefore we obtain the following theorem:

Theorem 4.1. Assume that f (x∗) = 0 and

• ∂ fi

∂x j
and

∂ 2 fi

∂x j∂xk
exist and are continuous near x∗ for i, j,k = 1, . . . ,n

• the matrix f ′(x∗) is nonsingular.

Then there exists δ > 0, C > 0 such that for
∥∥x(0)− x∗

∥∥≤ δ we have

• lim
k→∞

x(k) = x∗ (convergence)

•
∥∥x(k+1)− x∗

∥∥≤C
∥∥x(k)− x∗

∥∥2
(convergence of order 2)

Proof. Since f ′(x∗) is nonsingular and f ′(x) is continuous, we can find ε > 0 such that on Bε := {x | ‖x− x∗‖ ≤ ε} we have∥∥ f ′(x)−1∥∥≤ c1.

We can then determine Mi jk such that
∣∣∣∣∂ 2 fi(x)
∂x j∂xk

∣∣∣∣ ≤Mi jk on Bε . Define c2 by (5) and D := c1c2. Then we have for x(k) ∈ Bε

that
∥∥x(k+1)− x∗

∥∥
∞
≤ D

∥∥x(k)− x∗
∥∥2

∞
. Now we proceed exactly as in the proof of Theorem 2.3.

5 Newton method with damping

The Newton method converges very quickly to a solution x∗ if the intial error x(0)− x∗ is sufficiently small. If the initial
error x(0)− x∗ is too large the Newton method can take us farther away from the solution, see the example with n = 1 and
f (x) = tan−1 x in section 2.4.

In this example the Newton step d goes into the correct direction of decreasing absolute value| f (x)|, but the Newton step is
too large and gives xk+1 = xk +d with | f (xk+1)|> | f (xk)|. In such a case we should not accept the value xk+1 = xk +d and
should rather try a smaller step xk+1 = xk +αd with some α < 1.

12

We obtain the following algorithm: “Newton method with damping”
b := f (x(k)), A := f ′(x(k))
solve linear system Ad =−b

α := 1

While
∥∥ f (x(k)+αd)

∥∥≥ ∥∥ f (x(k)
∥∥:

α := α/2
x(k+1) := x(k)+αd

For n = 1 it is clear that the Newton direction d = − f (x(k))/ f ′(x(k)) points in the direction of decreasing | f (x)|, hence the
while loop will terminate at some point.

We want to show that this works for any n and any choice of norm: Recall that the Newton direction d satisfies f ′(x(k))d =
− f (x(k)).
Claim: For α > 0 sufficiently small we have

∥∥ f (x(k)+αd)
∥∥< ∥∥ f (x(k)

∥∥
Proof: We use Taylor’s theorem and get for α < 1

f (x(k)+αd) = f (x(k))+α f ′(x(k))d︸ ︷︷ ︸
− f (x(k))

+R, ‖R‖ ≤ c‖d‖2 (6)

∥∥∥ f (x(k)+αd)
∥∥∥= (1−α)

∥∥∥ f (x(k))
∥∥∥+‖R‖ ≤ (1−α)

∥∥∥ f (x(k))
∥∥∥+α

2c‖d‖2 (7)

The Newton method with damping should converge to a solution x∗ even if x(0) is not extremely close to x∗, but it may still
fail: The following cases are possible:

1. x(k) converges to a solution x∗: In this case we will have αk = 1 if
∥∥x(k)− x∗

∥∥ is sufficiently small. Hence we will
have αk = 1 for all steps k ≥ K and therefore convergence of order 2 (assuming f ′(x∗) is nonsingular).
Proof: From (7) we get for α = 1 with A = f ′(x(k))−1 and

∥∥A−1
∥∥≤ c1∥∥∥ f (x(k)+d)

∥∥∥≤ c‖d‖2 ≤ c
∥∥∥A−1 f (x(k))

∥∥∥2
≤ cc2

1

∥∥∥ f (x(k))
∥∥∥︸ ︷︷ ︸

< 1

·
∥∥∥ f (x(k))

∥∥∥
since ‖ f (x)‖< 1/(cc2

1) if ‖x− x∗‖ is sufficiently small.

2. x(k) converges to local minimum x̃ of ‖ f (x)‖ with ‖ f (x̃)‖ > 0. In this case αk → 0. Therefore we should stop the
algorithm if αk gets too small. Example: f (x) = x2 +1, x0 = 1.

3. x(k) does not converge: x(k) may be unbounded with decreasing values
∥∥ f (x(k)

∥∥> 0. Example: f (x) = 1/x, x0 = 1.

6 Nonlinear least squares problem

We have N functions f1(x1, . . . ,xn), . . . , fN(x1, . . . ,xn) for n unknowns with N > n. We define the vector-valued function f (x)
as

f (x) =

 f1(x1, . . . ,xn)
...

fN(x1, . . . ,xn)

We cannot expect to find x ∈ Rn such that f (x) =~0 since we have more equations than unknowns. But we can try to find
x ∈ Rn such that the vector f (x) becomes “as small as possible”:

Find x ∈ Rn such that ‖ f (x)‖2 is minimal

The Jacobian f ′(x) (often denoted by D f (x)) is the N×n matrix (more rows than columns) of first partial derivatives

f ′(x) =

∂ f1
∂x1

· · · ∂ f1
∂xn

...
...

∂ fN
∂x1

· · · ∂ fN
∂xn

13

We start with an inital guess x(0). Then we approximate the function f (x) by the Taylor approximation p(x) = b+A(x−x(0))
with b := f (x(0)) and A := f ′(x(0)). Instead of ‖ f (x)‖= min we solve ‖p(x)‖= min as follows: Let d = x− x(0) , solve the
linear least squares problem ‖Ad +b‖= min, then let x(1) := x(0)+d.

Algorithm: Gauss-Newton Method

• Initial guess x(0)

• For k = 0,1,2, . . .:
b := f (x(k))
A := f ′(x(k))
find d such that ‖Ad +b‖ is minimal (use normal equations or QR decomposition)
x(k+1) := x(k)+d

Convergence of the Gauss-Newton method: We assume that F(x) := ‖ f (x)‖2
2 = f1(x)2 + · · ·+ fN(x)2 has a local

minimum at x∗ ∈ Rn. Therefore
∂F
∂x j

(x∗) = 0 for i = 1, . . . ,n, i.e., with A∗ := f ′(x∗) we have the normal equations

A>∗ f (x∗) =~0 (8)

If our current approximation is x(k) we consider the Taylor approximation p(x) = b + A(x− x(k)) with b = f (x(k)) and
A = f ′(x(k)). Then we determine x(k+1) such that

∥∥p(x(k+1))
∥∥

2 is minimal, hence we have the normal equations

A>p(x(k+1)) =~0 (9)

For the Taylor approximation we know that

f (x∗)− p(x∗) = r(x∗), ‖r(x∗)‖ ≤C2

∥∥∥x∗− x(k)
∥∥∥2

(10)

where C2 depends on the size of the second order partial derivatives
∂ 2 fi

∂x j∂xk
. We also have

‖A∗−A‖=
∥∥∥ f ′(x∗)− f ′(x(k))

∥∥∥≤C2

∥∥∥x∗− x(k)
∥∥∥

From (10) we obtain
A> f (x∗)−A>p(x∗) = A>r(x∗)

Now (8), (9) give for the first term

A> f (x∗) = A>∗ f (x∗)︸ ︷︷ ︸
0

+(A−A∗)> f (x∗)

=
︷ ︸︸ ︷
A>p(x(k+1))+(A−A∗)> f (x∗)

yielding
A>
(

p(x(k+1))− p(x∗)
)

︸ ︷︷ ︸
A
(

x(k+1)− x∗
) = (A∗−A)> f (x∗)+A>r(x∗)

and with the matrix M := A>A
x(k+1)− x∗ = M−1(A∗−A)> f (x∗)+M−1A>r(x∗)

∥∥∥x(k+1)− x∗
∥∥∥≤ ∥∥M−1∥∥(C2

∥∥∥x(k)− x∗
∥∥∥‖ f (x∗)‖+

∥∥∥A>
∥∥∥C2

∥∥∥x(k)− x∗
∥∥∥2
)

∥∥∥x(k+1)− x∗
∥∥∥≤ D

(
c‖ f (x∗)‖ ·

∥∥∥x(k)− x∗
∥∥∥+∥∥∥x(k)− x∗

∥∥∥2
)

14

where D is a bound for C2
∥∥M−1∥∥∥∥∥A>

∥∥∥. If the residual ‖ f (x∗)‖ is zero (usually not satisfied) we get quadratic convergence.

If ε := c‖ f (x∗)‖ is small the error
∥∥x(k)− x∗

∥∥will at first decrease as with quadratic convergence, until
∥∥x(k)− x∗

∥∥≈ ε . From
then on we will only have convergence of order 1 (if the residual ‖ f (x∗)‖ is sufficiently small). If the residual ‖ f (x∗)‖ is
too large the Gauss-Newton method may not be locally convergent.

15

