1. Exercise 5, p.720. Stoer and Bulirsch.
2. Exercise 6, p.720. Stoer and Bulirsch.
3. Exercise 8, parts (a), (b), (c) p.721. Stoer and Bulirsch.
4. (MATLAB) Let A be the matrix defined in Ex. 11, p.722, Stoer and Bulirsch. Let $\mathbf{b}=[2,1,2,2,1,2]^{T}$. The system $A \mathbf{x}=\mathbf{b}$ has the solution $\mathbf{x}=[1,1,1,1,1,1]^{T}$. Solve the system using Jacobi, Gauss-Seidel and overrelaxation for several values of the relaxation parameter ω. In each case find the spectral radius of the iteration matrix. Try to find the optimal ω by trial and error.
5. (MATLAB) Solve the system of problem 4 by the method of Conjugate Gradients.
6. Let A and B be $n \times n$ real matrices with A nonsingular. Consider solving the system

$$
A z_{1}+B z_{2}=b_{1}, \quad B z_{1}+A z_{2}=b_{2}
$$

with $z_{1}, z_{2}, b_{1}, b_{2} \in \mathbf{R}^{n}$.
(a) Find necessary and sufficient conditions for the convergence of the iteration method

$$
A z_{1}^{(m+1)}=b_{1}-B z_{2}^{(m)}, \quad A z_{2}^{(m+1)}=b_{2}-B z_{1}^{(m)}, \quad m \geq 0
$$

(b) Repeat part (a) for the iteration method

$$
A z_{1}^{(m+1)}=b_{1}-B z_{2}^{(m)}, \quad A z_{2}^{(m+1)}=b_{2}-B z_{1}^{(m+1)}, \quad m \geq 0 .
$$

Compare the convergence rates of the two methods.

