
INTEGER QUATERNIONS AND THE FOUR SQUARES
THEOREM

The quaternions are defined to be all expressions of the form q =
x + yi + zj + wk, added component by component, and multiplied
according to the rules i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i,
and ki = −ik = j, which make the multiplication associative, but
not commutative. We we define q, the quaternionic conjugate of q,
by q = x − yi − zj − wk, and it turns out that q1q2 = q2q1. We set
N(q) = qq = x2 +y2 +z2 +w2, and it follows from the product formula
for the quaternionic conjugate that N(q1q2) = N(q1)N(q2).

An integer quaternion is a quaternion all of whose components are
integers. Thus a positive integer is the sum of four squares if and only
if it is the norm of an integer quaternion. The multiplicativity of the
norm implies that if two integers are each the sum of four squares, then
so is their product. It follows that we need only verify that every prime
is the sum of four squares. Since some of the squares are allowed to
be 0, and we have already verified that every prime not congruent to
3 (mod 4) is the sum of two squares, we need only verify that every
prime congruent to 3 (mod 4) is the sum of four squares. We do this
in several stages.

Let p be a prime congruent to 3 we wish to prove, at this stage,
that mp is the sum of four squares for some m < p. We begin by
observing that since −1 is not a quadratic residue (mod p), there is
no x relatively prime to p for which both x and −x are quadratic
residues. It follows, since exactly half the least residues are quadratic
residues, that if x is relatively prime to p either x or −x is a quadratic
residue.

If p−1
2

is a quadratic residue (mod p), then there exists an integer x

with x2 ≡ p−1
2

(mod p). Moreover, we may choose x between −p−1
2

and
p−1
2

. Then 2x2 +1 ≡ 0 (mod p) so that 2x2 +1 = mp ≤ (p−1)2

4
+1 < p2,

so that m < p. Otherwise, let r be the smallest positive least residue
that is not a quadratic residue (mod p). 1 < r < p−1

2
and −r is

a quadratic residue. Now we can choose x and y, both between −p−1
2

and p−1
2

, such that x2 ≡ r−1 (mod p) and y2 ≡ −r (mod p). It follows
that x2 +1+y2 ≡ 0 (mod p) and therefore that x2 +1+y2 = mp < p2,
so that m < p as before.
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Now we need a descent argument. We assume x2 +y2 +z2 +w2 = mp
with 1 < m < p, and we wish to find x′, y′, z′ and w′ with x′2 + y′2 +
z′2 + w′2 = kp with k < m. If k is even, then x, y, z and w either all
have the same parity, or two are even and two are odd. Without loss
of generality, we may assume that x and y have the same parity and z
and w have the same parity. In this case, we set x′ = x+y

2
, y′ = x−y

2
,

z′ = z+w
2

, and w′ = z−w
2

. Then x′2 + y′2 + z′2 + w′2 = m
2
p, and we have

our descent.
If m is odd, we choose x1, y1, z1, and w1 congruent (mod m) to x, y,

z and w, respectively and strictly between −m
2

and m
2

. We can do this
because m is odd and therefore every integer is congruent (mod m)
to an integer in the given range. Since x2 + y2 + z2 + w2 ≡ 0 (mod m),
it follows that x2

1 + y2
1 + z2

1 + w2
1 = km < m2, so that k < m. We now

set q = x + yi + zj + wk and q1 = x1 + y1i + z1j + w1k, noting that
qq = mp, q1q1 = km and q1 = q + mq2 for some q2. It follows that
qq1 = q(q+mq2) = m(p+qq2). Finally, we set q′ = x′+y′i+z′j+w′k =
p+qq2 = qq1

m
. It follows that q′q′ = qq1q1q

m2 = kp, and once again we have
our descent. This completes the proof of the four squares theorem.

The prescription for expressing a prime congruent to 3 (mod 4) as a
sum of four squares is entirely constructive. To see this, let us consider
the prime 43. Since 43 is not adjacent to a multiple of 8, 2 is a quadratic
nonresidue (mod 43), and hence −2 ≡ 41 is a quadratic residue. In
fact 162 = 256 ≡ −2 (mod 43). This gives us the equation

12 + 12 + 162 = 6 · 43,

. We pair the coefficients of like parity and taking half the sums and
differences, we get

12 + 82 + 82 = 3 · 43.

We now set q = 1 + 8i + 8j and q1 = 1− i− j = q− 3(3i + 3j), so that
q2 = −3i − 3j and q2 = 3i + 3j. According to the algorithm laid out
in the proof,

q′ = 43 + qq2 = 43 + 3(1 + 8i + 8j)(i + j) = −5 + 3i + 3j,

and indeed 52 + 32 + 32 = 43. In this case, we only had to use each
form of the reduction once; in general we might have to use one or both
types of reduction several times.


