## SOLUTIONS: PROBLEM SET 11 FROM SECTION 4.4

2. We set $\left.f(x)=x^{3}+8 x^{2}-x-1\right)$
(a) The two solutions of $f(x) \equiv 0(\bmod 11)$ are $x \equiv 4$ and $x \equiv 5$.
(b) We have $f^{\prime}(5) \equiv 0(\bmod 11)$, but $f(5) \not \equiv 0(\bmod 121)$ it follows that there is no solution of $f \equiv 0(\bmod 121)$ that is congruent to $5(\bmod 11) . f^{\prime}(4) \not \equiv 0(\bmod 11)$. It follows that there is a unique solution of $f \equiv 0\left(\bmod 11^{k}\right)$ for each $k$ and that solution is congruent to $4(\bmod 11)$. We have $x \equiv 59(\bmod 121)$
(c) $x \equiv 1148(\bmod 1331)$
3. Set $g(x)=x^{2}+x+34$. The only solution of $g(x) \equiv 0(\bmod 3)$ is $x \equiv 1(\bmod 3) . f^{\prime}(1)=3 \equiv 0(\bmod 3)$. Since, in fact $f(1)=36 \equiv 0$ $(\bmod 9), 1,4$ and 7 are all solutions $(\bmod 9)$. Only $x \equiv 4$ is a solution $(\bmod 27)$ consequently $x \equiv 13$ and $x \equiv 22$ are also solutions $(\bmod 27)$, and there are no others. However, none of these is a solution $(\bmod 81)$, and it follows that there is no solution $(\bmod 81)$.
4. Set $h(x)=x^{5}+x-6$. By the Chinese remainder theorem, it suffices to find the numbers of solutions of $h(x) \equiv 0(\bmod 16)$ and $h(x) \equiv 0(\bmod 9)$, and the number of solutions of $h(x) \equiv 0(\bmod 144)$ will be the product of these. The only solution $(\bmod 3)$ is $x \equiv 0$, and $h^{\prime}(0)=1 \not \equiv 0(\bmod 3)$. It follows that there is exactly one solution $(\bmod 9)$. Both 0 and 1 are solutions $(\bmod 2), h^{\prime}(0)=1 \not \equiv 0(\bmod 2)$, and $h^{\prime}(1)=6 \equiv 0(\bmod 2)$. It follows that there is a unique even solution $\left(\bmod 2^{k}\right)$ for every $k$ and, in particular $(\bmod 16)$. We must investigate the odd solutions further. $x \equiv 1$ is a solution $(\bmod 4)$ but not $(\bmod 8)$. It follows that $x \equiv 3$ is also a solution $(\bmod 4)$ and, in fact $x \equiv 3$ is a solution $(\bmod 16)$. It follows that $x \equiv 7$ is also a solution $(\bmod 8)$, but $x \equiv 7$ turns out not to be a solution $(\bmod 16)$. It now follows that $x \equiv 3$ and $x \equiv 11$ are the only odd solutions (mod 16). With the unique even solution there three solutions in all to $h \equiv 0(\bmod 16)$. Since there is a unique solution $(\bmod 9)$, it follows that there are exactly 3 solutions ( $\bmod 144)$.
