SOLUTIONS: PROBLEM SET 11 FROM SECTION 4.4

- 2. We set $f(x) = x^3 + 8x^2 x 1$
 - (a) The two solutions of $f(x) \equiv 0 \pmod{11}$ are $x \equiv 4$ and $x \equiv 5$.
 - (b) We have f'(5) ≡ 0 (mod 11), but f(5) ≢0 (mod 121) it follows that there is no solution of f ≡ 0 (mod 121) that is congruent to 5 (mod 11). f'(4) ≢0 (mod 11). It follows that there is a unique solution of f ≡ 0 (mod 11^k) for each k and that solution is congruent to 4 (mod 11). We have x ≡ 59 (mod 121)
 (c) n = 1148 (mod 1221)
 - (c) $x \equiv 1148 \pmod{1331}$

4. Set $g(x) = x^2 + x + 34$. The only solution of $g(x) \equiv 0 \pmod{3}$ is $x \equiv 1 \pmod{3}$. $f'(1) = 3 \equiv 0 \pmod{3}$. Since, in fact $f(1) = 36 \equiv 0 \pmod{9}$, 1,4 and 7 are all solutions (mod 9). Only $x \equiv 4$ is a solution (mod 27) consequently $x \equiv 13$ and $x \equiv 22$ are also solutions (mod 27), and there are no others. However, none of these is a solution (mod 81), and it follows that there is no solution (mod 81).

10. Set $h(x) = x^5 + x - 6$. By the Chinese remainder theorem, it suffices to find the numbers of solutions of $h(x) \equiv 0 \pmod{16}$ and $h(x) \equiv 0 \pmod{9}$, and the number of solutions of $h(x) \equiv 0 \pmod{144}$ will be the product of these. The only solution (mod 3) is $x \equiv 0$, and $h'(0) = 1 \not\equiv 0 \pmod{3}$. It follows that there is exactly one solution (mod 9). Both 0 and 1 are solutions (mod 2), $h'(0) = 1 \not\equiv 0 \pmod{2}$, and $h'(1) = 6 \equiv 0 \pmod{2}$. It follows that there is a unique even solution $(\text{mod } 2^k)$ for every k and, in particular (mod 16). We must investigate the odd solutions further. $x \equiv 1$ is a solution (mod 4) but not (mod 8). It follows that $x \equiv 3$ is also a solution (mod 4) and, in fact $x \equiv 3$ is a solution (mod 16). It follows that $x \equiv 7$ is also a solution (mod 8), but $x \equiv 7$ turns out not to be a solution (mod 16). It now follows that $x \equiv 3$ and $x \equiv 11$ are the only odd solutions (mod 16). With the unique even solution there three solutions in all to $h \equiv 0 \pmod{16}$. Since there is a unique solution (mod 9), it follows that there are exactly 3 solutions (mod 144).