SOLUTIONS: PROBLEM SET 13 FROM SECTION 46.1

10. $(11,6)=1$; hence by the little Fermat theorem, $6^{10} \equiv 1(\bmod 11)$. Since $10 \mid 2000,6^{2000} \equiv 1(\bmod 11)$, so the desired remainder is 1 .
11. Since $2\left|10,16=2^{4}\right| 10^{6}$. Consequently $2^{10^{6}} \equiv 1(\bmod 17)$ and the desired least positive residue is 1 , as in problem 10 .
12. $(a, 42)=1$ if and only if a is relatively prime to 2,3 and 7 . If a is relatively prime to 7 , then $a^{6} \equiv 1(\bmod 7)$. If a is relatively prime to 3 , then $a \equiv \pm 1(\bmod 3)$ and $a^{6} \equiv 1(\bmod 3)$. Finally, if a is odd, then $8 \mid a^{6}-1=(a-1)(a+1)\left(a^{4}+a^{2}+1\right)$. Consequently, if $(a, 42)=1$, $a^{6}-1$ is divisible by 7,3 , and 8 , and hence by 168 .
13. If p and q are distinct primes, then $p^{q-1} \equiv 1(\bmod q)$ and $q^{p-1} \equiv 0$ $(\bmod q)$. Hence $p^{q-1}+q^{p-1} \equiv 1(\bmod q)$. Similarly $p^{q-1}+q^{p-1} \equiv$ $1(\bmod p)$, so by the Chinese remainder theorem, $p^{q-1}+q^{p-1} \equiv 1$ $(\bmod p q)$.
