SOLUTIONS: PROBLEM SET 13 FROM SECTION 46.1

10. (11, 6) = 1; hence by the little Fermat theorem, $6^{10} \equiv 1 \pmod{11}$. Since $10|2000, 6^{2000} \equiv 1 \pmod{11}$, so the desired remainder is 1.

12. Since $2|10, 16 = 2^4|10^6$. Consequently $2^{10^6} \equiv 1 \pmod{17}$ and the desired least positive residue is 1, as in problem 10.

20. (a, 42) = 1 if and only if a is relatively prime to 2,3 and 7. If a is relatively prime to 7, then $a^6 \equiv 1 \pmod{7}$. If a is relatively prime to 3, then $a \equiv \pm 1 \pmod{3}$ and $a^6 \equiv 1 \pmod{3}$. Finally, if a is odd, then $8 \mid a^6 - 1 = (a - 1)(a + 1)(a^4 + a^2 + 1)$. Consequently, if (a, 42) = 1, $a^6 - 1$ is divisible by 7, 3, and 8, and hence by 168.

28. If p and q are distinct primes, then $p^{q-1} \equiv 1 \pmod{q}$ and $q^{p-1} \equiv 0 \pmod{q}$. Hence $p^{q-1} + q^{p-1} \equiv 1 \pmod{q}$. Similarly $p^{q-1} + q^{p-1} \equiv 1 \pmod{p}$, so by the Chinese remainder theorem, $p^{q-1} + q^{p-1} \equiv 1 \pmod{pq}$.