SOLUTIONS: PROBLEM SET 14 FROM SECTION 6.3

4. Let $b=1+a+\cdots+a^{\phi(m)-1}$. Then $a b=a+a^{2}+\cdots+a^{\phi(m)-1}+a^{\phi(m)}$. By Euler's theorem, $a b \equiv b(\bmod m)$. Hence $(a-1) b \equiv 0(\bmod m)$ and, since $(a-1, m)=1$, it follows that $b \equiv 0(\bmod m)$.
5. $\phi(10)=4$, and $(7,10)=1$. Hence $7^{4} \equiv 1(\bmod 10)$. Since $999,999 \equiv 3(\bmod 4), 7^{999,999} \equiv 7^{3} \equiv 3(\bmod 10)$. Hence, the desired least digit is 3 .
6. If a and b are relatively prime, then $a^{\phi(b)} \equiv 1(\bmod b)$ and $b^{\phi(a)} \equiv 0$ $(\bmod b)$. Hence $a^{\phi(b)}+b^{\phi(a)} \equiv 1(\bmod b)$. Similarly $a^{\phi(b)}+b^{\phi(a)} \equiv$ $1(\bmod a)$, so by the Chinese remainder theorem, $a^{\phi(b)}+b^{\phi(a)} \equiv 1$ $(\bmod a b)$. Notice that this proof is essentially identical to a proof in the previous homework set.
