SOLUTIONS: PROBLEM SET 15 FROM SECTION 7.1

2.

(a) $\phi(100)=40$
(b) $\phi(256)=128$
(c) $\phi(1001)=\phi(7) \phi(11) \phi(13)=720$
(d) 5760
(e) 829440
(f) 416084687585280000
4.
(a) 1,2
(b) $3,4,6$
(c) No such integer
(d) $5,8,10,12$
8. Suppose $\phi(n)=14$. Since 15 is not prime, n cannot be a prime or twice an odd prime. Since 4 does not divide $\phi(n), n$ cannot have two distinct prime power factors for which ϕ takes an even value. It follows that n must have the form p^{k} or $2 p^{k}$ for p an odd prime and $k \geq 2$. But then $p^{k-1} \mid \phi(n)$ from which it follows that $p=7$ and $n=2$. This leaves the possibilities 49 and 98 , and ϕ does not take the value 14 for either of those.
16. Since ϕ is multiplicative, and $2 \mid \phi\left(p^{j}\right)$ for any odd prime p and positive integer j, it follows that, if n has k distinct odd prime powers in its prime power decomposition $2^{k} \mid \phi(n)$.

