SOLUTIONS: PROBLEM SET 19 FROM SECTION 9.1

2.

(a) $\operatorname{ord}_{11} 3=5$
(b) $\operatorname{ord}_{17} 2=8$
(c) $\operatorname{ord}_{21} 10=6$
(d) $\operatorname{ord}_{25} 9=10$
4.
(a) 3 is a primitive root $(\bmod 4)$.
(b) 3 is a primitive root $(\bmod 5)$.
(c) 3 is a primitive root $(\bmod 10)$.
(d) 2 is a primitive root $(\bmod 13)$.
(e) 3 is a primitive root $(\bmod 14)$.
(f) 5 is a primitive root $(\bmod 18)$.
6. $20=5 \times 4.4$ and 5 are relatively prime, but $\phi(4)=2$ and $\phi(5)=4$ are not. Hence there is no primitive root $(\bmod 20)$.
12. If this were true in general, it would be true for $d=\phi(n)$ and hence there would always be a primitive root, which we know to be false.

Even if we require that d be a proper divisor of $\phi(n)$, the statement is false. Consider the case $n=65=5 \times 13$. $\phi(65)=\phi(5) \phi(13)=$ $4 \times 12=48$. However $[\phi(5), \phi(13)]=[4,12]=12$. It follows that for $(a, 65)=1, \operatorname{ord}_{65} a \mid 12$. In particular, there is no integer a with $\operatorname{ord}_{65} a=24$, although 24 is a proper divisor of 48 .

