SOLUTIONS: PROBLEM SET 2 FROM SECTION 1.4

10. If a and b are positive and $a \mid b$, then $b=a c$ for some integer c and, since a and b are positive, c is positive as well. Hence $c \geq 1$ and therefore $b=a c \geq a \cdot 1=a$.
11. Suppose a and b are odd and positive and $b \nmid a$. Then by the division algorithm, $a=q b+r$ with $0<r<b$. If r is odd, we can set $s=q$ and $t=r$. If r is even, we have $a=(q+1) b+(r-b)$. Since $0<r<b$, it follows that $-b<r-b<0$, and hence $0<|r-b|<b$. Moreover, since r is even and b is odd, it follows that $r-b$ is odd. In this case, we can set $s=q+1$ and $t=r-b$.
