SOLUTIONS: PROBLEM SET 20 FROM SECTION 9.2

2.

(a) 5 and 8 are roots.
(b) 12 and 11 are roots.
(c) 1,3 and 9 are roots.
(d) 6 is the only root.
6. $3,5,6,7,10,11,12,14$.
12. If a is a primitive root $(\bmod p)$, then so is \bar{a}, where \bar{a} is a modular inverse of a, $(\bmod p)$. Moreover if $\bar{a} \equiv a(\bmod p)$, then $a^{2} \equiv 1$ $(\bmod p)$, in which case $a \equiv \pm 1(\bmod p)$. This last is the case if $p=2$, $a=1$, or $p=3, a=2$. In all other cases, the product of the primitive roots breaks up into a product of products of the form $a \bar{a}$, and so has the least positive residue 1 . This is true also if $p=2$, in which case the only primitive root is 1 . The only exception, therefore, is $p=3$ for which the product of the primitive roots is the unique primitive root 2.

