SOLUTIONS: PROBLEM SET 21 FROM SECTION 9.3

4.

(a) 2 is a primitive root $(\bmod 121)$
(b) 2 is a primitive root $(\bmod 169)$
(c) 3 is a primitive root $(\bmod 289)$
(d) 2 is a primitive root $(\bmod 361)$
10. The primitive roots $(\bmod 5)$ are 2 and $3 . \phi(\phi(25))=\phi(20)=8$, so there are 8 primitive roots $(\bmod 25)$, four congruent to $2(\bmod 5)$ and four congruent to $3(\bmod 5)$. The four congruent to $2(\bmod 5)$ are $2,12,17$ and 22 ; the four congruent to $3(\bmod 5)$ are $3,8,13$ and 23 . 7 and 18 are primitive roots $(\bmod 5)$ but not $(\bmod 25)$.
16. Such a root exists for every odd prime p. In particular, for $p=$ 3,8 is such a primitive root. Most of you assumed the additional requirement that $r<p$. In that case, as many of you established, no such root exists for $p \leq 17$. I gave full credit for this observation.

FLASH: 14 is a primitive root $(\bmod 29)$ but not $\left(\bmod 29^{2}\right)$. This bulletin is courtesy of my colleague Larry Washington.

