SOLUTIONS: PROBLEM SET 22 FROM SECTION 9.4

2. 5 is a primitive root $(\bmod 23)$ and $\operatorname{ind}_{5} 3=16$ Thus if we set $y=\operatorname{ind}_{5} x$, we obtain the equivalent congruences
(a) $5 y+16 \equiv 0(\bmod 22)$ which has the unique solution $y \equiv 10$ $(\bmod 22)$ so that $x \equiv 5^{10} \equiv 9(\bmod 23)$.
(b) $14 y+16 \equiv \operatorname{ind}_{5} 2=2 \bmod 22$, which has the solutions $y \equiv$ $10,21(\bmod 22)$, giving $x \equiv 9,14(\bmod 23)$.
3. 2 is a primitive root $(\bmod 13) \cdot \operatorname{ind}_{2} 2=1$, so setting $b=\operatorname{ind}_{2} a$, $y=\operatorname{ind}_{2} x$, and taking indices on both sides, we get the equivalent congruence $4 y+b \equiv 1(\bmod 12)$. This will have solutions if and only if $b \equiv 1(\bmod 4)$, so that $b \equiv 1,5,9(\bmod 12)$ and $a \equiv 2,6,5(\bmod 13)$.
4. Following the hint, if Q is as given, then $p_{1} p_{2} \cdots p_{n}$ is a solution of $x^{4} \equiv-1(\bmod Q)$. Consquently, if p is any prime divisor of Q, then $p_{1} p_{2} \cdots p_{n}$ is also a solution of $x^{4} \equiv-1(\bmod p)$. Hence p has the form $8 k+1$ by problem 9 . Since all the p_{i} are relatively prime to Q, it follows that p is distinct from all the p_{i}. Hence there are more than n primes of the form $8 k+1$, and hence infinitely many since n was arbitrary.
