SOLUTIONS: PROBLEM SET 23 FROM SECTION 9.6

2.

(a) Only $\lambda(2)$ takes the value 1 .
(b) If $p>3$ is an odd prime, then $\phi(p)$ is divisible eitner by 4 or by an odd prime. Moreover $\phi(9)$ is divisible by 3 , and $\phi(16)$ by 4. It follows that the only possibilities are 2^{k} for $k=2,3$ and $3 \cdot 2^{k}$ for $0 \leq k \leq 3$.
(c),(e) $\phi(n)$ does not take any odd value except 1 .
(d) 5 is now a possible prime factor for n. The possibilities are now $5 \cdot 2^{k}$ and $15 \cdot 2^{k}$ for $0 \leq k \leq 4$ and also 16 and 48 .
(f) 5 is not possible as a factor since $\phi(5)=4$. The possible odd factors are now $7,9,21$ and 63 . Each of these can be multiplied by 2^{k} for $k \leq 3$.
4.
(a) $\lambda(12)=[\lambda(4), \phi]=[2,2]=2$. In this case, any residue relatively prime to 12 has order 2 except for $1.5,7$,and 11 are all acceptable.
(b) $\lambda(15)=[\phi(3), \phi(5)]=[2,4]=4$ any primitive root $(\bmod 5)$ that is relatively prime to 15 will do. Acceptable answers are 2,7,8 and 13 .
(c) $\lambda(20)=[\lambda(4), \phi(5)]=[2,4]=4$. Any odd primitive root $(\bmod 5)$ will do. Acceptable answers are $3,13,7$ and 17.
(d) $\lambda(36)=[\lambda(4), \phi(9)]=[2,6]=6$. In this case, any odd primitive root $(\bmod 9)$ will do. Acceptable answers are $7,25,5$ and 23 .
(e) $\lambda(40)=[\lambda(8), \phi(5)]=[2,4]=4$. Any odd primitive root $(\bmod 5)$ will do. Acceptable answers are 3,13,23,33,7,17,27 and 37.
(f) $\lambda(63)=[\phi(7), \phi(9)]=[6,6]=6$. In this case, there are many correct answers, of which the smallest is 2 . In fact $\operatorname{ord}_{63} a=6$ provided $\left[\operatorname{ord}_{9} a, \operatorname{ord}_{7} a\right]=6$. Assuming a is relatively prime to $63, a$ can be a primitive root either $(\bmod 9)$ or $(\bmod 7)$ (or both) but it need not be. An example is 44, for which $\operatorname{ord}_{7} 44=3$ and $\operatorname{ord}_{9} 44=2$.
6. This was essentially proved in class when we first discussed primitive roots.

