SOLUTIONS: PROBLEM SET 24 FROM SECTION 11.1

2.

(a) $1,2,4$
(b) 1
(c) 1,4
(d) $1,7,13$
6. Since $\left(\frac{a b}{p}\right)=\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)$, either none or exactly two of these terms must be negative. It follows that either exactly one or all three of a, b and $a b$ are quadratic residues $(\bmod p)$.
20. Since $77=7 \times 11$, this is equivalent to solving the simultaneous congruences, $x^{2} \equiv 3(\bmod 11)$ and $x^{2} \equiv 2(\bmod 7)$. This yields $x \equiv$ $\pm 5(\bmod 11)$ and $x \equiv \pm 3(\bmod 7)$, which yields the solutions $x \equiv$ $17,38,39,60(\bmod 77)$.
48. This congruence reduces to the pair $x^{2} \equiv 12(\bmod 47)$ and $x^{2} \equiv$ $10 \equiv-49(\bmod 59)$. But 49 is a quadratic residue $(\bmod 59)$, and -1 is not. It follows that -49 is not a quadratic residue $(\bmod 59)$, and hence there is no solution to the original congruence.

