SOLUTIONS: PROBLEM SET 25 FROM SECTION 11.2

2. $\left(\frac{3}{p}\right)=(-1)^{\frac{p-1}{2}}\left(\frac{p}{3}\right)$. Both factors are 1 if $p \equiv 1(\bmod 12)$ and both are -1 if $p \equiv-1(\bmod 12)$. If $p \equiv \pm 5(\bmod 12)$,the two factors have opposite signs so that the product is -1 .
3. $\left(\frac{5}{p}\right)=\left(\frac{p}{5}\right)=1$ if and only if $p \equiv 1,4(\bmod 5)$.
4. Let $Q=5(n!)^{2}-1$. Then 5 and $n!$ are both relatively prime to Q. Let x be a modular inverse for $n!(\bmod Q)$. Then $x^{2} \equiv 5(\bmod Q)$. It follows that 5 is a quadratic residue $(\bmod Q)$ and hence $(\bmod p)$ for every prime divisor p of Q. Hence by problem 4, every prime divisor of Q is congruent to 1 or to $4(\bmod 5)$. But $Q \equiv 4(\bmod 5)$. Hence all the prime divisors of Q cannot be congruent to $1(\bmod 5)$, and at least one of them must be congruent to $4(\bmod 5)$ as desired. Moreover, all prime divisors of Q are relatively prime to $n!$, and hence larger than n. It follows that there are arbitrarily large primes congruent to 4 $(\bmod 5)$, and hence there are infinitely many of them.
