SOLUTIONS: PROBLEM SET 33 FROM SECTION 13.2

4. This is a more difficult problem than I realized when I assigned it. One begins by noticing that $\left\{z, y^{2}, x^{2}\right\}$ is a Pythagorean triple and that if any two of the terms have a prime factor, p, then p divides all three terms, hence, in particular, both x and y. It then follows that p^{4} divides x^{4}, y^{4} and hence z^{2}, so that one can effect the descent by dividing all terms by p^{4}. to obtain

$$
\left(\frac{x}{p}\right)^{4}-\left(\frac{y}{p}\right)^{4}=\left(\frac{z}{p^{2}}\right)^{2}
$$

From this point, therefore, we may assume that $\left\{z, y^{2}, x^{2}\right\}$ is a primary Pythagorean triple. It follows that x is odd and that y and z have opposite parity. We need to treat two cases separately.

If y is even and z is odd, we have u and v relatively prime and of opposite parity with $y^{2}=2 u v$ and $u^{2}+v^{2}=x^{2}$. We may assume, without loss of generality, that u is odd and v is even. Then u and $2 v$ are perfect squares. Then we have s and t relatively prime and of opposite parity with $u=s^{2}-t^{2}$ and $v=2 s t$ so that $2 v=4 s t$ is a perfect square. It follows that both s and t are also perfect squares. Thus the equation $u=s^{2}-t^{2}$ can be rewritten $r^{2}=m^{4}-n^{4}$, providing the descent, since $m \leq s<v<x=\sqrt{u^{2}+v^{2}}$. Moreover, r is odd, so that the descent is to the same case that we started with, and we have shown that it is impossible that $x^{4}-y^{4}=z^{2}$ with z odd.

If y is odd and z is even, we must proceed differently. We observe that $x^{4}-y^{4}=\left(x^{2}+y^{2}\right)\left(x^{2}-y^{2}\right)$ is a perfect square. Since x and y are relatively prime, the only common factor of $x^{2}+y^{2}$ and $x^{2}-y^{2}$ is 2 . It follows that $x^{2}+y^{2}=2 s^{2}$ and $x^{2}-y^{2}=2 t^{2}$ with s odd, t even, and s and t relatively prime. By the same reasoning, it follows that one of $x+y$ and $x-y$ is twice an odd square, say $2 u^{2}$ with u odd, and the other is an even square, say $4 v^{2}$ with the parity of v undetermined. Moreover, u and v are relatively prime both to each other and to s, since $8 u^{2} v^{2}=2 t^{2}$. It now follows that $x=u^{2}+2 v^{2}$ and $y= \pm\left(u^{2}-2 v^{2}\right)$ where the sign will not matter because, in either case, $x^{2}+y^{2}=2 u^{4}+8 v^{4}=2 s^{2}$, so that we have $u^{4}+4 v^{4}=s^{2}$, with the three terms pairwise relatively prime. The generating formula for Pythagorean triples now gives $u^{2}=m^{2}-n^{2}$ and $2 v^{2}=2 m n$. It follows that m and n are perfect squares and that u^{2} is the difference
of two fourth powers. Since u is odd, we know this is impossible by the previous paragraph.
10. This is just a direct algebraic verification.
12. There is a misprint here: the Diophantine equation in question should be

$$
x^{3}+y^{3}+w^{3}=z^{3} .
$$

Once this is corrected the proof is again a direct algebraic verification.

