SOLUTIONS: PROBLEM SET 33 FROM SECTION 13.3

2.

(a) $19 \equiv 3(\bmod 4)$ and so is not the sum of two squares.
(b) 25 , like any perfect square is the sum of two squares, one of which is 0 .
(c) $29=5^{2}+2^{2}$
(d) $45=6^{2}+3^{2}$
(e) $65=8^{2}+1^{2}$
(f) $80=8^{2}+4^{2}$
(g) 99 is not the sum of two squares because it is divisible by 11 , but not by 11^{2}, and 11 is a prime congruent to $3(\bmod 4)$.
(h) $999=3^{3} \times 37$ and is not the sum of two squares.
(i) 1000 , like any power of 10 , is the sum of two squares because $10=3^{2}+1^{2}$ is the sum of two squares.
4. Any odd number is the difference of two consecutive squares. Any number divisible by 8 is the difference of two consecutive odd squares, and any number congruent to $4(\bmod 8)$ is the difference of two consecutive even squares. On the other hand, since all squares are congruent to 1 or $0(\bmod 4)$, differences of squares are congruent only to ± 1 or to $0(\bmod 4)$.
6. All squares are congruent to 1,4 or $0(\bmod 8) .7$ is not congruent to the sum of any three of these $(\bmod 8)$, even allowing repetitions.

