SOLUTIONS: PROBLEM SET 6 FROM SECTION 3.4

6. Let us represent the prime factorization of n by writing

$$
n=\prod_{p \mid n} p^{\alpha(n, p)}
$$

where $\alpha(n, p)$ denotes the highest power of p that divides n. We can extend this notation to the case where p does not divide n by setting $\alpha(n, p)=0$ in this case. Then if $m^{2}=n$, it follows that $\alpha(n, p)=$ $2 \alpha(m, p)$ for all primes p, so that $\alpha(n, p)$ is even for all p. Conversely, if $\alpha(n, p)$ is even for all p, we can set

$$
m=\prod_{p \mid n} p^{\frac{\alpha(n, p)}{2}}
$$

and $n=m^{2}$.
8. Let n be an integer, and let m be the product of all those primes p for which $\alpha(n, p)$ is odd. Then m is square free by definition, $m \mid n$, and, by problem $6, \frac{n}{m}$ is a perfect square.
10. Continuing the notation of problem 6 , it is clear that $a \mid b$ if and only if $\alpha(a, p) \leq \alpha(b, p)$ for every prime p. By the hypothesis, $3 \alpha(a, p) \leq$ $2 \alpha(b, p$ for every prime p, from which it follows that, for every prime p, $\alpha(a, p) \leq \frac{2}{3} \alpha(b, p) \leq \operatorname{alpha}(b, p)$.
14. It is clear that

$$
\alpha(n!, p)=\sum_{k=1}^{n} \alpha(k, p) .
$$

Every integer less than or equal to n and divisible by p contributes at least 1 to this sum. There are $[n / p]$ such integers. Moreover, every integer k less than or equal to n makes a second contribution provided $p^{2} \mid k$. There are $\left[n / p^{2}\right]$ such k. Similarly, there are $\left[n / p^{3}\right]$ values of k that make a third contribution, and so on. The sum terminates because, for ℓ sufficiently large, $p^{\ell}>n$ so that $\left[n / p^{\ell}=0\right.$.
36. $18=2 \times 3^{2}$, and $540=2^{2} \times 3^{3} \times 5$. It follows that 18 divides both a and b, but that exactly one of a and b is divisible by 4 , exactly one is divisible by 27 , and exactly one is divisible by 5 . The possibilities are: 18 and 540, 36 and 270, 54 and 180, or 80 and 108.

