
SOLUTIONS: PROBLEM SET 9 FROM SECTIONS 4.1
AND 4.2

4.1.22 For n = 1, the congruence is an actual equation. For the induc-
tion step, we assume that 4n ≡ 1 + 3n (mod 9), and deduce that

4n+1 ≡ 4 + 12n ≡ 4 + 3n ≡ 1 + 3(n + 1) (mod 9).

4.1.28 Using the method in the text, we make the preliminary chart:

22 = 4

24 = 16

28 = 256 ≡ 21 (mod 47)

216 ≡ 18 (mod 47)

232 ≡ 42 (mod 47)

264 ≡ 25 (mod 47)

2128 ≡ 14 (mod 47)

We can now complete the computations:

(a) 232 ≡ 42 (mod 47) directly from the chart.
(b) 47 = 32+8+4+2+1, which gives us 247 ≡ 42×21×16×4×2 ≡ 2

(mod 47).
(c) 200 = 128 + 64 + 8, so that 2200 ≡ 14× 25× 21 ≡ 18 (mod 47).

4.2.2

(a) x ≡ 10 (mod 7)
(b) x ≡ 2, 5, 8 (mod 9)
(c) x ≡ 7 (mod 21)
(d) There is no solution because (15, 25) does not divide 9.
(e) x ≡ 812 (mod 1001)
(f) x ≡ 1596 ≡ −1 (mod 1597)

4.2.6 There will be solutions provided c is divisible by (12, 30) = 6. For
each such c there are 6 incongruent solutions.

4.2.8

(a) 7
(b) 9
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(c) 8
(d) 6

4.2.16 For k = 1, a complete set of residues mod 2k consists of 1 and
0, of which only 1 satisfies the equation. For k = 2, a complete set
of residues consists of 0,1,2 and 3, for which only 1 and 3 satisfy the
equation. For k = 3 a complete set of residues consists of the integers
from 0 through 7, and all four odd residues satisfy the equation, while
the even ones do not. We now proceed to the general case. Assume
k ≥ 3 and x2 ≡ 1 (mod 2k). Then 2k|x2 − 1 = (x − 1)(x + 1). Since
4 cannot divide both x − 1 and x + 1, but 2 divides both, the only
possibilities are 2k−1|x − 1 or 2k−1|x + 1. In other words, we have
shown that x2 ≡ 1 (mod 2k) if and only if x ≡ ±1 (mod 2k−1), so that
x ≡ ±1,±1 + 2k−1 (mod 2k). Since k ≥ 3, 1 and −1 are incongruent
(mod 2k−1), so these four solutions are distinct.


