SOLUTIONS: PROBLEM SET 9 FROM SECTIONS 4.1 AND 4.2

4.1.22 For $n=1$, the congruence is an actual equation. For the induction step, we assume that $4^{n} \equiv 1+3 n(\bmod 9)$, and deduce that

$$
4^{n+1} \equiv 4+12 n \equiv 4+3 n \equiv 1+3(n+1) \quad(\bmod 9)
$$

4.1.28 Using the method in the text, we make the preliminary chart:

$$
\begin{gathered}
2^{2}=4 \\
2^{4}=16 \\
2^{8}=256 \equiv 21 \quad(\bmod 47) \\
2^{16} \equiv 18 \quad(\bmod 47) \\
2^{32} \equiv 42 \quad(\bmod 47) \\
2^{64} \equiv 25 \quad(\bmod 47) \\
2^{128} \equiv 14 \quad(\bmod 47)
\end{gathered}
$$

We can now complete the computations:
(a) $2^{32} \equiv 42(\bmod 47)$ directly from the chart.
(b) $47=32+8+4+2+1$, which gives us $2^{47} \equiv 42 \times 21 \times 16 \times 4 \times 2 \equiv 2$ $(\bmod 47)$.
(c) $200=128+64+8$, so that $2^{200} \equiv 14 \times 25 \times 21 \equiv 18(\bmod 47)$.
4.2.2
(a) $x \equiv 10(\bmod 7)$
(b) $x \equiv 2,5,8(\bmod 9)$
(c) $x \equiv 7(\bmod 21)$
(d) There is no solution because $(15,25)$ does not divide 9 .
(e) $x \equiv 812(\bmod 1001)$
(f) $x \equiv 1596 \equiv-1(\bmod 1597)$
4.2.6 There will be solutions provided c is divisible by $(12,30)=6$. For each such c there are 6 incongruent solutions.
4.2.8
(a) 7
(b) 9
(c) 8
(d) 6
4.2.16 For $k=1$, a complete set of residues $\bmod 2^{k}$ consists of 1 and 0 , of which only 1 satisfies the equation. For $k=2$, a complete set of residues consists of $0,1,2$ and 3 , for which only 1 and 3 satisfy the equation. For $k=3$ a complete set of residues consists of the integers from 0 through 7 , and all four odd residues satisfy the equation, while the even ones do not. We now proceed to the general case. Assume $k \geq 3$ and $x^{2} \equiv 1\left(\bmod 2^{k}\right)$. Then $2^{k} \mid x^{2}-1=(x-1)(x+1)$. Since 4 cannot divide both $x-1$ and $x+1$, but 2 divides both, the only possibilities are $2^{k-1} \mid x-1$ or $2^{k-1} \mid x+1$. In other words, we have shown that $x^{2} \equiv 1\left(\bmod 2^{k}\right)$ if and only if $x \equiv \pm 1\left(\bmod 2^{k-1}\right)$, so that $x \equiv \pm 1, \pm 1+2^{k-1}\left(\bmod 2^{k}\right)$. Since $k \geq 3,1$ and -1 are incongruent $\left(\bmod 2^{k-1}\right)$, so these four solutions are distinct.

