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SPECTRAL CONVERGENCE ON DEGENERATING
SURFACES

LIZHEN JI AND RICHARD WENTWORTH

1. Introduction. The study of the spectrum of the Laplace operator has pro-
duced an extensive literature. (See [Cha] and the references therein.) Of special
interest to recent applications has been the behavior of spectra on two-dimensional
surfaces with degenerating metrics; for example, the case of hyperbolic metrics on
Riemann surfaces is already quite complicated. (See [Hj], [Ji], [Wl], [W2].) In this
paper we show that, for a wide variety ofdegenerating metrics which have, however,
quite different behavior from that of the hyperbolic metric, the spectrum converges
to the spectrum of the surface with the degenerate metric.

Specifically, we consider surfaces Mo with a singular metric, where the singularity
in local coordinates is quasi-isometrically a cone. (See Sect. 2 for our model.) Such
singularities were studied first by Cheeger [Chel] and subsequently by various
authors, particularly in the context of , Dirac, and other first-order operators.
(See [Chou], [BS], IS1], [$2].) It is a fundamental fact about metrics with
cone singularities that the Laplacian Ao on Mo still has a discrete spectrum
Spec(Ao) (2i(0)} =o, which we order 0 20(0) < 21(0) </],2(0) < The natural
question which then arises is the following: suppose we are given compact surfaces
Mt with degenerating metrics gt converging as 0 to a metric on Mo which has a
cone singularity p. The singularity is assumed to be a double point; that is, locally
we have two cones joined at their vertices. The noncompact surface Mo\{p} may
or may not be connected, and we shall refer to these two possibilities as the
nonseparating and separating cases, respectively. We are interested in when Spec
(At) {2i(t)}=o converges to Spec(Ao). To state the results precisely, we fix some
notation: let {q(t)}

_
o denote a complete orthonormal basis of eigenfunctions with

eigenvalues 2i(t), and for 2 > 0 define the kernel function

Kt(x,Y;2)= tpi(t)(x)q,(t)(Y).
;t(t) .

By spectral convergence we mean the following:
(,) Spectral convergence

(i) For all/> 1, limt_o 2(t) 2(0);
(ii) for any sequence tj 0 there exists a subsequence tj 0 such that for all > 1

lim ,(tj) qi(O)
joo
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uniformly on compact subsets of Mo\{p} for some choice of complete ortho-
normal basis {qg(0)} of eigenfunctions for Mo;

(iii) for any 2 > 0, 2 Spec(Ao),

lim K,(x, y; 2) Ko(x, y; )
tO

uniformly on compact subsets of Mo\{p} x Mo\{p}.
In Section 2 we recall the definition of a cone metric and some basic results. We

shall construct a model for Mr, 0 < < 1, degenerating as 0 to a surface with a
cone metric, and in the subsequent two sections we prove the following theorem.

THEOREM A. For M a family of compact Riemannian surfaces degenerating as
0 to a surface with cone metric, we have spectral convergence (,).

Our main tool for the proof of Theorem A is the result of P. Li (Theorem 2.5
below) givingL estimates on eigenfunctions in terms of the inverse squared of the
isoperimetric constant. For our degeneration model, the constant, localized to the
degenerating neighborhood, is bounded away from zero (Prop. 2.6), and Li’s esti-
mate may then be used to extract a converging subsequence of eigenfunctions. The
theorem then follows by a min-max argument. All this occupies Sections 3 and 4.

In Section 5 we construct analytic families of compact Riemann surfaces M of
genus O > 2 (where is now in the unit disk D c C) degenerating as 0 to a surface
Mo with a node p. If # denotes the Bergman metric on Mt (see Def. 5.1), then Mo
has the metric g/g # on Mi, 1, 2 if p is separating. If p is nonseparating, then Mo
has the metric (g 1)/g #. However, in this case the elliptic tail becomes a "long,
thin cylinder" as 0. We prove the following theorem.

THEOREM B. Let Mt be a degenerating family of compact Riemann surfaces
endowed with Bergman metrics #.

(i) If Mo\{p} has two components, then as O, we have spectral convergence (,);
(ii) /f Mo\{p} is connected, then the set of limit points of Spec(A) as - 0 is dense

in [0, +).

Finally, in Section 6 we study the admissible metrics of Arakelov [A], normalized
to have unit area. (See Def. 6.2.) In Proposition 6.6 we show that these metrics
degenerate to "admissible cone metrics" which are supported on the component of
Mo\{p} with the larger genus. In the equal-genus separating case, we again have a
long, thin cylinder.

THEOREM C. Let M be a degenerating family of compact Riemann surfaces with
normalized admissible metrics.

(i) If Mo\{p} has one component or has two components of unequal genus, then
we have spectral convergence (,). (Spec(Ao) is the spectrum of the cone metric
on the component of larger genus.)

(ii) If M degenerates to two surfaces of equal genus, joined at a separating node,
then the set of limit points of Spec(At) as 0 is dense in [0, +).
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2. Cone metrics and isoperimetric constants. In this section we recall the defini-
tion ofa cone metric and its spectrum. We present a model for a surface with smooth
metric degenerating to a cone metric. Finally, we introduce the isoperimetric con-
stant J(C), and in Proposition 2.6 we show that, for the degeneration model, the
constant is bounded away from zero.

Definition 2.1. Let (N, ) be a closed, smooth (n 1)-dimensional Riemannian
manifold. The cone C(N) on N is defined as the space (0, 1) x N with metric

ds(r, x) dr (R) dr + r2(x).

An n-dimensional manifold M with metric 9 defined on M\{p} is called a cone
manifold, and g is called a cone metric with conical singularity at p if, for some choice
of N and some neighborhood U of p, U\{p} is isometric to C(N).
Of course, we may generalize this definition to include the case of several conical

singularities. For simplicity, however, we shall always deal with one.
Let 9 gdx (R) dx have conical singularity at p. Then

(v/det gg,..c)A
x/det gij i,j=l Xj

(where g (g-:)J) is a second-order differential operator acting on C(M\{p}).
We wish to extend A as an operator acting on the Hilbert space L2(M). For this we
take the domain of A to consist of L2 functions f such that IVfl, Ale L2(M). Since
Stokes’s theorem holds for cone manifolds ([Che2], Theorem 2.2), then by a theorem
of Gaffney [G], the L/-dosure of A is selfadjoint. We call this closure the Laplacian
ofM and continue to denote it by A. Furthermore, we have the following theorem.

THEOREM 2.2 ([Chel], Theorem 3.1).
(a) A acting on L2(M) has discrete spectrum, and each eigenvalue has finite

multiplicity.
(b) An eigenfunction q9 of A with eigenvalue 2 is characterized by Aq9 2o O,

with qg, IVtpl L2(M). The eigenvalues may be ordered with multiplicity 0
2o(M) < 21(M) <....

In this paper we are interested in the case of two-dimensional manifolds and a
slight generalization of the notion of conic singularitynamely, the case where p
is a double point. This may be regarded locally as the union of two cone surfaces
with the singularity identified. It is natural to view such a singularity as arising from
a pinched cylinder or annulus. Consider the following family C of annuli with a
metric: for 0 < < 1,

C, {(x, y)]- 1 < x < 1, 0 < y < 2n}/{(x, O) (x, 2n)}
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with metric ds2 dx2 d- (t d- (1 t):x:2) dy2. From Definition 2.1 the metric on Co
has a cone singularity with a double point as described above. In the following we
shall refer to a family of compact, connected surfaces M with Riemannian metrics, 0 < < 1, as a conic de#eneratin# family if M contains a cylinder (henceforth
referred to as the pinching annulus) which is uniformly quasi-isometric to C and
converges on M,\C to a smooth Riemannian metric. In the limit we have a singular
metric o on Mo, quasi-isometric to one with a cone singularity at a double point
p--notice that Mo\{p} may or may not be connected. We refer to these two
possibilities as the nonseparating and separating cases, respectively. We now turn
to the isoperimetric constant.

Definition 2.3. For a compact Riemannian manifold M" ofdimension n without
boundary, the Sobolev constant St(M) is defined to be supremum over all constants
c such that

IV/I > c inf If- 1

for all functions f on M, and the isoperimetric constant is defined as

Area(S)"
dr(M)- inf

s (min{Vol(N1), Vol(N2)})"-1’

where S ranges over all hypersurfaces in M which divide M into two components
N and N2 with 0(Nx)= 0(N2)= S.
On the other hand, for a compact Riemannian manifold M with nonempty

boundary 9M, the Sobolev constant (M) is defined as

St(M)

where f :/: 0 C(M\OM), and the isoperimetric constant is defined as

{A(OD)}"
(M) inf

}.-1{v(o)

where D c M ranges over all open submanifolds of M having smooth boundary
satisfying D 0M , and A and V denote the area and volume, respectively.

THEOREM 2.4. (See [Cha], Theorems 4 and 12 in Chap. IV.) For any compact
Riemannian manifold M with boundary OM (OM may be empty),

J(M) < St(M).
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If we treat the cone singularity as an interior point, then the definitions of 5(M),
(M), and Theorem 2.4 easily generalize for surfaces (n 2) with cone singularities.
For the proof of Theorems A, B, and C, we need the following L bounds on
eigenfunctions. (For simplicity we only state the case n 2.)

THEOREM 2.5 (P. Li).
(i) If M is a two-dimensional compact Riemannian manifold without boundary,

then there is a constant c independent of M such that, for any eigenfunction q
on M with eigenvalue 2 :/: O,

IIqll,.oo < c

(ii) If M is compact with nonempty boundary, then for any eigenfunction (p on M
of eigenvalue 2 with respect to Dirichlet boundary conditions, the same inequal-
ity holds for q).

(iii) In either of the above eases, if we assume M has a cone singularity, then the
same inequality holds for eigenfunctions on M.

Proof. For parts (i) and (ii), see [Li] and [Cha, Sect. 4 in Chap. IV]. For part
(iii) we note that Stokes’s theorem holds for manifolds with cone singularities. (See
[Che2].) Then the same proof works in this case as well.

We have the following uniform lower bound for (Ct).

PROPOSITION 2.6.
0<t<l

There exists a constant c > 0 independent of such that for

(c,) > c > 0.

To estimate isoperimetric constants, we need the following theorem.

THEOREM 2.7 (F. Fiala, see [Fa]). Let M be a Riemannian surface, K its Gaussian
curvature, and K+ max {0, K}. Then for any simply connected domain D in M,

LZ(OD) 4hA(D) + 2n K+ > 0

where L(t?D) is the length of the boundary t?D and A(D) is the area of the domain D.
In particular, if K < O, then

L2(OD) > 4A(D).

LEMMA 2.8. For 0 < < 1 the Gaussian curvature of Ct is nonpositive.

Proof. This follows by direct computation.
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Proof of Proposition 2.6. For 1/2 < < 1 the cones Ct form a compact family
of compact surfaces. Thus, to bound the isoperimetric constants of Ct away from
zero, it suffices to consider the case 0 < < 1/2. By the definition of isoperimetric
constants, we need to estimate L2(OD)/A(D) for all domains D c C. According to
a theorem of S.-T. Yau, however, it suffices to consider the situation where the
domain D is connected. (See [Yau].) There are two cases to consider: (a) no
component of /) is homotopic to a boundary component of C; (b) at least one
component of co/) is homotopic to a boundary component of C.

Case (a). In this case every component of c3/) is contractible in C. Thus, we can
assume that the domain D is simply connected. Otherwise, D may be embedded in
the universal covering space tt of Ct, which is homeomorphic to 2. Fill in the
interior holes of D c 2 and replace D by the newly filled one. In this way we
increase the area of the domain, while decreasing the length of the boundary. Since
the domain D is simply connected, by Theorem 2.7 and Lemma 2.8

Case (b). Since OD has at least one component homotopic to one component of
the boundary of C and since D is connected, then OD has two components which
are homotopic to the boundaries of C, and all other components are contractible
in C. Filling in the holes bounded by the latter boundaries, we increase the area
and decrease the length. Thus, we can assume that D is homeomorphic to a cylinder
and that it has two boundaries, denoted by 1, ’2 (71 lies to the left of 2), which are
homotopic to the boundaries of Ct.

Step (i). First, we assume that 1 and 2 are rotationally symmetric, that is, for
some -1 < el < 2 < 1,

D {(x, y)e Ctle. < x < e.z }.

It can be seen easily that it suffices to consider the case ex 0, and 0 < 2 e < 1.
Then

L(OD) 2zr { (t + (1 t)e)/2 + 1/2 },

A(D) dy (t + (1 t)x2) 1/2 dx.

We are now going to estimate A(D,,,) from above and L2(OD,t)/A(D,,,) from below.
Depending on the relative size of and , there are two cases to consider.

First, we assume > 2> 0. From the inequality x//1 + x < 1 + x/2 for
x>O,
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A(D)- 2r f (t + (1 t)x2) 1/2 dx

l-t)2t x2 dx

=2rcx e-t
2t

{ }7l(1-t)t < nt,<2 t+
L2(0D) > 42 {(t + (1 t)e2) + t} > 8n2t.

Thus, for > e2 > O,

L2d(D) 87r2t 24
A(D) >- -"Next, assume 0 < < 2. Since x//1 + x < 1 + x/ for x > 0,

A(D) 2r f (t + (1 t)x2) 1/2 dx

1#1 te2}< 2n e2 + - 3Zg2

L2(c3D) > 4n2 {t + (1 t)e2 }

4/r2(1 t)e2 2/r2g2,

since 0 < < 1/2. Thus, for 0 < < e2, L2(OD)/A(D) >/2zr/3, and so for rotationally
symmetric domain D, we certainly have L2(OD)/A(D) > 1/3.

Step (ii). Second, we consider the case where Yl and 72 may not be rotationally
symmetric but neither of them intersects the pinching geodesic y(t) { (0, y) Ct}
in Q. Let y’ be the rotationally symmetric closed curve lying between yl, y(t), and
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touching Yl. Let D1 be the domain bounded by 71, ,(t) and let D’ be the domain
bounded by ),’, y(t). Then DI\D’ is a union of several simply connected domains in
Ct. By Theorem 2.7 and Lemma 2.8

(L(I) + L(’))2 > 4gA(DI\D’).

On the other hand, since D’ is rotationally symmetric, by Step (i)

2
(L(’) + L((t)))2 > nA(D’).

Since L(I) > L(’), L() > L((t)),

2 2
8L2(q) > 4nA(DI\D’) + -nA(D’) > -nA(D1).

Similarly, let D2 be the domain bounded by )2, )(t). Then L2(2) > nA(D2)/12. Since
A(D) < A(D1) + A(D2) (if 1 and 2 lie on different sides of (t), then the equality
holds), and L(gD) L() + L(2),

L2(gD) > L2(1) + L2(2) > -(A(D) + A(D2)) > -A(D).

Step (iii). Third, we assume that only one of 71, ?2 intersects (t). Suppose 1
intersects ),(t). Then the subdomain D1 D {(x, y) Ctlx < 0} of D lying to the
left of the pinching geodesic ,(t) is a union of simply connected domains. Then by
Theorem 2.7 and Lemma 2.8

(L(’I) + L(V(t)))2 > (L(cD1))2 > 4zcA(D1).

The right subdomain, D2 D {(x, y) Ctlx > 0}, is contained in the domain D2

bounded by 72, V(t). Since ’2 does not intersect V(t), by Step (ii)

(L(’2) + L()’(t)))2 > -A(/2) > A(D2).

Notice that for 1, 2, L(7i) > L(),(t)); so

(L(cD))2 > (L(I))2 + (L(2))2

1
> {(L(I) + L((t)))2 + (L(I) + L(’(t)))2 }
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1
{4rA(D) + 1/12zA(D2)}>

Step (iv). Finally, we assume that both y, 2 intersect (t). Then D\T(t) is a union
of several simply connected domains. By Theorem 2.7 and Lemma 2.8

(L() + L(2) + L()’(t)))2 > (L(D\?(t)))2 > 4xA(D\(t))= 4xA(D).

Since L(y) + L(y2) > 2L(y(t)),

1
(L(0D))2 > -(L(7) + L(72) + L(7(t)))2 > zcA(D).

Combining cases (a) and (b), we get that, for 0 < < 1/2, J(C) > r/48. As stated
at the beginning of the proof, for 1/2 < < 1 the cone C forms a compact family
of compact surfaces. Therefore, the proof of Proposition 2.6 is complete.

COROLLARY 2.9. For any conic degeneratin9 family Mt of surfaces, if the pinching
geodesic is nonseparating, then there exists a constant c > 0 depending only on the
family such that, for 0 < < 1,

Y(M,) > c > O.

Proof. For the family Mt the complement of the pinching annulus Ct forms a
compact family of compact surfaces. By assumption, the pinching geodesic ,(t) is
nonseparating; thus, it suffices to consider the isoperimetric constants for the
pinching annuli Ct. Since the metrics on the pinching cones C are uniformly
quasi-isometric to the standard metrics ds2t on the cones C above and the isoperi-
metric constants are determined up to some multiple by the quasi-isometric class
of the metrics, the corollary follows immediately from Proposition 2.6.

Remark 2.10. For a degenerating family M of surfaces with hyperbolic metrics,
whether the pinching geodesics in Mt are separating or not, the isoperimetric
constant ofM (or of the pinching annulus) converges to zero as 0. Because of
this fact, the spectral degeneration for hyperbolic surfaces is more complicated. (See
[Hj], [Ji], [Wl], [W2].)

3. Spectral degeneration for cones. The proof of Theorem A is divided into two
steps.

1. For all > 1, limto 2i(t) < 2i(0).
2. For all > 1, limt_.o 2(t) > 2(0).

In this section we are going to prove step (1), that is, the following proposition.
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PROPOSITION 3.1. Given any conic degenerating family Mt of surfaces,

lim 2i(t) < A(0), for all > 1.
t--* O

Let M be any Riemannian surface with cone singularities. For simplicity we
assume that M has only one cone singular point, and unlike the degeneration model
described in Section 2 we take it to be a "single" point, as opposed to a double point.
Hence, we may write M K w C, where K is a compact, connected surface with
boundary and C {(x, y)10 < x < 1, 0 < y < 2r}/{(x, 0) (x, 2z)} endowed with
a metric quasi-isometric to the standard one ds2 dx2 + x2dy2. For any 0 < e < 1
let M K {(x, y) CIx > e} be the submanifold of M obtained by cutting off a
subcylinder.

Let {2i,)]o be all the eigenvalues of M (counted with multiplicity) with respect
to the Dirichlet boundary condition and let {2} ]o be all the eigenvalues of M. Then
we have the following proposition.

PROPOSITION 3.2. For all > 1, lim_.o 2, 2.
Before proving Proposition 3.2, we establish some lemmas whose statements and

proofs are models for arguments later on. By a proof similar to that of Proposition
2.6, we immediately have the following lemma.

LEMMA 3.3. For a surface M with only cone sinoularities and subdomains M as
above, there exists a constant c > 0 such that for all 0 < e < 1

(M,) > c > O.

LEMMA 3.4. For any sequence e - 0 let cp,,,,..., cp.,,,, be orthonormal eioenfunc-
tions on M, with eigenvalues 2.,, 2,.,. Assume that, for 1 <i < m,

lim,_.o2,,,, 2., and cp,,, converoes smoothly over compact subsets of M to a

function cp,, on M. Then the limit functions tp., cp.,. are orthonormal eigenfunctions
of M with eigenvalues 2,

Proof. First of all, it is clear that for 1 < < m

(A ;.,)q,., o,

and

since IIq.,,ll.- 1 and IlVq.,,ll.= 2.,,. Therefore, it suffices to prove that for
l < i,k < m,

(cp,,, cp.> 6k.

For any 0 < e < g < 1 define a subdomain C,o {(x, y) Cle < x < 6} c C M
and Co Co,0 a subcylinder of C. It is clear that C,0 = Co. Then for any 0 < ej <
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and anyl<i,k<m,

ik (q)ni, e., tgnk, vj)Mej

/ (nk’J(nk’J
dM\C, ej,

Therefore,

C

By Theorems 2.4, 2.5, and Lemma 3.3, (tll,e t9nm, are bounded from above
independent of {ej}; tPnl, qgn,. are therefore bounded as well by the assumption
of convergence of {qn,,j} and the uniform bound on the latter..Furthermore,
lima_.o A(C,) lim_.o lim_.o A(C,,) 0. Then for any i’ > 0 there exists o > 0
such that for 0 < J < dio

ej 0
ej,

Notice the uniform convergence of (lli,j,
subsets of M. It follows that

to qg,,, tp,k, respectively, over compact

ej 0 \C \C
(gtli, ej (’gtlk, ej

Since ’ > 0 is arbitrary, for 1 < i, k < n, we have

(qg,,,, On,,)u 8i O.
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LEMMA 3.5. Given any sequence e - 0 and a normalized eigenfunction qg on M,
with eigenvalue 2, assume that lim_,o 2 < +. Then there exists a subsequence
ej- 0 such that lim6_o 2,j exists and qgj converges smoothly over compact subsets
of M to a function qg, which is a normalized eigenfunction on M with eigenvalue
lim,j_, o 2,j.

Proof. We have

(A 2,)q9, 0 and

fM IV0jl2 2j YM q912 &"

By regularity theory (see Theorems 8.8, 8.10 in [GT]), for any compact subset
D c M and any k e , there exists a constant c c(D, lim_.o 2) such that

Then by the Sobolev embedding theorem (see Theorem 5.4 in [Ad]) and a diagonal
argument, there exists a subsequence ej 0 such that lim_.o2j exists and tp
converges over compact subsets of M to a function qg. By Lemma 3.4 the limit
function tp is a normalized eigenfunction on M with eigenvalue lim,j_.o 2,j.

Proof of Proposition 3.2. By domain monotonicity for Dirichlet eigenvalues,
2i, < 2,1/2 for 0 < e < 1/2 and > 1. For any sequence ej --, 0 let {qg,j} o be a
complete system of orthonormal eigenfunctions with eigenvalues ( i,} 1. By
Lemmas 3.4, 3.5, and a diagonal argument, there exists a subsequence ej 0 such
that, for all > 1, 2’ limj_o 2,j exists, qg,j converges smoothly over compact
subsets of M to an eigenfunction p’ on M with eigenvalues 2’, and the limit
functions { tp/* } are orthonormal.

Claim. The limit functions {tp’} form a complete system of orthonormal
eigenfunctions with eigenvalues {2’ }.
Assuming the claim, it is clear that, for all > 1, ,’ 2. By the arbitrary choice

of ej 0, for all > 1

lim 2i, 2i.
e0

This completes the proof of Proposition 3.2.

Proof of claim. Assume the contrary. Then there exists a normalized eigenfunc-
tion q9 on M with eigenvalue 2 such that, for all > 1, (qg, qg’) 0. Let r/, r/,(x)
be a cutoff function on M such that r/, 1 on M3,-- M\C3, r/,--0 on C2, and
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IVl 2/e. Then

lirn ;M Iqgh12 fM Itpl2 1
0

and

f IV(go)12 f IVol2 + ;M 1q912 IVq12

Igol 2 + I12"
e,2e

By Theorems 2.4, 2.5, and Lemma 3.3, there exists some constant eo > 0 such that
I!o11,. < eo < +, Then

112 < eo fc,2e ,2e

3
=eoA(C,,2,)=eoe2.

Therefore,

IV(o)l2 2 + 6eo. (3.6)

Expanding the function qgrhj in terms of the complete system of orthonormal
eigenfunctions {qgi,j} on Mj,

rprhj a,(e,fi)qgi,,j (3.7)
i=1

where for 1

and

Similarly, from equation 3.7

i=1
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where the inequality 2i,,j > 2i follows from the domain monotonicity for Dirichlet
eigenvalues. For any N N

IIV(cp)ll 2 > &
i>N

Since 2n + as N +, by equation 3.6, for any 0 < 6 < 1 there exists No
independent of 8j such that

i>No
and

NO
aZ(j) > Ilqm9112 6, (3,8)

i=1

On the other hand, for 1 < < No

lim a(sj)= lim (orhj,
j-+o j--,o

<o, o?) o

where in the second equality, we use the fact that q0,j is bounded independent of
8j; this follows from Theorems 2.4, 2.5, Lemma 3.3, and was used in the proof of
Lemma 3.4. Then letting 8j --+ 0 in equation 3.8, we get

No
0 lim Z a(sj)> lim {{q0rhjll 2- 6

j-+o i=1

Ilqll 2 6 1 6.

Since 6 < 1, this is a contradiction! Thus, we have proven the claim and thence
Proposition 3.2.

Remark 3.9. The basic philosophy here is that, since in the limiting process of
M M as 8 0 no mass of the eigenfunctions ofM is lost (see Lemma 3.4), it is
reasonable that all eigenfunctions on M should come from eigenfunctions on M.
Remark 3.10. A special case of Proposition 3.2 and its proof is the following

fact. (See [CF1].) Let M" be a compact Riemannian manifold of dimension n > 2,
p be a distinguished point in M, and M (for > 0 small) be the complement of the
geodesic ball around p with radius 8. Then the Dirichlet eigenvalues ofM converge
to eigenvalues of M as 8 0.

Proof of Proposition 3.1. For 1 > 8 > 0 let Mr, Mt\{(x y) c, llxl < } and
let {2(t, 8)} o= be all the eigenvalues of Mr,, with respect to the Dirichlet boundary
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condition. Then by the domain monotonicity for eigenvalues, for all > 1

2i(t) < 2i(t, e).

For any fixed e > 0, Mt, (0 < < 1) forms a compact family of compact surfaces.
Thus, for all > 1

lim 2i(t, e) 2i(0, e).
t--*0

By Proposition 3.2, for all > 1, lim_,o 2i(0, e) 2i(0). Therefore, for all > 1

lim 2i(0 < lim lim 2i(t, e)
t-*O e-,O t-O

lim 2i(0,
e0

2(0).

This completes the proof.

To prepare for the proof oflimt_.o 2i(0 > 2i(0) (i > 1) in the next section, we study
the spectral degeneration for the cone family Ct first. With respect to the Dirichlet
boundary condition on OCt, let {#i(0} =1 be all the eigenvalues of Ct counted with
multiplicity.

PROPOSITION 3.11
(i) For all
(ii) For any sequence tj0 let {ffi(tj)}=l be a complete system of orthonormal

(Dirichlet) eigenfunctions on Ctj with eigenvalues {#i(t)} =. Then there exists
a subsequence t]- 0 such that, for all i> 1, i(t) converges smoothly over
compact subsets of Co to an eigenfunction i(0) with eigenvalue lzi(O), and
{i(0) } o= is a complete system of orthonormal Dirichlet eigenfunctions on Co.

Proof. By the same proof as that of Proposition 3.1, for all > 1

lim/t,(t) </t,(O).
tO

On the other hand, from Proposition 2.6 there exists a constant c > 0 such that, for
0 < < 1, J(Ct) > c > 0. Then by arguments similar to those in the proofs of
Lemmas 3.3 and 3.4, there exists a subsequence tj 0 such that, for all
converges smoothly over compact subsets of Co to a Dirichlet eigenfunction
with eigenvalue/i(0), and {i(0)} o=1 are orthonormal Dirichlet eigenfunctions on

Co. It is clear then that for all > 1

lim #i(tj)> #i(0).
tjo
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By the arbitrary choice of t ---} 0

Therefore, for all > 1

lim #(t) >/(0).
tO

lim/(t) =/(0),
tO

and {@i(0)} --1 is a complete system of orthonormal Dirichlet eigenfunctions on Co
with eigenvalues {#i(0)} i__1.

Remark 3.12. By Corollary 2.9, if the pinching geodesic (t) in the conic family
Mt is nonseparating, then the isoperimetric constant J(Mt) > c > 0 for some con-
stant c independent of t, and the proof above works for Theorem A in this case also.
But for the case of the separating pinching geodesic, we need another argument.
Instead, in Section 4 we prove Theorem A simultaneously for the pinching geodesic
separating or not, thus justifying the philosophy that, to understand general de-
generating families, it suffices to understand the degeneration of the pinched part.
(see [Ji].)

Remark 3.13. The above proof for Proposition 3.11 gives a new, elementary
proof of Theorem B in [CF2-1.

4. Proof of Theorem A. In this section we prove that for all > 1

lim 2i(t) >/2i(O),
t-O

and we finish the proof of Theorem A.
By Proposition 3.1, for all > 1

lim 2,(0 < 2,(0).
tO

Then by arguments similar to those in the proofs of Lemmas 3.3 and 3.4, for any
sequence t---} 0 there exists a subsequence tj 0 such that, for all i> 1, rpi(tj)
converges smoothly over compact subsets of Mo to a function q)’ on Mo, and 2’
limtj_.o 2i(tj)exists. The limit function go* satisfies

and

LEMMA 4.1. The limit functions {p’ }= are orthonormal eieenfunctions on Mo
with eigenvalues {2’ } o=x; that is, for all i, k > 1

(o?, o) 6
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Assume Lemma 4.1 first. Then the limit functions {p’}_ are, in particular,
linearly independent, and thus by min-max we have for all > 1

lim 2,(tj)= 2 > 2,(0).
tj-*o

By the arbitrary choice of the sequence t 0, for all > 1

lim 2(t) > 2,(0).
t0

Therefore, combined with Proposition 3.1,

lim 2,(0 2,(0), for all > 1.
t--*0

The limit functions {tp’ } = are a complete system of orthonormal eigenfunctions
on Mo with eigenvalues {2,(0)}=1 and thus may be denoted by {p,(0)}=x. This
proves parts (i) and (ii) of Theorem A. For part (iii), 2,(0) < 2 Spec(Ao) if and only
if 2,(0 < 2 for small t; so by parts (i) and (ii)

lim Ktj(x, y; 2) Ko(x, y; 2).

By the arbitrary choice of the sequence t 0,

lim Kt(x, y; 2) Ko(x, y; 2).
t-0

This completes the proof of Theorem A under the assumption of Lemma 4.1.

Proof of Lemma 4.1. Let r/= r/(x) be a cutoff function on Mo such that r/= 0
on Mo./2 Mo\{(x, y) Co[Ixl < 1/2}, r/= 1 on Mo\Mo.:/a {(x, y) Co[Ixl >
1/4}, and IVl < 8 on Mo. For any fixed io > 1 consider the function p,o(tj)rl on Cj.

t’We want to show that tp,o(tj)r/(or P,o()) does not lose any mass inside the pinching
annulus during degeneration. More precisely, define

mo lirn fMtj o

then we have the following claim.

Claim. (i) The mass of the limit function pr/is
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(ii) The mass lost during degeneration is

ICP,o(t5)l O.

Proof of claim. Actually, by taking a subsequence, if necessary, we may assume
that lim,_.o u, gO,o(tJ)ql 2 too. Expanding the function gO,o(tj)r on Ctj in terms of
a complete system of orthonormal Dirichlet eigenfunctions {g,,(tj)} fl on Ctj with
eigenvalues # --1,

gO,o )r/= 2

where

E b(t)= IO,o(t)l 2,
i=1 t

b(t)#(t)= IVqzo(tff)l 2.
i=1

tj

Now

f IVq),o(tj)lz< IVq%(tj)12 + maxlVr/I f Iq%(tj)l 2

< 2o(tj) + 8 < Co

for some constant Co < + independent of t, using lim,_, o 2io(t) < 2,0(0). Thus, for
any N [

bi (tj)#i(tj)
i-’1

YM IVgi(tJ)rll2 < c"

Since limt_.o #N(t) #N(O) and limN_, +oo #N(0) --00, for any 6 > 0 there exists an
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No e such that

i> No

487

No No

E b(0) > lim E b(tj)
i=1 tjO =1

> lim f Itpo(tj)t/I 8 =mo 5.
tjo 3 M

For any 1 > e > 0 and 0 1, let Q(O {(x, y) e C[ Ixl e). We then have

fc 1:12=limfc I(tj)lZ
o() tjO ,()

No 2

lim 2 b(tj)O,(tj)
tjo ,() i=

-lim O,o(t),-
tjO i

i=l

) 1 2 b,(tj)O,(tj) 6

1 b(t)O,(t)
tj 0 tlXC,i(. i=1

) lira 2 b(t)- No b(O) O,(t)- .
tjO i=l tjO

By further taking a subsequence we assume that, for 1 < < No, lim,_.o b(tj) b(O).
Then
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By Proposition 3.11, II(tj)ll,. I1(0)11,. 1, and i(tj) converges to ffi(0) uni-
formly over compact subsets of Co; so

I,(tj)l 2 lim fc I,(0)12 0.
e--,O o\Co()

Thus, for any 5 > 0 given above, there exists eo > 0 such that for e < eo

And for any 6 > 0 and e < eo < 1/4

I* fc 2Oo1 IO?o1 > mo 26.
o o()

Since 6 > 0 is arbitrary,

This completes part (i) of the claim. For part (ii) we have for e < eo < 1/4

lirn fM IrP,o(tj)l 2-- li fc IrP’(tj)r/[2
tj 0 tMtj,, tj 0 ,jCt(e

1 fc [i(tJ)12--1im fc Ii(tJ)12

lim I0o()1
60 ,; o()

< mo -(mo 2)= 25.

Since 6 > 0 is arbitrary, part (ii) of the claim follows immediately, and the proof of
the claim is complete.
We now use the claim to prove the orthonormality of the limit functions {go’ } i%1.

Combining this with the equations preceding Lemma 4.1, we will have shown that
the limit functions (go* } o_1 are orthonormal eigenfunctions on Mo with eigenvalues

i=1"
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For any i, k > 1,

I(qg/*, q’) 6ikl lim
e--0

< lim lim Io,(tj)l 2 Io(tj)l2

=0

where in the last equality we use part (ii) of the claim. This completes the proof of
Lemma 4.1.

5. Proof of Theorem B. In this section and the next, we present examples of
metrics defined on Riemann surfaces whose spectra converge by the results of the
previous sections. As we have seen, the key estimate needed is a lower bound on
the isoperimetric constant.
We shall consider a specific construction of an analytic family of Riemann

surfaces re" D, where D is the unit disk in C. This construction is standard, and
we refer to IF 1] for more details. Briefly, there are two cases to consider: (i) we start
with two compact Riemann surfaces M1, M2 ofgenus 91 9 j, 92 j respectively
(we always take j < 9/2, 9 > 2), and local coordinates z, z2 centered at points
p M, P2 M2. For e D\{0} remove the disks Izl < Itl and glue together the
remaining surfaces by means of the identification z z2 t. The resulting surfaces
may be completed to form an analytic family ’/D, where Mt r-l(t) has
genus 9 for - 0 and rc-: (0) is stable in the sense of Deligne-Mumford. Alternately,
(ii) we could start with a single surface M of genus 9 1 > 0 and coordinates about
two points a, b M and a similar construction adds a handle to M. Then the fiber
re- (t) would have genus 9 for -: 0. In both cases (i) and (ii), we shall use the notation
M0 r- (0) and denote the identified double point (or "node") by p. The two types
of degeneration are distinguished, as discussed in Section 2, by whether p separates
the degenerate surface Mo.
We also introduce some notation: let Ut {q e Mllz(q) < ]tl /2} and suppose

R is any region in M. Then there is a natural embedding R\U --. M under the
identification described above. We shall denote the image R c M,. This works as
well for R c M2 or R c M in the nonseparating case. If R is, for example, an open
submanifold of Mx and R M\{p}, then for small Itl, R is embedded in M, and
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a metric ds2 on Mt may be pulled back via this embedding and compared to a fixed
metric on R c M1. The estimates in the following two sections should be taken in
this sense.
We now proceed to define the Bergman metric: let M be a compact Riemann

surface of genus 9 > 0. Let 01, 0o be a basis of abelian differentials, normalized
with respect to the A-cycles of some symplectic homology basis for M, and denote
by j the associated period matrix.

Definition 5.1. The Bergman metric for M is defined by ds2 la(z)ldzl 2, where

#(z) _1 (imf)co,(z)j().
g i,j=l

Remark 5.2. The Riemann surface M may be embedded into a g-dimensional
complex torus J(M), called the Jacobian variety on M. The metric/ is the one
induced by this embedding from the natural Euclidean metric on J(M). Since the
scalar curvature of subvarieties decreases, we know that the scalar curvature of/
is nonpositive. (See [GH], p. 79.)

Now suppose we consider the Bergman metrics t on the degenerating family /’
described above.

PROPOSITION 5.3 ([W], Lemmas 6.9 and 7.4).
(i) For the degeneration (i) described above

gi

g

uniformly on compact subsets of Mi\{Pi} 1, 2, where ]M is the Bergman metric of
Mi. Moreover, there is a constant C depending only on the family such that, in local
coordinates about the node,

9
< Cltl/Izl.

(ii) For the degeneration (ii) described above

uniformly on compact subsets of Mo\{p}. Moreover, in local coordinates about the
node,

la,(z)
g 1

la(Z)
1 1

o -logltl 2vlzl2 (1)< O
-logltl
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where the estimate is

lim sup (_[z[21og[t[)O( 1 )-o itl,/<ll -loglti 0.

Fix a geodesic disk C about the node p in Mo. Then for :/: 0, Ct C c Mt is
topologically a cylinder which contains the pinching region.

COROLLARY 5.4. Let /// be degenerating to a separating node, where Mt is equipped
with the Bergman metric and C is as above. Then there exists a constant c depending
only on / such that for all D\{O}

y(c,) > c > o.

Proof. By Remark 5.2 and Theorem 2.7, we may restrict our attention to
homotopically nontrivial curves, rotationally symmetric as in Section 2. By Proposi-
tion 5.3, part (i), the error in estimating the lengths of such curves by the limiting
metrics vanishes as 0, and the corresponding subdomains clearly have finite
area. Thus, (Ct) may be bounded below by o(Co) for the limiting metrics, which
is clearly bounded away from zero.

Proof of Theorem B, part (i). The proof proceeds exactly as in Section 4, the
crucial point being the bound of Corollary 5.4 and the discreteness of the spectrum
for the limiting metric, which in this case is obvious. Note that by Remark 3.10 the
limiting spectrum is indeed the spectrum for the closed problem on the disjoint
union of M1 and M2 with a multiple of the Bergman metric.
As noted in the introduction, the pinching region for the nonseparating case

becomes long and thin. This is easily seen from the result in part (ii) of Proposition
5.3. In order to prove part (ii) of Theorem B, we wish to compare the Bergman
metric to one where the long, thin cylinder is actually fiat. Set x//-logltl and
construct a family of interpolating metrics fit satisfying

1. fit gt on the complement of the pinching annulus {z] Izl < 1-1 };
2. fit(z) (-logltl)-1 Iz1-2, for Izl < 1/21-1;
3. sup(1/2)t-, <lzl<t-’ (tt(z)) is bounded independently of t.

Now choose L > 0, also independent of t, such that for # 0

L-lt < gt < Lt (5.5)

on all of Mr. This is possible since by Proposition 5.3

0 < inf (-Izl 2 logltl/t(z)) < sup (-Izl 2 logltl/zt(z)) < +.
[tl 1/2 Izl < l- Itl /2 < Izl < l-

Let {2.(t)}o be the eigenvalues for #t and {.(t)}o those for/t. Then we have
the following theorem.
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THEOREM 5.6 (E. B. Davies, [D] Theorem 3). Under the assumption equation 5.5

L-41.(t) < 2,(0 < L4,.(t)

holds for all n > 0 and :/: O.

Proof of Theorem B, part (ii). By monotonicity it suffices to show that the
Dirichlet and Neumann spectra of a subdomain become continuous as t 0 while
the spectrum on the complement is controlled. By Theorem 5.6 we may equivalently
consider the eigenvalue problem for/t. But for/t the domain Izl < 1/21-1 in local
coordinates about the nodeis isometric to a flat cylinder oflength and circumfer-
ence 2n1-1. The Dirichlet eigenvalues for the cylinder are

(7)2

im,n " (n/)2, m= 1,2,...n=0,1,2,...

and the Neumann eigenvalues {#m,,} are the same, where we allow m 0. As - ,{2m,,} and {#,.} clearly become dense on the entire interval [0, +). On the
complement of the region {zl Izl < 1-1 }, one can bound the isoperimetric constant
away from zero, as in the proofofpart (i), and by the results of Section 3, the Dirichlet
and Neumann spectra converge. Finally, in the region {zl1/21-1 < Izl < 1-1 } the
annulus is collapsing to a circle. It is easy to see that Cheeger’s constant diverges,
and since it is a lower bound for the entire Dirichlet spectrum, the latter also
diverges. The circumference of the annulus remains bounded away from zero. By
decomposing into phases, we see that for small there are only finitely many
Neumann eigenvalues in any interval. This follows from the divergence of the
Dirichlet spectrum, and the fact that, for each phase, Neumann eigenvalues can be
bounded below by Dirichlet eigenvalues after shifting the index by two. (See [We].)
Now the proof of part (ii) follows by monotonicity.

Remark 5.7. Heuristically, the fact that for small Itl we have an embedded
cylinder which is close to being fiat means that in the limit we get the continuous
spectrum of the real line, i.e., [0, +). This is in contrast to the case of the hyper-
bolic metric where this type of argument can be made rigorous; an embedded
hyperbolic cylinder produces continuous spectrum only in the interval [1/4,
(See [Ji].)

Remark 5.8. The long, thin cylinder may be understood geometrically--for the
nonseparating case, the Jacobian variety J(M) becomes a noncompact torus as

0. Furthermore, from the embedding M --. J(M), it can be seen (see [W-I) that
the pinching annulus wraps around that part of the torus which becomes un-
bounded. As 0, we therefore produce a long, thin cylinder.

COROLLARY 5.9. Let 21 (t) denote the first nonzero eigenvaluefor the degenerating
family l with Bergman metrics. Then 21 0 for both the separating and nonseparat-
in9 cases.
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Proof. For the nonseparating case this follows from monotonicity and the fact
that infinitely many eigenvalues converge to zero for the long, thin cylinder. The
limiting spectrum in the separating case is the union of the two spectra, and hence
contains two zero eigenvalues. Since 21 (t) is the second eigenvalue in Spec(At), 21 (t)
must go to zero.

Remark 5.10. We may guess at how fast 21 --* 0 in the separating case. The
method used suggests that 21(0 should behave like the Dirichlet eigenvalue 21 (e)
for the complement of the set {qllz(q)l < e} on one of the two surfaces M. By a
result of Ozawa [O]

21(e) (log e)-1 + O((log e)-2).
Area(M/)

Since we may take e Itl 1/2, we expect 21 (t) to be bounded above by a multiple of
(log Itl)-1. Note that this is the behavior of 21 for the hyperbolic metric; however,
in the nonseparating case 21 is bounded away from zero for the hyperbolic metric,
in contrast to Corollary 5.9. (See [SWY].)

6. Proof of Theorem C. The Bergman metric of Section 5 degenerates to a
smooth metric. In this section we study the admissible metrics introduced by
Arakelov [A-I; these degenerate to cone metrics. It will be convenient however to
have a different description of cone metrics on surfaces. We have the following
simple lemma.

LEMMA 6.1. Let 9 be a metric on a two-dimensional manifold M\{p} such that,
in local coordinates x centered at p, # Ilxll-2"x* ds2, where ds2 is the standard
Euclidean metric and is some number 0 < < 1. Then 9 is a cone metric on M.

Proof. Let (r, 0) be polar coordinates associated to x, (z, b) coordinates on the
cone C(S), where S is the circle of radius 1 with the standard metric O(b)
(1 )2 db2. Consider the map

(r,O) ,0

This defines a smooth diffeomorphism from a deleted neighborhood of p to C(S1)
and the standard metric ds dr2 + z2O(b) pulls back to 9. Hence, by Definition
2.1, g is a cone metric.

As in Section 5, we fix a compact Riemann surface M of genus 9 > 0 and let #
denote the Bergman metric.

Definition 6.2. The Arakelov-Green’s function on M, denoted G(z, w), is charac-
terized by the following

(i) G(z, w) has a zero of order one on the diagonal in M x M;
(ii) G(z, w)= G(w, z);
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(iii) for z :/: w, c3zc3 log G(z, w) -/(z);
(iv) t log a(z, W)l(z)ldzl 2 O.

Definition 6.3. A metric ds2 p(z)ldzl 2 on M is called admissible if its Ricci form
is proportional to the K/ihler form of the Bergman metric; i.e.,

OzO log p(z) 2n(9 1)#(z).

Remark 6.4. The exact multiple follows from Gauss-Bonnet and the fact that

fM #(z)ldzl 2 1. Note that an admissible metric always has negative curvature for
O > 2 and that any two admissible metrics are proportional. For tori the metric is
fiat.

Definition 6.5. (i) Set

G(z, w)2
p(z) -zlim [z- w[ 2"

Then p is an admissible metric and defines the Arakelov metric (see [A]).
(ii) The normalized admissible metric is the admissible metric with unit area. By

Remark 6.4, 3(z) p(z)/Area(M, p), where p is the Arakelov metric.

Now let /be an analytic family as described in Section 5. The Arakelov metrics

Pt form a smooth family for 0, and their behavior as 0 has been studied in
[W-I. We are interested in Spec(A,).

PROPOSITION 6.6.
(i) Let /// be degenerating to a separating node with j < g/2. (see the beginning of

Section 5 for notation.) Then

k,(z) p (z)a1(z,

uniformly on compact subsets of Mx\{p}. Here, Px is an admissible metric for Mx,
and Gx is the Arakelov-Green’s function for Mx. Moreover, vanishes to order
Itl2-2/) uniformly on compact subsets of M2\{P2}.

(ii) Let /[ be degeneratin9 to a nonseparating node. Then

A(z) p(z)(G(z, a)G(z, b))-2/0

uniformly on compact subsets of Mo\{p}. As above, p is an admissible metric for M,
and a and b are as in Section 5.

Remark 6.7. The form of the limiting metrics (note that they are quasi-isometric
to cone metrics by property (i) in Def. 6.2, Lemma 6.1, and the assumption on j)
follows from the results in [W]. However, the asymptotic behavior for the Arakelov
metric pt studied there only gave pointwise results away from the node. To determine
the limiting behavior of t pt/Area(pt), we need estimates on the area as well.
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Remark 6.8. The limiting metrics are "admissible cone metrics"; that is, their
curvature is a multiple of the Bergman metric. In the cases considered above, the
limiting metrics have nonpositive curvature bounded from below. (The curvature
is negative if the limiting surfaces are not tori.)

To obtain the proposition we must control the behavior of the metric in the
pinching region better than in [W]. To do this, we use Fay’s expression for admissi-
ble metrics; let 9[f] denote the theta function with characteristic f associated to
J(M). Choose f to be an odd, nonsingular element of the theta divisor in J(M).

PROPOSITION 6.9. Let p(z)- Iny(z)12’(z), where

nAz)
a

=1
,gEf] (O)co(z),

W(z) exp (# 1)n (Im f)l Im coi- ki Im coj-
i,j=l o

2
Re fa coj()log

9J= H:() d

zo is an arbitrary point of M, and k is a point in J(M) depending upon Zo. Then
ds2 p(z) [dz[ 2 is an admissible metric.

Sketch of proof. (See [F2] for details.) The zeros of H:(z), all of multiplicity two,
coincide with the zeros of 9[f](&); so p(z)ldzl 2 is nonsingular. The factors of
automorphy of 81 cancel those for the first term in the exponential; so W(z) is indeed
a single-valued function onM depending, however, on the choice ofhomology basis.
Now by a simple computation

) (;z: )}C9z8 log p(z) aza (a 1)r (Im D);j’ Im co,- k, Im ogj k;
i,j=l o

2rc(g- 1)/(z).

Using this expression, we shall prove Proposition 6.6. For brevity we shall only
prove part (i); part (ii) follows similarly.

LEMMA 6.10. Let ?/1 be a degenerating family as in part (i) of Proposition 6.6.
Then we may choose f analytic in such that

Hf (Z) H,0
(Z)

uniformly on compact subsets of MI\{Pa }, where a is some constant and fo is a
nonsingular odd element of the theta divisor in J(M1). Moreover, if G2 denotes the
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Arakelov-Green’s function on M2, then [tl-G2(z, p2)2Hf, is uniformly bounded for
D\{0} and z M2 c M.
Proof. This is a simple consequence of the degeneration formulas in [F1]. The

Jacobian variety degenerates to a product torus, and the theta divisor over the zero
fiber

0o O x J(M1)w J(M2) x 02

(See [W].) Choose f such that limt_.of is in O1 x J(M2) with fo in the first factor.
Then for < -j

-,

and vanishes otherwise. Since the normalized abelian differentials are chosen such
that o(z, t) converges uniformly away from the node to the abelian differentials of
the compact surface, and o9(z, t) --. 0 for < g -j and z M2\{P2}, we have the
first part of the lemma with a 92 evaluated on the second factor of limt_.of. The
second part follows from the fact that Hs, 0 to order on compact subsets of
M2\{P2} and that near the node Hs,(z) tdg/z2. (See Appendix A of [W].) Since
Gz(Z p2)2 IZl 2 near the node, the result follows.

LEMMA 6.11. Let R be any region in MI\{p} and any smooth family of curves
in M1 c M. Then there exists a positive constant C independent of such that

(i)

(ii)

f Iny,(z)- nyo(Z)l 2 Idzl 2 -Cltl log Itl,
Mt

flnyt(z)- nyo(z)l Idzl -Cltl x/2 logltl.

Proof. See [W], Propositions A.1 and A.4.

LEMMA 6.12. Given f as in Lemma 6.10, there exists a bounded function Po on
Mo\{p} such that

W,(z)ltl-2/OGl(z, pl)4j/ uniformly for z M1 M;

W,(z)ltl2/Gz(z, p2)-4J/O trto(2 uniformly for z M2 mt.

Moreover, Wo(z)lnfo(Z)[ 2 is an admissible metric on M1.
Proof. This may be proven by applying the degeneration formulas in [FI-I to

the explicit expression. We shall not go through the details since the answer was
essentially obtained in [W-I. Let us note only that uniformity on all of Mo follows
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from the fact that the z dependence of qt is in terms of abelian integrals, and we
may again apply Proposition A.1 of [W-I to see that the limits are uniform.

Proof of Proposition 6.6, part (i). Let C(t) It[ -2jIg and set

p,(z) C(t)V,(z)ln,(z)l 2.

By Proposition 6.9, Pt is a smooth family of admissible metrics for : 0. Further-
more,

Area(Mr, p,)= A, fn C(t)W’(z)lHy’(z)12 Idzl

Treating first the second term,

y C(t)W’lnf 12 Idzl 2 y [Itl2/a2(z’ p2)-/V,] [Itl-2a2(z, p2)’ln12-1
2Mt 2cMt

Itl2(x-2J/a)G2(z, p2)-4(x-J/)ldzl 2.

By Lemmas 6.10 and 6.12 the integrand is dominated (in local coordinates) by a
multiple of Itl2(t-2/)G2(z, p2)-4-/. For z near P2, we estimate

ltl 1/2 < Izl
Itl2(-2i/)G2(z, p2)-4(1-j/O) < const. Itl 2(x-2j/a) drr-3+4/

tl/2

< const. Itl x-2/.

Since we assume jig < 1/2, we conclude from the above that

lim fn C(t)wtlnf, 2 Idzl o.
O 2cMt

For the first term let o(Z) Wo(z)Gt(z, pl)-4j/. Then

y C(t),ln,l idzl z YMMt Mt
olnol21dzl 2 (6.13)

{C(t)V,IH,I z ZolHxo(Z)lZ}ldzlZ.
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By uniform convergence, for any 6 > 0 the second term in equation 6.13 may be
bounded by

I(C(t)%- o)lHrl + ’o(IHrl lHol)lldzl
lMt

r21nyol21dzl 2 + 6 YMlMt Inx nxol’21dzl 2

(o(Z)) ;n In,- nolZldzl
lMt

for sufficiently small Itl. The last two terms 0 as 0 by Lemma 6.11 and the
assumptionj < g/2, and since 6 was arbitrary, we conclude that the second term on
the right-hand side of equation 6.13 vanishes as 0. We have shown

lim{At--o2fMt’O cM
olHol21dzl2} =0.

Hence, the normalized admissible metric/)t pt/At converges as in Proposition 6.6,
part (i), completing the proof.

PROPOSITION 6.14. Let be as in Proposition 6.6. Then there exists a constant
c depending only on /g such that for all D\{O}

o(M,) > c > o.

Remark 6.15. Note that we make no assumption on ’. In particular, de(Mt) is
bounded away from zero even in the separating case. (Compare with Remark 3.12.)
The reason for this is that by Proposition 6.6 one entire side of the degenerating
surface is collapsing, and a separating curve in the pinching annulus has squared
length comparable to the area of this collapsing piece. As in Section 5, we also note
that Proposition 6.6 and 6.14, combined with the arguments in Section 4 immedi-
ately prove Theorem C, part (i).

Proof of Proposition 6.14. Again, we only consider the separating case. Let ?t
be a smooth family of closed curves in Mt. Suppose that ?t Mx Mr. Then we
estimate

IL(,,, A)- L(y,, ,Oo)1- y dsli,,(s)llx// v/Pol

dsl,lllHx, l(C(t)V3aim olHxol(o)X/2l
0
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< Jo dsl’l{lHll(C(t)*)/-- (o)1/21

The first term --)0 as ---) 0 by the uniform convergence of C(t)q,. The second term
is bounded by a mutiple of -Itl/-/ logltl by Lemmas 6.11 and 6.12. Area esti-
mates follow as in the proof of Proposition 6.6 above. Thus, restriciting , in M1,
the isoperimetric quotient may be bounded by that of the metric go, which by the
general arguments of Section 2 is bounded away from zero. Notice that, by Remark
6.4 and Theorem 2.7, we restrict to homotopically nontrivial loops. For Vt restricted
to a compact subset of Ma\{p}, the metric A may be scaled by Itl-(1-/) to
converge to a smooth metric whose isoperimetric constant is bounded away from
zero, and hence the same for A by the scale invariance of .(M). The last case to
consider is when , is in the pinching annulus in M. Again, by Remark 6.4 and the
arguments of Section 2, we may restrict ourselves to rotationally symmetric curves.
One has from Lemmas 6.10 and 6.12 that, in Ma Mr, t is uniformly quasi-
isometric to [tl2tl-2j/)lz1-4t1-/), where z is the local coordinate about the node. It
is easy to see that the isoperimetric quotient is bounded away from zero for this
metric as well. This completes the proof of Proposition 6.14.

It remains to prove Theorem C in the case of degeneration to a separating node
where both surfaces have the same genus j 9/2.

LEMMA 6.16. Let [ be degenerating to a separating node where the surfaces MI,
ME both have genus g/2. Let Pt denote the Arakelov metric on Mr. Then

tl-X/zp,(z) p(z)(G(z,

uniformly on compact subsets of Mi\{pi}. Here, pi is the Arakelov metric of Mi.

Proof. This is just equation 8.1 of [W].

LEMMA 6.17. Let At Area(Mr, Pt). Then

At O(Itl x/2 logltl).

Proof. That this naive guess is correct follows from the explicit expression,
Proposition 6.9, and Lemmas 6.10, 6.11 and 6.12. (The proofs ofthese did not depend
on j < 9/2.) Note especially the "extra" factor of [tl m in Lemma 6.11, part (i).

Proof of Theorem C, part (ii). Fix a 6 > 0. Then for small Itl we construct a
family of interpolating metrics/t as in Section 5, satisfying

1. /t 3t on the complement of the pinching annulus {z[ Izl < ) in local coordi-
nates about the node;

2. [t,(z) (-logltl)-Xlzl -z for Izl < 6/2;
3. supo/2<lzl<o(-logltl[tt(z))is bounded independently of t.
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Then by Lemmas 6.16 and 6.17 (and their proofs) we can find an L > 0, independent
of t, such that for - 0

L-1/t < fit < Lfi,

on all of Mr. By Theorem 5.6, Spec(A,) is bounded above and below by Spec(Aa,).
The region (zllzl < /2} is a flat cylinder with respect to /t, and its spectrum
becomes dense in [0, +) as 0. (See Section 5.) On the complement ofthe region,
we can, by assumption 1 above and Lemma 6.16, rescale by a factor of -logltl
to obtain a smoothly converging metric with converging spectrum. Hence, the
Dirichlet and Neumann spectra for fit diverge on this piece. The proof now follows
from monotonicity.
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