General

Lectures

Home



MATH 632 , Fall 2020: Notes and Summary

Lecture Date What was covered Notes Textbook Section (R=Rudin; S I.=Simon vol.1; S IV. = Simon vol.4; RS=Reed and Simon - vol.1)
1 Sep. 1 Metric Spaces CourseOverview , L1 (RS) I.2
2 Sep. 3 Normed Vector Spaces, Hilbert Spaces L2, get homework 1 (RS)I.2, II.1
3 Sep. 8 Projection to closed convex subsets of Hilbert spaces; Normed vector space of bounded opeartors between NVS L3
4 Sep. 10 Riesz Representation Theorem for Hilbert Spaces L4, homework 1 due (RS) II.2
5 Sept.15 Duality, ONB L5 (RS) II.2, II.3
6 Sept.17 Convexity: Hahn-Banach (real case) L6 (S I.) 5.5
7 Sept.22 Complex Hahn-Banach; Double Dual homework 2 due, L7 (S I.) 5.5
8 Sept.24 Topological spaces. Dual topologies L8 (R I.) 5.7, (RS) VI.1
9 Sept.29 Baire Category Theorem L9 (RS) III.5
10 Oct. 1 Banach-Steinhaus Thm, Open Mapping Theorem L10 (RS)III.5
11 Oct. 6 Inverse Mapping Theorem, Lower Bound Theorem, Closed Graph Theorem, L11 (RS) III.4
12 Oct. 8 Spectrum of operators. Compact operators. L12 (S I.)5.1, (S IV.)3.1, (RS)VI.3
13 Oct.13 Compact Operators (2) L13, homework 3 due (R) 4.18, 4.19
14 Oct.15 Compact Operators (3). Weak compactness of closed unit ball in Hilbert spaces. L14 (RS)VI.5
15 Oct.20 Spectral Theorem for Compact Operators (1) L15 (RS) VI.5
16 Oct.22 SVD for compact operators L16
17 Oct.27 Schatten Classes of Compact Operators L17 (RS) VI.5
18 Oct.29 Banach Algebras L18 (S IV)6.1
19 Nov. 3 Gelfand's Formula L19, HW4 due (Nov. 4) (S IV)6.2
20 Nov. 5 Holomorphic Calculus (1) L20 , pick-up mid-term exam (S IV)2.3
21 Nov. 10 Holomorphic Calculus (2) L21, return the mid-term exam, pick HW5 (S IV)2.3
22 Nov. 12 Holomorphic Calculus (3)   L22 (S IV) 2.3
23 Nov.17 Fredholm Alternative L23 (S IV) 2.3
24 Nov.19 Operators on Hilbert Spaces L24, HW5 due (S IV) 2.4
25 Nov.24 Square Root Lemma L25, pick HW6 (S IV) 2.4
- Nov.26 THANKSGIVING BREAK NO CLASS
26 Dec. 1 Polar Decomposition L26
27 Dec. 3 Spectral Calculus: Resolution of Identity. Continuous Functional Calculus L27, HW6 due (S IV) 5
28 Dec. 8 Spectral Calculus: Borel Functional Calculus (1) L28 (S IV) 5
29 Dec. 10 Spectral Calculus: Borel Calculus (2) L29 (S IV) 5
- Dec.16  FINAL EXAM Online Online