
IDEAL TRIANGLES IN EUCLIDEAN BUILDINGS
AND BRANCHING TO LEVI SUBGROUPS

THOMAS J. HAINES, MICHAEL KAPOVICH, JOHN J. MILLSON

Abstract. Let G denote a connected reductive group, defined and split over Z, and

let M ⊂ G denote a Levi subgroup. In this paper we study varieties of geodesic

triangles with fixed vector-valued side-lengths α, β, γ in the Bruhat-Tits buildings

associated to G, along with varieties of ideal triangles associated to the pair M ⊂ G.

The ideal triangles have a fixed side containing a fixed base vertex and a fixed infinite

vertex ξ such that other infinite side containing ξ has fixed “ideal length” λ and

the remaining finite side has fixed length µ. We establish an isomorphism between

varieties in the second family and certain varieties in the first family (the pair (µ, λ)

and the triple (α, β, γ) satisfy a certain relation). We apply these results to the study

of the Hecke ring of G and the restriction homomorphism R(Ĝ) → R(M̂) between

representation rings. We deduce some new saturation theorems for constant term

coefficients and for the structure constants of the restriction homomorphism.

1. Introduction

Let G be a connected reductive group, defined and split over Z, and fix a split

maximal torus T also defined over Z. Let Ĝ = Ĝ(C) denote the Langlands dual group

of G, and let R(Ĝ) denote its representation ring. Let HG denote the (spherical)

Hecke ring associated to G(Fq((t))), as described in section 2. The goal of this paper

is to understand various connections between the rings HG and R(Ĝ). Both come

with bases and associated structure constants mα,β(γ), nα,β(γ) parameterized by the

same set, namely triples α, β, γ of G-dominant elements of the cocharacter lattice of T .

Moreover, given any Levi subgroup M ⊂ G, we have the constant term homomorphism

cGM : HG → HM

and the restriction homomorphism

rGM : R(Ĝ)→ R(M̂);

cf. section 2. Assuming M contains T , both maps can be described by collections of

constants cµ(λ) and rµ(λ), where µ resp. λ ranges over the G-dominant resp. M -

dominant cocharacters of T ; cf. loc. cit. In this paper we are studying connections

between entries appearing in the following table.
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Table 1. Constants associated to H and R

cµ(λ) rµ(λ)

mα,β(γ) nα,β(γ)

The connection between the entries in the bottom row was studied in [KLM3] and

[KM2]. In this paper we will establish connections between the entries in the top row,

the entries in the first column and the entries in the second column. As a corollary we

will establish saturation results for the entries in the top row.

It was established in [KLM3] that mα,β(γ) “counts” the number of Fq-rational points

in the variety of triangles T (α, β; γ) in the Bruhat-Tits building of G(F̄p((t))). Similarly,

fixing a parabolic subgroup P = M ·N with Levi factor M , we will see that cµ(λ) counts

(up to a certain factor depending only on P , q, and λ) the number of Fq-points in the

variety of ideal triangles IT (λ, µ; ξ) with the ideal vertex ξ fixed by P (F̄p((t))) (see

section 2 for the definition). Given λ, µ, we will find a certain range of α, β, γ depending

on λ, µ, so that that the varieties IT (λ, µ; ξ) and T (α, β; γ) are naturally isomorphic

over Fp, thereby providing a geometric explanation for the numerical equalities

(1.1) cµ(λ)q〈ρN ,λ〉|KM,q · xλ| = mα,β(γ)

and

(1.2) rµ(λ) = nα,β(γ).

Here KM,q := M(Fq[[t]]).
Let us state our main results a little more precisely. The equality (1.2) has a short

proof using the Littelmann path models for each side (see section 4), and this proof

gave rise to the definition of the inequality ν ≥P µ (see section 3 for the definition).

Now fix any coweight ν that satisfies this inequality, so that in particular ν + λ will be

G-dominant for any M -dominant cocharacter λ appearing as a weight in V Ĝ
µ . We can

now state our first main theorem (Theorem 3.2).

Theorem 1.1. Suppose µ, λ are as above ν is any auxiliary cocharacter satisfying

ν ≥P µ. Then there is an isomorphism of Fp-varieties

T (ν + λ, µ∗; ν) ∼= IT (λ, µ; ξ).

As detailed in section 9, the number of top-dimensional irreducible components of

T (ν + λ, µ∗; ν) (resp. IT (λ, µ; ξ)) is simply the multiplicity nν+λ,µ∗(ν) (resp. rµ(λ)).

Similarly, in section 10 we show that the number of Fq-points on T (ν + λ, µ∗; ν)

(resp. IT (λ, µ; ξ)) is given by mν+λ,µ∗(ν) (resp. cµ(λ), up to a factor). Thus, Theorem

1.1 implies the numerical equalities (1.1) and (1.2). This is stated more completely in

Theorem 3.3.
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Because of the homogeneity properties of the inequality ν ≥P µ, these equalities

mean that saturation theorems for nα,β(γ) resp. mα,β(γ) imply saturation theorems for

rµ(λ) resp. cµ(λ). The following summarizes part of Corollary 3.4.

Corollary 1.2. The quantities cµ(λ) satisfy a saturation theorem with saturation factor

kΦ, and the quantities rµ(λ) satisfy a saturation theorem with saturation factor k2
Φ.

For the precise formulation of these results we refer the reader to section 3. Since

there are two groups of mathematicians interested in the results of this paper, we will

present both algebraic and geometric interpretations of the concepts and results.

Here are a few words on the relation of this paper to the prior work. In the earlier

works [KLM1], [KLM2], [KLM3], Leeb and the second and third named authors stud-

ied geometric and representation-theoretic problems Q1, Q2, Q3, Q4 (see page 1 of

[KLM3] for the precise formulations). In the present paper we study the analogues of

Q3, Q4 for group pairs (G,M). The problems analogous to Q1, Q2 for group pairs

(G,M) were studied in [BeSj] and [F] respectively. The paper [BeSj] actually studies

the problem for general group pairs G,M , where G is a reductive group and M is any

reductive subgroup.

Let us give an outline of the contents of this article. In section 2 we recall some

standard definitions and notation and we also define the notions of based triangles

and based ideal triangles in the building. In section 3 we state our main results. In

section 4 we give a simple proof of one of main results using Littelmann paths, and

thereby explain the origin of the inequality ν ≥P µ. In section 5 we give a detailed

study of based ideal triangles and the corresponding Busemann functions. We translate

Theorem 3.2 into a statement about retractions and study those retractions in sections

6 and 7; the proof of Theorem 3.2 is given in section 8. The rest of the paper until

section 12 is directed toward the proof of Theorem 3.3. We prove some a priori bounds

on dimensions of the varieties of (ideal) triangles in section 9; these give geometric

interpretations for the numbers nα,β(γ) and rµ(λ) appearing in Theorem 3.3. Section 10

likewise gives necessary geometric interpretations for the quantities mα,β(γ) and cµ(λ).

In section 11 we put the pieces together and prove Theorem 3.3 and Corollary 3.4. In

section 12 we provide some equidimensionality statements which are related to those

given in [Ha2] for fibers of convolution morphisms. Finally, in the Appendix (section

14) we give an alternative, more geometric, proof of the main ingredient in the proof

of Theorem 1.1, namely, the equality of the retractions ρ−ν,∆G−ν and ρKP ,∆M
= bξ,∆M

on each geodesic oz of ∆G-length µ, when ν ≥P µ.
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2. Notation and definitions

2.1. Algebra. In what follows, all the algebraic groups will be over Z. Let G be a

split connected reductive group, and let T ⊂ G be a split maximal torus. Fix a Levi

subgroup M ⊂ G which contains T .

Choose a parabolic subgroup P ⊂ G which has M as a Levi factor. Let P = M ·N
be a Levi splitting. Then choose a Borel subgroup B of G which contains T and is

contained in P . Let U ⊂ B be the unipotent radical of B. We then have N ⊂ U .

Let Φ denote the set of roots for (G, T ), let ΦN denote the set of roots for T appearing

in Lie(N) and let ΦM denote all roots in Φ which belong to M . We let Q(Φ∨) denote

the coroot lattice and and P (Φ∨) the coweight lattice.

The choice of B (resp. BM := B ∩ M) gives a notion of positive (co)root, and

G-dominant (resp. M -dominant) element of A := X∗(T )⊗ R. Let ρ denote1 the half-

sum of the B-positive roots Φ+. Similarly, we define ρN resp. ρM to be the half-sums

of all roots in ΦN resp. positive roots in ΦM . Recall that W , the Weyl group of G,

acts by reflections on A with fundamental domain ∆G which is the convex hull of the

G-dominant coweights. Also, we define ∆M as the convex hull of the M -dominant

coweights, so that ∆G ⊂ ∆M and ∆M is the fundamental domain of WM , the Weyl

group NM(T )/T for M . We let W̃ denote the extended affine Weyl group of G, i.e.,

W̃ = Λ oW , where Λ := X∗(T ).

Given λ ∈ X∗(T ) or X∗(T ), define λ∗ := −w0λ, where w0 ∈ W is the longest element.

Note that ρ∗ = ρ. Set kΦ = lcm(a1, ..., al), where
∑l

i=1 aiαi = θ is the highest root

and αi are the simple roots of Φ. Let 〈·, ·〉 : X∗(T )×X∗(T )→ Z denote the canonical

pairing.

We define Ĝ := Ĝ(C) and, similarly, define M̂ and T̂ . Having fixed the inclusions

G ⊃ M ⊃ T , we can arrange that we also have Ĝ ⊃ M̂ ⊃ T̂ . We will identify X∗(T̂ )

with X∗(T ) and roots of (Ĝ, T̂ ) with coroots of (G, T ).

Let V Ĝ
µ denote the irreducible representation of Ĝ having highest weight µ. Let

Ω(µ) denote the set of T̂ -weights in V Ĝ
µ , i.e., the intersection of the convex hull of W ·µ

1We also use the symbol ρ in the context of retractions of buildings (see section 6) but no confusion

should result from this.
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with the character lattice of T̂ . We shall also think of Ω(µ) as consisting of certain

cocharacters of T .

For µ, λ, α, β, γ ∈ X∗(T̂ ), define

rµ(λ) = dim HomM̂(V M̂
λ , V Ĝ

µ )(2.1)

nα,β(γ) = dim HomĜ(V Ĝ
α ⊗ V Ĝ

β , V
Ĝ
γ ).(2.2)

Let R(Ĝ) denote the representation ring of Ĝ. The numbers nα,β(γ) are the struc-

ture constants for R(Ĝ), relative to the basis of highest weight representations {V Ĝ
α }.

Similarly, the rµ(λ) are the structure constants for the restriction homomorphism

R(Ĝ)→ R(M̂).

Let Fq denote the finite field with q = pn elements (for a prime p), let k denote the

algebraic closure F̄p = F̄q. Define the local function fields L = k((t)) and Lq = Fq((t))
and their rings of integers O = k[[t]] and Oq = Fq[[t]].

Let G := G(L) and Gq := G(Lq), and similarly, we define B,M,N, P, T, U and

Bq,Mq, etc. (Note that in what follows, we will often abuse notation and write G,M,B,

etc., instead of Gq,Mq, Bq, etc. (resp. G,M,B, etc.), letting context dictate what is

meant.)

Set K := G(O) and Kq := G(Oq). These are maximal bounded subgroups of

G = G(L) resp. Gq := G(Lq). Set KM := K∩M , KM,q = KM∩Mq, and KP := N ·KM .

Let HG = Cc(Kq\Gq/Kq) and HM = Cc(KM,q\Mq/KM,q) denote the spherical Hecke

algebras of Gq and Mq respectively (they depend on q, but we will suppress this in our

notation HG). Convolution is defined using the Haar measures giving Kq respectively

KM,q volume 1. For the parabolic subgroup P = MN of G, the constant term homo-

morphism cGM : HG → HM is defined by the formula

cGM(f)(m) = δP (m)−1/2

∫
Nq

f(nm)dn,

for m ∈ Mq. Here, the Haar measure on Nq is such that Nq ∩ K has volume 1.

Further, letting | · | denote the normalized absolute value on Lq, we have δP (m) :=

|det(Ad(m); Lie(N))|. We define in a similar way δB, δBM , cGT , and cMT . If UM := U∩M ,

then we have U = UM N , and so

δB(t) = δP (t)δBM (t)

for t ∈ Tq, and

cGT (f)(t) = (cMT ◦ cGM)(f)(t).
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The map cGT (resp. cMT ) is the Satake isomorphism SG for G (resp. SM for M).

Thus, the following diagram commutes:

(2.3) R(Ĝ)
∼= //

rest.
��

C[X∗(T )]W

incl.
��

HG
SGoo

cGM
��

R(M̂)
∼= // C[X∗(T )]WM HM .

SMoo

Given a cocharacter λ ∈ X∗(T ), we set tλ := λ(t), where t ∈ L is the variable. For

a G-dominant coweight µ, let fGµ = char(Kqt
µKq), the characteristic function of the

coset Kqt
µKq. Let fMλ have the analogous meaning. When convenient, we will omit

the symbols G and M in the notation for fGµ , f
M
µ . For G-dominant coweights α, β, γ

define the structure constants for the algebra HG by

fα ∗ fβ =
∑
γ

mα,β(γ)fγ.

Note that the mα,β(γ) are functions of the parameter q, however we will suppress this

dependence.

For G-dominant µ and M -dominant λ, we define cµ(λ) by

cGM(fGµ ) =
∑
λ

cµ(λ)fMλ

Like the mα,β(γ), the numbers cµ(λ) depend on q, but we will suppress this.

2.2. Definition of based (ideal) triangles in buildings. Let B = BG denote the

Bruhat-Tits building of G. This is a Euclidean building. It is not locally finite, because

L has infinite residue field; however this will cause us no problems. This building has

a distinguished special point o fixed by K. We consider it as the “origin” in the base

apartment A corresponding to T . Later on, we shall need to consider also the base

alcove a in A: it is the unique alcove of A whose closure contains o and which is

contained in the dominant Weyl chamber ∆G.

In what follows, we will sometimes write ∆ in place of ∆G. Recall that the ∆-distance

d∆(x, y) in B is defined as follows. Given x, y ∈ B, find an apartmentA′ ⊂ B containing

x, y. Identify A′ with the model apartment A using an isomorphism A′ → A. Then

project the vector −→xy in A to a vector
−→
λ the positive chamber ∆G ⊂ A, so that x

corresponds to the origin o, the tip of ∆G. Then

d∆(x, y) := λ.

Thus, d∆(x, y) = d∆(y, x)∗. Given a coweight λ ∈ ∆∩Λ and tλ ∈ T , we let xλ := tλ · o,
a point in B. Then d∆(o, xλ) = W ·λ∩∆. For x ∈ B and λ ∈ ∆ we define the λ-sphere
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Sλ(x) = {y ∈ B : d∆(x, y) = λ}. In the case when x = o and λ ∈ ∆ ∩ Λ, we have

Sλ(o) = K · xλ.

Definition 2.1. Given α, β, γ ∈ ∆∩Λ define the space of based “disoriented” triangles

T (α, β; γ) to be the set of triangles [o, y;xγ] with vertices o, y, xγ, so that

d∆(o, y) = α, d∆(y, xγ) = β.

Note that only the point y is varying.

Observe that T (α, β; γ) can be identified with the subset of the usual set of oriented

triangles T (α, β, γ∗) whose final edge is −→xγo. Also, it is easy to see that

T (α, β; γ) = Kxα ∩ tγKxβ∗

under the identification given by the map [o, y;xγ]→ y.

We need to define a variant of the distance function d∆(−,−), where one of the

points is “at infinity” in a particular sense we will presently describe. We let xy denote

the unique geodesic segment in B connecting x to y. We will always assume that such

segments (and all geodesic rays in B) are parameterized by arc-length. We let ∂T itsB
denote the Tits boundary of B, which is a spherical building. The points of ∂T itsB
could be defined as equivalence classes of geodesic rays in B: two rays are equivalent

if they are asymptotic, i.e., are within bounded distance from each other. A ray in B
is denoted xξ where x is its initial point and ξ ∈ ∂T itsB represents the corresponding

point in ∂TitsB.

One says that two rays γ1(t), γ2(t) in B are strongly asymptotic if γ1(t) = γ2(t) for

all sufficiently large t.

Each parabolic subgroup P of G fixes a certain cell in ∂T itsB. In what follows, we

will pick a generic point ξ in that cell. Then P is the stabilizer of ξ in G.

Now assume that M is a Levi factor of the parabolic P corresponding to ξ. By

analogy with the definition of Busemann functions in metric geometry, we will define

vector-valued Busemann functions (normalized at o)

bξ,∆M
: BG → ∆M .

We refer the reader to Section 5 for the precise definition. Intuitively, bξ,∆M
(y) measures

the ∆M -distance from ξ to y relative to the ∆M -distance from ξ to o. A fundamental

property (to be proved in Lemma 5.3) is that

(2.4) bξ,∆M
(y) = λ ⇐⇒ y ∈ KPxλ.

This gives an algebraic characterization of the function bξ,∆M
, and also shows that it

agrees with the retraction ρKP ,∆M
which we define and study in subsection 6.3.
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We can now define the space of based ideal triangles.

Definition 2.2. Fix coweights λ ∈ ∆M , µ ∈ ∆G and a generic point ξ in the face of

∂T itsB fixed by P . Then we define the set of based ideal triangles IT (λ, µ; ξ) to consist

of the triples o, y, ξ, where

d∆(o, y) = µ, bξ,∆M
(y) = λ.

Note that once again, only y is varying.

In other words, in view of (2.4), we have the purely algebraic characterization (proved

in Corollary 5.4)

IT (λ, µ; ξ) = Sµ(o) ∩KP · xλ.

2.3. Affine Grassmannians and algebraic structure of (ideal) triangle spaces.

We need to endow T (α, β; γ) and IT (λ, µ; ξ) with the structure of algebraic varieties

defined over Fp. To do so we will realize them as subsets of the affine Grassmannian.

The affine Grassmannian GrG := G/K will be considered as the k-points of an

ind-scheme defined over Fp. We can identify this with the orbit G · o ⊂ BG. (If G is

semisimple then G · o is contained in the vertex set of BG, in general it is a subset of

the skeleton of the smallest dimension in the polysimplicial complex BG.)

For any G-dominant cocharacter µ, let xµ = tµK/K, a point in GrG. It is well-known

that the closure Kxµ of the K-orbit Kxµ = Sµ(o) in the affine Grassmannian is the

union

Sµ(o) =
∐
µ0�µ

Sµ0(o).

Here µ0 ranges over G-dominant cocharacters in X∗(T ), and the relation µ0 � µ means,

by definition, that µ− µ0 is a sum of positive coroots.

Each Sµ(o) (resp. Sµ(o)) is a projective (resp. quasi-projective) variety of dimension

〈2ρ, µ〉, defined over Fp. Therefore GrG, the union of the projective varieties Sµ(o), is

an ind-scheme defined over Fp.
Now, K is the set of k-points in a group scheme defined over Fp (namely, the positive

loop group L≥0(G)) which acts (on the left) on GrG in an obvious way. The orbits Kxµ
are automatically locally-closed in the (Zariski) topology on GrG, and are defined over

Fp.
Moreover, the group KP = NKM we defined earlier is the k-points of an ind-group-

scheme defined over Fp which also acts on GrG. The orbit spaces KPxλ are neither

finite-dimensional nor finite-codimensional in general, however, since they are orbits

under an ind-group, they are still automatically locally closed in GrG.
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By the above discussion, our spaces of triangles can be viewed as intersections of

orbits inside GrG

T (α, β; γ) = Kxα ∩ tγKxβ∗

IT (λ, µ; ξ) = KPxλ ∩Kxµ

and as such each inherits the structure of a finite-dimensional, locally-closed subvariety

defined over Fp. Thus, it makes sense to count Fq-points on these varieties.

Remark 2.3. The Bruhat-Tits building BGq for the group Gq isometrically embeds

in BG as a sub-building. It is the fixed-point set for the natural action of the Galois

group Gal(k/Fq) on BG. The orbit Gq · o ⊂ BGq can be identified with Gq/Kq and

thus with the set of Fq-points in GrG. Accordingly, the sets of Fq-points in T (α, β; γ)

and IT (λ, µ; ξ) then become spaces of based triangles and based ideal triangles in BGq .
Then “counting” the numbers of triangles in BGq computes structure constants for HG

and (up to a factor) the constant term map cGM . On the other hand, algebro-geometric

considerations are more suitable for the varieties of triangles in GrG ⊂ BG, since the

field k is algebraically closed. Therefore, in this paper (unlike [KLM3]), we almost

exclusively work with the building BG rather than BGq .

3. Statements of results

We fix cocharacters µ ∈ ∆G and λ ∈ ∆M . In order to state our results we need

the following definition. Recall that 〈·, ·〉 : X∗(T )×X∗(T )→ Z denotes the canonical

pairing.

Definition 3.1. Suppose µ, ν ∈ X∗(T ). We write ν ≥P µ if

• 〈α, ν〉 = 0 for all roots α appearing in Lie(M);

• 〈α, ν + λ〉 ≥ 0 for all λ ∈ Ω(µ) and α ∈ ΦN .

Note that this relation satisfies a semigroup property: if ν1 ≥P µ1 and ν2 ≥P µ2,

then ν1 + ν2 ≥P µ1 + µ2. It is also homogeneous: for every integer z ≥ 1, we have

ν ≥P µ⇐⇒ zν ≥P zµ.

Theorem 3.2. Let µ, λ be as above. Then for any cocharacter ν with ν ≥P µ, we have

an equality of subvarieties in GrG

T (ν + λ, µ∗; ν) = tν
(
IT (λ, µ; ξ)

)
.

In particular, the varieties T (ν + λ, µ∗; ν) and IT (λ, µ; ξ) are naturally isomorphic as

Fp-varieties.



10 T. Haines, M. Kapovich, J. Millson

For the next results, recall that kΦ = lcm(a1, ..., al), where
∑l

i=1 aiαi = θ is the

highest root and αi are the simple roots of Φ.

Theorem 3.3. For λ ∈ ∆M , µ ∈ ∆G as above and for any ν with ν ≥P µ, set

α := ν + λ, β := µ∗, γ := ν. Then:

(i) (First column of Table 1)

cµ(λ)q〈ρN ,λ〉|KM,q · xλ| = mα,β(γ).

(ii) (Second column) rµ(λ) = nα,β(γ) = nν,µ(ν + λ).

(iii) (First row)

rµ(λ) 6= 0⇒ cµ(λ) 6= 0⇒ rkΦµ(kΦλ) 6= 0.

Assume now that µ− λ (or, equivalently, λ+ µ∗) belongs to the coroot lattice of G.

Corollary 3.4. i. (Semigroup property for r) The set of (µ, λ) for which rµ(λ) 6= 0 is

a semigroup.

ii. (Uniform Saturation for c)

cNµ(Nλ) 6= 0 for some N 6= 0 ⇒ ckΦµ(kΦλ) 6= 0.

iii. (Uniform Saturation for r)

rNµ(Nλ) 6= 0 for some N 6= 0 ⇒ rk2
Φµ

(k2
Φλ) 6= 0.

In particular, for G of type A, the set of (µ, λ) such that rµ(λ) 6= 0, is saturated.

Remark 3.5. One can improve (using results of [KM1], [KKM], [BK], [S] on saturation

for the structure constants for the representation rings R(Ĝ)) the constants kΦ as

follows:

One can replace kΦ (in ii.) and k2
Φ (in iii.) by:

(a) k = 2 for Φ of type B,C,G2,

(b) k = 1 for Φ of type D4,

(c) k = 2 for Φ of type Dn, n ≥ 6.

Conjecturally (see [KM1]), one can use k = 1 for all simply-laced root systems and

k = 2 for all non-simply-laced.

Remark 3.6. The paper [Ha2] states saturation results and conjectures for the num-

bers mα,β(γ) and nα,β(γ), when α and β are sums of G-dominant minuscule cochar-

acters. Suppose that µ is a sum of G-dominant minuscule cocharacters. Then we

conjecture that the implications in ii. and iii. above hold, where kΦ and k2
Φ are re-

placed by 1.
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4. Relation to Littelmann’s path model

There is a very short proof of Theorem 3.3 (ii) using Littelmann’s path models, and

our discovery of this proof was one of the starting points for this project. It gave rise

to the notion of the inequality ν ≥P µ which plays a key role for us. For this reason,

we present this proof here. A nice reference for the Littelmann path models used here

is [Li].

We will prove the result in the following form: If ν ≥P µ, then rµ(λ) = nν,µ(ν + λ).

Fix µ ∈ ∆G ∩ Λ. Write Bµ for the set of all type µ LS-paths, that is, the set of

all paths in A which result by applying a finite sequence of “raising” resp. “lowering”

operators ei resp. fi to the path −→oµ (the straight-line path from the origin to µ). Note

that each path in Bµ starts at the origin o and lies inside Conv(Wµ), the convex hull

of the Weyl group orbit of µ.

For any x ∈ A, we can consider x+ Bµ, the set of all type µ paths originating at x.

Let Bµ(x, y) denote the set of type µ paths which originate at x and terminate at y.

Now consider λ ∈ ∆M ∩ Λ. The Littelmann path model for rµ(λ) states that

(4.1) rµ(λ) = |Bµ(o, λ) ∩∆M |,

the cardinality of the set of type µ paths originating at o, terminating at λ, and

contained entirely in ∆M .

Now consider any ν ∈ ∆G ∩ Λ such that ν + λ ∈ ∆G. The Littelmann path model

for nν,µ(ν + λ) states that

(4.2) nν,µ(ν + λ) = |Bµ(ν, ν + λ) ∩∆G|

the cardinality of the set of type µ paths originating at ν, and terminating at ν + λ,

and contained entirely inside ∆G.

Now assume ν ≥P µ. This is defined precisely so that we have

ν + (Bµ(o, λ) ∩∆M) = Bµ(ν, ν + λ) ∩∆G.

The equality of the quantities in (4.1) and (4.2) is now obvious. See figure below. �

5. Ideal triangles and vector-valued Busemann functions

5.1. Based ideal triangles with ideal side-length λ and side-length µ. As

promised earlier in this paper we now make precise the definition of vector-valued

Busemann function. Recall that a flat in a building is an isometrically embedded Eu-

clidean subspace. Recall also that we fixed a parabolic subgroup P ⊂ G, with a Levi

subgroup M and a point ξ ∈ ∂T itsB fixed by P , where B = BG. Then we also have an

embedding BM ⊂ BG, where BM splits as the product

BM = F × YM
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• •

•

//

kk

77__44

x−ν o

xλ

λ

ν

λ+ ν
pµ

∆G − ν

∆M

Figure 1. The broken path pµ from o to xλ is an LS path of type µ.

Then the Littelmann bigon with the sides pµ and oxλ yields a Littelmann

triangle with the geodesic sides x−νo, x−νxλ and the broken side pµ.

where F is a flat in B and YM is a Euclidean building containing no flat factors. Pick a

geodesic γ ⊂ F asymptotic to ξ, and oriented so that the subray γ(R+) is asymptotic

to ξ. Then BM = P(γ), the subbuilding which is the parallel set of γ, i.e., the union of

all geodesics which are at bounded distance from γ.

We fix an apartment A in BM containing o; then A necessarily contains F (and,

hence, γ) as well. Let ∆M be a chamber of BM in A with tip o; by our convention set

in section 2, ∆M contains ∆, the chamber of B with the tip o. We note that ∆M splits

as F ×∆′M .

In the case when B has rank one (i.e., is a tree) it is well-known that the correct

notion of the “distance” from a point x ∈ B to a point ξ ∈ ∂T itsB is the value of

the Busemann function bξ(x), normalized to be zero at the base-point o. The usual

Busemann function bξ(x) is defined as follows:

bξ(x) := lim
t→∞

[d(γ(t), x)− d(γ(t), o)].

We note that

bξ(o) = 0.

In what follows we will define a ∆M -valued Busemann function bξ,∆M
(x) (which

should be considered as the ∆M -valued “distance” from ξ to x). Again, we note that

bξ,∆M
will be defined so that

bξ,∆M
(o) = 0.

5.2. The ∆M -valued distance function d̃∆M
on B. Before defining vector-valued

Busemann function, we first introduce a (partially defined) distance function d̃∆M
on

B which extends the function d∆M
defined on BM . We first note that for every x ∈ B

there exists an apartment Aξ ⊂ B containing x, so that ξ ∈ ∂T itsAξ. For every two

apartments Aξ,A′ξ asymptotic to ξ there exists a (typically non-unique) isomorphism

φAξ,A′ξ : Aξ → A′ξ which fixes the intersection Aξ∩A′ξ pointwise. Since this intersection

contains a ray asymptotic to ξ, it follows that the extension of φAξ,A′ξ to the ideal
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boundary sphere of Aξ fixes the point ξ. Thus, the apartments {Aξ} form an atlas

on B with transition maps in W̃M , the stabilizer of ξ in W̃ . (Here we are abusing

the notation and identify an apartment Aξ in B and its isometric parameterization

A → Aξ.) The only axiom of a building lacking in this definition is that not every two

points in B belong to a common apartment Aξ. Nevertheless, for points x, y ∈ B which

belong to some Aξ we can repeat the definition of a chamber-valued distance function

[KLM1]:

d̃∆M
(x, y) = d∆M

(φAξ,A(x), φAξ,A(y)).

In particular, d̃∆M
restricted to BM coincides with d∆M

. Then d̃∆M
is a partially-

defined ∆M -valued distance function on B. As in the case of the definition of ∆-

distance on B, one verifies that d̃∆M
is independent of the choices of apartments and

their isomorphisms. It is clear from the definition that d̃∆M
is invariant under the

subgroup P ⊂ G (but not under G itself).

5.3. The Busemann function bξ,∆M
(x). We are now in position to repeat the defi-

nition of the usual Busemann function.

Pick x ∈ B and let γ′ be a complete geodesic in B containing x and asymptotic to

ξ. Let P(γ′) be the parallel set of γ′. The following simple lemma is critical in what

follows.

Lemma 5.1. There exists t0 such that for all t ≥ t0 we have γ(t) ∈ P(γ′) and,

furthermore, the subray γ([t0,∞)) and the point x belong to a common apartment

A′ ⊂ P(γ′). In particular, A′ contains ξ in its ideal boundary and d̃∆M
(γ(t), x) is

well-defined for t ≥ t0.

Proof. We will give a proof only in the case when B = BG is the Bruhat-Tits building

of a reductive group G over a nonarchimedean valued field, although the statement

holds for general Euclidean buildings as well.

There exists a unipotent element u ∈ G that carries P(γ) to P(γ′) and fixes ξ. Since

u is unipotent and fixes ξ, it also fixes an infinite subray of oξ. So there exists t0
such that γ([t0,∞)) ∈ P(γ′). Now choose an apartment A′ in P(γ′) which contains

x and γ(t0). Since every apartment in P(γ′) contains γ′, we have ξ ∈ ∂T itsA′ and,

consequently, γ(t) ∈ A′ for t ≥ t0. �

We now define bξ,∆M
(x) by

bξ,∆M
(x) := lim

t→∞
[d̃∆M

(γ(t), x)− d̃∆M
(γ(t), o)].

We need to show that the limit on the right-hand side exists. We first claim that for

each t ≥ t0, the difference vector

f(t, x) := d̃∆M
(γ(t), x)− d̃∆M

(γ(t), o)
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is a well-defined element of ∆M , where t0 is as in Lemma 5.1 above. Indeed, by that

lemma, d̃∆M
(γ(t), x) ∈ ∆M is well-defined for t ≥ t0. Next, γ ⊂ F and ∆M = F ×∆′M .

Therefore,

−d̃∆M
(γ(t), o) = −

−−−→
γ(t)o ∈ ∆M .

Hence, by convexity of ∆M , f(t, x) ∈ ∆M .

Lemma 5.2. f(t, x) is constant in t for t ≥ t0.

Proof. Let φA′,A : A′ → A be an isomorphism of apartments as above fixing ξ. Hence

φA′,A(γ(t)) = γ(t) for t ≥ t0 and by definition

d̃∆M
(γ(t), x) = d∆M

(γ(t), x′), t ≥ t0,

where x′ := φA′,A(x). Then

f(t, x) = f(t, x′) = d∆M
(γ(t), x′)− d∆M

(γ(t), o), t ≥ t0.

Accordingly, replacing x by x′ we have reduced to the case where x′, o and γ(t), t ≥ t0
are contained in the apartment A. Now apply an element of the Weyl group of M

(which fixes γ and, hence, γ(t),∀t) to x′ to obtain x′′ ∈ ∆M , so that

−−−→
γ(t)x′′ = d̃∆M

(γ(t), x), t ≥ t0.

The lemma now follows from

f(t, x′) =
−−−→
γ(t)x′′ −

−−−→
γ(t)o =

−→
ox′′,

see figure below.

• • •

•

// //

??__

ξ γ(t) o

x′′

Figure 2. f(t, x′) is constant for t ≥ t0.

�

Lemma 5.3. 1. bξ,∆M
is invariant under KP = NKM .

2. If bξ,∆M
(x) = bξ,∆M

(y) then KPx = KPy.
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Proof. 1. Let u ∈ P be unipotent. Then u not only fixes ξ but, moreover, for every

geodesic ray β : R+ → B asymptotic to ξ, there exists tu so that u(β(t)) = β(t) for all

t ≥ tu. Therefore, by the invariance property of d̃∆M
,

d̃∆M
(x, γ(t)) = d̃∆M

(u(x), u(γ(t))) = d̃∆M
(u(x), γ(t)).

It then follows from the definition of bξ,∆M
that it is invariant under u. The same

argument works for u replaced with k ∈ KM since it suffices to know that (the entire

ray) ρ is fixed by k.

2. For every z ∈ B there exists n ∈ N so that n(z) ∈ BM . Therefore, applying

elements of N to x, y, we reduce the problem to the case when x, y ∈ BM . For such

x, y,

d∆M
(o, y) = bξ,∆M

(y) = bξ,∆M
(x) = d∆M

(o, x).

Therefore, x, y belong to the same KM -orbit. �

This lemma allows us to give a purely algebraic characterization of the space of based

ideal triangles IT (λ, µ; ξ):

Corollary 5.4. IT (λ, µ; ξ) = KPxλ ∩Kxµ = b−1
ξ,∆M

(λ) ∩ Sµ(o).

6. Retractions

6.1. The retractions ρb,A. Attached to any alcove b in an apartmentA is a retraction

ρb,A : BG → A. It is distance-preserving and simplicial. Let us abbreviate it here by ρ.

Recall that this retraction is defined as follows: Pick an apartment A′ ⊂ B containing

alcoves b and x. Then there exists a unique isomorphism of apartments φ : A′ → A

fixing b. Then ρ(x) := φ(x).

We need to review some of the basic properties of ρ. Let x denote any alcove in the

building. Take a minimal gallery joining the base alcove a ⊂ A to x. Let x0 denote the

next-to-last alcove in this gallery. Let F0 denote the codimension one facet separating

x0 from x.

Let c′ := ρ(x0), and let H denote the hyperplane in A which contains ρ(F0) and let

sH denote the corresponding reflection in A. Let c := sH(c′). Assuming we know c′

by induction, what are the possibilities for ρ(x)? To visualize this, we will imagine x0

and F0 as being fixed, and x as ranging over the affine line A1 consisting of the set of

all alcoves x 6= x0 containing F0 as a face. Then one of the following holds:

Position 1 : If b and c′ are on the same side of H, then all x ∈ A1 retract under ρ

onto c;

Position 2 : if b and c′ are on opposite sides of H, then one point in A1 retracts onto

c, and all remaining points of A1 retract onto c′.
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Suppose x ∈ BG is joined to the base alcove a by a gallery corresponding to a reduced

word expression for w ∈ W̃ . It follows from the discussion above that ρb,A(x) ≤ wa

with respect to the Bruhat order ≤ on the set of alcoves in A. (This Bruhat order is

determined by the set of simple affine reflections corresponding to the walls of a.)

Using this, it is not difficult to prove the following statement.

Lemma 6.1. Let x ∈ Kxµ. The ρb,A(x) ∈ Ω(µ).

Finally, the following lemma is obvious.

Lemma 6.2. For any w ∈ W̃ , we have

(6.1) ẇ ◦ ρb,A ◦ ẇ−1 = ρwb,A.

Recall that W̃ = NG(T )(Fp((t)))/T (Fp[[t]]). On the left hand side of (6.1), ẇ denotes

any lift of w in NG(T )(Fp((t))).

6.2. The retractions ρ−ν,∆G−ν. For any ν ∈ X∗(T ), let W−ν denote the finite Weyl

group at x−ν ∈ A, namely, the group generated by the affine reflections in A which fix

the point x−ν . Regard ∆G− ν as the G-dominant Weyl chamber with apex x−ν . Then

consider the retraction

ρ∆G−ν : A → ∆G − ν(6.2)

v 7→ w(v)

where w ∈ W−ν is chosen so that w(v) ∈ ∆G − ν.

Next choose any alcove b ⊂ A with vertex x−ν . Then the composition

ρ∆G−ν ◦ ρb,A : BG → ∆G − ν

is a retraction of the building onto the chamber ∆G − ν. Because of (6.1), it is inde-

pendent of the choice of b. Hence we may set

(6.3) ρ−ν,∆G−ν := ρ∆G−ν ◦ ρb,A.

The following lemma will be useful later.

Lemma 6.3. For any G-dominant cocharacter µ such that ν + µ is also G-dominant,

we have

ρ−1
−ν,∆G−ν(xµ) = (t−νKtν)xµ.

Proof. The special case

(6.4) ρ−1
0,∆G

(xν+µ) = Kxν+µ



Ideal triangles and branching to Levi subgroups 17

is obvious. We have the identities (cf. Lemma 6.2)

t−ν ◦ ρb,A ◦ tν = ρb−ν,A

t−ν ◦ ρ∆G
◦ tν = ρ∆G−ν ,

and these together with the definition (6.3) yield the formula

(6.5) t−ν ◦ ρ0,∆G
◦ tν = ρ−ν,∆G−ν .

Now the desired formula follows from the special case (6.4) above. �

6.3. The retraction ρKP ,∆M
. Recall that for a Borel subgroup B = TU , there is a

corresponding retraction

ρU,A : BG → A
which can be realized as ρb,A for b “sufficiently antidominant” with respect to the

roots in Lie(U). We also have the retraction

ρK,∆G
:= ρ0,∆G

: BG → ∆G

discussed above. We want to define a retraction

ρKP ,∆M
: BG → ∆M

which interpolates between these two extremes, ρU,A and ρK,∆G
.

Before defining ρKP ,∆M
we shall review the construction of a similar retraction ρIP ,A

which was introduced in [GHKR2].

Consider the following two properties of an element ν ∈ X∗(T ):

(i) 〈α, ν〉 = 0 for all roots α ∈ ΦM ;

(ii) 〈α, ν〉 >> 0 for all roots α ∈ ΦN .

We say ν is M-central if (i) holds and and very N-dominant if (ii) holds.

Let aM denote the base alcove in A determined by some set of positive roots Ψ+
M

in M . (For example, we could take Ψ+
M = Φ+

M := Φ+ ∩ ΦM .) This means that aM is

the region of A which lies between the hyperplanes Hα and Hα−1 for every α ∈ Ψ+
M .

Let IM := I ∩M , the Iwahori subgroup of M which corresponds to the alcove aM . Set

IP := N · IM .

Let S be any bounded subset of the building BG.

Lemma 6.4 ([GHKR2]). Consider the following properties of an alcove b ⊂ A:

(a) b ⊂ aM ;

(b) b has a vertex x−ν, where ν is M-central and very N-dominant (depending on

S).

Then the corresponding retractions ρb,A, for b satisfying (a) and (b), all agree on the

set S.
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Proof. By [GHKR2], Lemma 11.2.1, there is a decomposition

G =
∐
w∈W̃

IP w I.

It follows that BG is the union of all translates g−1A, as g ranges over IP . Moreover,

for g ∈ IP , the map g : g−1A → A is a simplicial map fixing the alcove b as long as

b ⊂ aM and b is sufficiently antidominant with respect to N ; it follows that, on g−1A,

the map g : g−1A → A coincides with ρb,A for such b.

To be more precise, for a bounded subset S ⊂ BG let us give a condition (∗S) on

alcoves b such that all retractions ρb,A for b satisfying (∗S) will coincide on S. There

exists a bounded subgroup IS ⊆ IP such that S ⊂ ∪g∈ISg−1A. Let Ib denote the

Iwahori subgroup fixing b. Then condition (∗S) can be taken to be

(∗S) IS ⊂ Ib.

This condition suffices, because if b satisfies (∗S), then ρb,A and g ∈ IS will coincide

as maps g−1A → A, since both are simplicial and fix b. This proves the lemma. �

Denote by ρIP ,A(v) the common value of all retractions ρb,A(v) where b ranges over

a set (depending on v) of alcoves as in the lemma. This defines a retraction

ρIP ,A : BG → A.

As the notation indicates, it depends on the choice of the alcove aM and the parabolic

P = MN . The following result appeared in [GHKR2]. We give a proof for the benefit

of the reader.

Lemma 6.5 ([GHKR2]). Suppose IP is defined using P and aM as above. Then:

(i) For any g ∈ IP , we have ρIP ,A|g−1A = g.

(ii) For any alcove x in A, we have ρ−1
IP ,A(x) = IP x.

Proof. Part (i) follows from the proof of the lemma above. It implies that ρIP ,A is

IP -invariant, in the following sense: thinking of ρIP ,A as a map G/I → W̃ I/I sending

alcoves in BG to those in A, for each w ∈ W̃ , we have

ρ−1
IP ,A(wa) ⊃ IPwa.

But since we have disjoint decompositions

G/I =
∐
w∈W̃

IPwI/I =
∐
w∈W̃

ρ−1
IP ,A(wa),

this containment must actually be an equality. This proves part (ii). �
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We now turn to the variant of interest to us here, namely the retraction ρKP ,∆M

onto the M -dominant Weyl chamber ∆M ⊂ A . Here we recall KM = K ∩M , and

KP = N ·KM ;

Definition 6.6. We define the retraction ρKP ,∆M
: BG → ∆M by setting

ρKP ,∆M
= ρ∆M

◦ ρIP ,A.

Here IP is determined by P = MN and the M -alcove aM defined in terms of some set

of positive roots Ψ+
M for M .

Of course, we need to show that this is indeed independent of the choice of aM .

Lemma 6.7. The retraction ρ∆M
◦ ρIP ,A is independent of the choice of M-alcove aM .

Proof. Fix any bounded set S ⊂ BG. Recall that on S, ρIP ,A can be realized as the

retraction ρb−ν,A, for any M -central and very N -dominant cocharacter ν (depending on

S) and any alcove b whose closure contains o and which is contained in aM . Suppose

a1
M and a2

M are two M -alcoves, and bi ⊂ aiM are two such alcoves. We need to show

that ρ∆M
◦ ρb1−ν,A = ρ∆M

◦ ρb2−ν,A on S.

Let w ∈ WM be such that wa1
M = a2

M . Then by Lemma 6.4, we know already that

ρwb1−ν,A = ρb2−ν,A on S. So, it remains to see that ρ∆M
◦ ρb1−ν,A = ρ∆M

◦ ρwb1−ν,A on

S.

Without loss of generality, we may assume w = sα, the reflection correspond-

ing to a simple root α in the positive system Φ+
M . We claim that ρwb1−ν,A(x) ∈

{ρb1−ν,A(x), w(ρb1−ν,A(x))}. This will imply the lemma.

Denote by F the unique codimension 1 facet in A which separates c1 := b1− ν from

c2 := wb1 − ν. Abbreviate ρci,A by ρi for i = 1, 2.

If x ⊂ A, then both retractions just give x and there is nothing to do. So, assume

x is not contained in A. Choose a minimal gallery x=x0,x1, . . . ,xd, F joining x to F .

The notation means F is a face of xd and d ≥ 0 is the distance d(x, F ) (by definition,

for a facet F , the distance d(x,F) is the minimal number of wall-crossings needed to

form a gallery from x to an alcove y with F ⊂ y).

There are two cases to consider. Assume first that xd is one of the ci. Let us assume

xd = c1 (the other case is similar). Then d(x, c1) = d and d(x, c2) = d + 1. In this

case c2, c1,xd−1, . . . ,x is a minimal gallery joining c2 (and also c1) to x, and it follows

that ρ1(x) = ρ2(x).

Now assume that xd is neither c1 nor c2. Then there are two minimal galleries

c1,xd, . . . ,x c2,xd, . . . ,x
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and xd * A (and hence no xi lies in A; see e.g. [BT], (2.3.6)). Thus these galleries

leave A at F , and by looking at how they fold down onto A under ρ1 and ρ2, we see

that ρ1(x) = w(ρ2(x)).

This proves the claim, and thus the lemma. �

Lemma 6.5(ii) above has the following counterpart. Using Lemma 5.3, we see from

it that ρKP ,∆M
= bξ,∆M

.

Lemma 6.8. For any M-dominant λ ∈ X∗(T ), we have

ρ−1
KP ,∆M

(xλ) = KPxλ.

Proof. First we show that ρKP ,∆M
is KP -invariant; this will show ρ−1

KP ,∆M
(xλ) ⊇ KPxλ.

Choose any M -alcove aM and corresponding Iwahori IM as in the definition of ρKP ,∆M

as ρ∆M
◦ ρIP ,A. We can write KP = KMN = IMWMIMN . By Lemma 6.5(ii), ρIP ,A is

IP -invariant, and so it suffices to show that ρKP ,∆M
is WM -invariant. On a bounded

set S, we realize this retraction as ρ∆M
◦ ρb,A for some alcove b contained in aM and

sufficiently anti-dominant with respect to the roots in ΦN . Now for w ∈ WM and

v ∈ S, we have

ρ∆M
◦ ρb,A(wv) = ρ∆M

(
w(ρw−1b,A(v)) = ρ∆M

◦ ρw−1b,A(v)

using Lemma 6.2 for the first equality. But by Lemma 6.7, the right hand side is

ρKP ,∆M
(v), and the invariance is proved.

Next we show the opposite inclusion. We have

ρ−1
KP ,∆M

(xλ) = ∪w∈WM
ρ−1
IP ,A(wxλ).

By Lemma 6.5(ii), the right hand side is contained in IPWMxλ, which certainly belongs

to KPxλ. This completes the proof. �

We deduce the following interpolation between the Cartan and Iwasawa decomposi-

tions of G:

Corollary 6.9. The map W̃ → G induces a bijection

WM\Λ = WM\W̃/W →̃ KP\G/K.

The next lemma is a rough comparison between the retractions ρKP ,∆M
and ρ−ν,∆G−ν .

(Actually it concerns their restrictions to a given bounded subset S ⊂ BG.) It will be

made much more precise in the next section.

Lemma 6.10. For any bounded set S ⊂ BG, there are elements ν which are M-central

and very N-dominant (depending on S) such that

ρKP ,∆M
|S = ρ−ν,∆G−ν |S.
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Proof. First we remark that for ν which is M -central and very N -dominant, and for

any alcove b having x−ν as a vertex, every point x ∈ ρb,A(S) satisfies

〈α, ν + x〉 > 0

for α ∈ ΦN . Thus the retraction of such an element x into ∆G − ν coincides with its

retraction into ∆M (and both are achieved by applying a suitable element of WM).

The lemma follows from this remark and the definitions. �

7. Sharp comparison of ρKP ,∆M
and ρ−ν,∆G−ν

7.1. Statement of key proposition. The following is the key technical device of this

paper. It is a much sharper version of Lemma 6.10.

Proposition 7.1. Let µ be a G-dominant element of X∗(T ). Suppose ν ≥P µ. Then

(7.1) ρ−ν,∆G−ν |Kxµ = ρKP ,∆M
|Kxµ.

The first lemma deals with the images of the two retractions appearing in Proposition

7.1.

Lemma 7.2. Assume ν ≥P µ. Then the following statements hold.

(a) We have Ω(µ) ∩∆M = Ω(µ) ∩ (∆G − ν).

(b) For λ ∈ ∆M , the intersection KPxλ ∩Kxµ is nonempty only if λ ∈ Ω(µ).

(c) For λ ∈ ∆G − ν, the intersection (t−νKtν)xλ ∩ Kxµ is nonempty only if λ ∈
Ω(µ).

Proof. Part (a) follows easily from the definitions. Part (b) is well-known (cf. [GHKR1],

Lemma 5.4.1). Let us prove (c). Assume λ ∈ ∆G − ν makes the intersection in (c)

nonempty. By Lemma 6.3, we see that xλ lies in ρ−ν,∆G−ν(Kµ). By Lemma 6.1 and

the definition of ρ−ν,∆G−ν , there exists w−ν ∈ W−ν such that w−ν(λ) ∈ Ω(µ). Write

w−ν = t−νwtν for some w ∈ W . Then we see that

(7.2) w(λ+ ν) = w(λ̃) + ν

for some λ̃ ∈ Ω(µ). The equation (7.2) has the same form if we apply any element

w′ ∈ WM to it. By replacing w with a suitable element of the form w′w (w′ ∈ WM),

we may assume the right hand side of (7.2) is M-dominant. But then since ν ≥P µ,

the right hand side is G-dominant. Then w(λ + ν) and λ + ν are both G-dominant,

hence they coincide. This yields λ = w(λ̃); thus λ belongs to Ω(µ), as desired. �

We will rephrase Proposition 7.1 using the following lemma.

Lemma 7.3. Fix a G-dominant cocharacter µ. Then the following are equivalent

conditions on an element ν satisfying ν ≥P µ:
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(i) (t−νKtν)xλ ∩Kxµ = KPxλ ∩Kxµ, for all λ ∈ Ω(µ) ∩∆M ;

(ii) ρ−ν,∆G−ν |Kxµ = ρKP ,∆M
|Kxµ.

Proof. This is immediate in view of Lemmas 6.3, 6.8, and 7.2. �

In a similar way, we have the following result.

Lemma 7.4. The following are equivalent conditions on cocharacters ν1 and ν2 which

satisfy νi ≥P µ for i = 1, 2:

(a) (t−ν1Ktν1)xλ ∩Kxµ = (t−ν2Ktν2)xλ ∩Kxµ for all λ ∈ Ω(µ) ∩∆M ;

(b) ρ−ν1,∆G−ν1|Kxµ = ρ−ν2,∆G−ν2|Kxµ;

(c) ρb1,A(x) ∈ WM(ρb2,A(x)), for x ∈ Kxµ.

Here for i = 1, 2, bi is any alcove having x−νi as a vertex.

As discussed above in the context of ρ−ν,∆G−ν , in proving (c) we are free to use any

alcove having x−νi as a vertex we wish.

Proof. The equivalence of (a) and (b) is clear. The equivalence of (b) and (c) follows

by the same argument which proved Lemma 6.10. �

If (a),(b), or (c) hold, then so does (ii) in Lemma 7.3, by virtue of Lemma 6.10. To

see this, in (b) above, take ν = ν1 and take ν2 ≥P µ sufficiently dominant with respect

to N so that, for S = Kxµ, the conclusion of Lemma 6.10 holds for it.

Thus, the following proposition will imply Proposition 7.1 (and in fact it is equivalent

to Proposition 7.1).

Proposition 7.5. Suppose νi ≥P µ for i = 1, 2. Then

ρ−ν1,∆G−ν1 |Kxµ = ρ−ν2,∆G−ν2|Kxµ.

7.2. Proof of Proposition 7.5. We will prove (c) in Lemma 7.4 holds. We make

particular choices for the bi, namely, we set

bi := w0a− νi

for i = 1, 2, where w0 denotes the longest element in the Weyl group W (so that w0a

is the alcove at the origin which is in the anti-dominant Weyl chamber). Set ρi = ρbi,A
for i = 1, 2. For these choices of bi, we will prove the following more precise fact:

for x ∈ Kxµ, we have ρ1(x) = ρ2(x).

Let x ∈ Kxµ and let a=a0, a1, . . . , ar−1, ar be any minimal gallery in BG joining a to

x (this means that x belongs to the closure of ar and r is minimal with this property).

It is obviously enough for us to prove that

ρ1(ar) = ρ2(ar).
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We will prove this by induction on r. But first, we must formulate an alcove-theoretic

proposition (Proposition 7.6 below). This involves the notion of µ-admissible alcove

(cf. [HN], [KR]). By definition, an alcove in A is µ-admissible provided it can be written

in the form wa for w ∈ W̃ such that w ≤ tλ for some λ ∈ Wµ. Here ≤ is the Bruhat

order on W̃ determined by the alcove a.

The set of µ-admissible alcoves is closed under the Bruhat order on any given apart-

ment: if ar is µ-admissible, and ar−1 precedes ar, then ar−1 is also µ-admissible.

Moreover, if x ∈ Ω(µ), then the minimal length alcove containing x in its closure is

always µ-admissible. These remarks imply that the next proposition suffices to prove

Proposition 7.5.

Proposition 7.6. Suppose a=a0, a1, . . . , ar is any minimal gallery in BG such that, in

an apartment A′ containing this gallery, the terminal alcove ar (and thus every other

alcove ai) is a µ-admissible alcove in A′. Then we have

ρ1(ar) = ρ2(ar).

Proof. We proceed by induction on r. There is nothing to prove for r = 0. Assume

r ≥ 1 and that ρ1(ar−1) = ρ2(ar−1). In particular, if Fr is the face separating ar−1 from

ar, we have ρ1(Fr) = ρ2(Fr). Let H ⊂ A denote the hyperplane containing ρ1(Fr);

write sH for the corresponding reflection in A. Set c′ := ρ1(ar−1) and c = sH(c′).

We now recall the discussion of subsection 6.1. For i = 1, 2, we have

ρi(ar) ∈ {c′, c}.

Following subsection 6.1, we need to show that the alcoves b1 and b2 are simultaneously

in Position 1 (or 2) with respect to c′ and H.

We claim that b1 and b2 are both on the same side of H. To see this, we may assume

H = Hα−k = {p ∈ X∗(T )R | 〈α, p〉 = k}.

for a positive root α. If α ∈ ΦM , then our assertion follows from the fact that b1

and b2 belong to the same “M -alcove” (the anti-dominant one). If α ∈ ΦN , it follows

because νi ≥P µ and because H intersects the set Conv(Wµ). Indeed, let p be a point

in Conv(Wµ) ∩H. Then the condition

〈α, νi + p〉 ≥ 0

implies that

〈α,−νi〉 ≤ k,

which shows that x−ν1 and x−ν2 are on the same side of H, and this suffices to prove

the claim.
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This shows that the bi are simultaneously in Position 1 (or 2) with respect to H

and c′. This is almost, but not quite enough by itself, to show that ρ1(ar) = ρ2(ar).

Position 1 is quite easy to handle (see below). As we shall see, in Position 2, ar could

retract under ρi to either c or c′; we require an additional argument, given below, to

show the two retractions must coincide.

First assume we are in Position 1, that is, bi and c′ are on the same side of H. Then

as in subsection 6.1, we see that ρi(ar) = c for i = 1, 2.

Now assume we are in Position 2, that is, bi and c′ are on opposite sides of H. In

this case it is a priori possible that (say) ρ1(ar) = c while ρ2(ar) = c′. Our analysis

below will show that this cannot happen.

Choose any minimal gallery joining b1 = w0a− ν1 to Fr:

b1 =x0,x1, . . . ,xn

where Fr is contained in the closure of xn (and n is minimal with this property).

Similarly, choose a minimal gallery joining b2 to Fr.

b2 =y0,y1, . . . ,ym.

Further, set b := w0a− ν1 − ν2 and fix two minimal galleries in A

b=u0,u1, . . . ,up=b1

b=v0,v1, . . . ,vq=b2.

It is clear that ρ1 (resp. ρ2) fixes the former (resp. latter).

Claim: The concatenation b, . . . ,b1, . . . ,xn is a minimal gallery. (The same proof

will show that b, . . . ,b2, . . . ,ym is minimal.) This may be checked after applying the

retraction ρ1. But ρ1(b1), . . . , ρ1(xn) is a minimal gallery joining b1 to an alcove of

A contained in the convex hull Conv(Wµ), and consequently this gallery is in the

JP -positive direction (see subsection 7.3 below). The gallery b, . . . ,b1 is also in the

JP -positive direction (and is fixed by ρ1).

It would be natural to hope that the concatenation of two galleries in the JP -positive

direction is always in the JP -positive direction. Then we could invoke Lemma 7.8 below

to prove that b, . . . ,b1 = ρ1(b1) . . . , ρ1(xn) is minimal. But in general it is not true

that the concatenation of two galleries in the JP -direction is also in the JP -positive

direction (think of the extreme case M = G). However, in our situation, because

b, . . . ,b1 lies entirely in the same M -alcove (the anti-dominant one), the concatenation

b, . . . ,b1 = ρ1(b1), . . . ρ1(xn) is nevertheless in the JP -positive direction. Hence the

concatenation b, . . . ,b1, . . . ,xn is minimal. The claim is proved.
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It follows that the concatenations

u0, . . . ,up=x0, . . . ,xn

v0, . . . ,vq=y0, . . . ,ym

are two minimal galleries joining b to Fr. By a standard result (cf. [BT], (2.3.6)), any

two such galleries belong to any apartment that contains both b and Fr. In particular,

xn = ym. Now recall we are assuming that c′, the common value of ρ1(ar−1) and

ρ2(ar−1), is on the opposite side of H from the alcoves bi, and so c is on the same

side of H as the bi. On the other hand, ρ1(xn) and ρ2(ym) are both equal to c, since

that is the alcove sharing the facet ρi(Fr) with c′ but on the same side of H as bi. In

particular, we have ar−1 6= xn.

If ar = xn = ym, then we have ρ1(ar) = c = ρ2(ar). If ar 6= xn, then we have

ρ1(ar) = c′ = ρ2(ar). This completes the proof of Proposition 7.6. �

7.3. Galleries in the JP -positive direction. We define J ⊂ G to be the Iwahori

subgroup corresponding to the “anti-dominant” alcove w0a. Set JM := J ∩M and

JP := N JM . One can think of JP as the subset of G fixing every alcove in A which

is contained in the M -anti-dominant alcove a∗M and which is sufficiently antidominant

with respect to the roots in ΦN .

Now consider any hyperplane Hβ−k (where we assume β ∈ Φ+), and let sH denote

the corresponding reflection in A. We can define its JP -positive side H+
β−k and its

JP -negative side H−β−k, as follows. If β ∈ ΦM , we define H−β−k to be the side of Hβ−k

containing a∗M . If β ∈ ΦN , we define H+
β−k by

x ∈ H+
β−k iff x− sH(x) ∈ R>0β

∨.

Suppose z′ and z are adjacent alcoves, separated by the wall H. We say the wall-

crossing z′, z is in the JP -positive direction provided that z′ ⊂ H− and z ⊂ H+.

Definition 7.7. A gallery z0, z1, . . . , zr is in the JP -positive direction if every wall-

crossing zi−1, zi is in the JP -positive direction.

The following lemma is a mild generalization of Lemma 5.3 of [HN], and its proof is

along the same lines.

Lemma 7.8. Any gallery z0, . . . , zr in the JP -positive direction is minimal.

Proof. Let Hi denote the wall shared by zi−1 and zi. If the gallery is not minimal,

there exists i < j such that Hi = Hj. We may assume the Hk 6= Hi for every k

with i < k < j. By assumption zi−1 ⊂ H−i , and zi ⊂ H+
i . Since we do not cross

Hi again before Hj, we have zj−1 ⊂ H+
j . This is contrary to the assumption that the

wall-crossing zj−1, zj goes from H−j to H+
j . �
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7.4. Triangles in terms of retractions. Set ρ0 := ρ0,∆G
. Then the space of based

triangles T (α, β; γ) can be identified with

ρ−1
0 (xα) ∩ tγρ−1

0 (xβ∗)

since ρ−1
0 (xα) = Sα(o) and tγρ−1

0 (xβ∗) = Sβ∗(xγ).

Now we fix a G-dominant cocharacter µ and an M -dominant cocharacter λ contained

in Ω(µ). Fix a parabolic subgroup P = MN having M as Levi factor. Let ξ ∈ ∂T itsB
be a generic point fixed by P . Then

IT (λ, µ; ξ) := ρ−1
KP ,∆M

(xλ) ∩ ρ−1
0 (xµ)

Note that this space depends only on P but not on ξ. Fix any auxiliary cocharacter

ν which satisfies ν ≥P µ. Then Proposition 7.1 shows that we can also describe this

space as

(7.3) IT (λ, µ; ξ) = ρ−1
−ν,∆G−ν(xλ) ∩ ρ

−1
0 (xµ).

8. Proof of Theorem 3.2

Proof of Theorem 3.2. The desired equality

T (ν + λ, µ∗; ν) = tν
(
IT (λ, µ; ξ)

)
is just the equality

Kxν+λ ∩ tνKxµ = tν
(
KPxλ ∩Kxµ

)
which can obviously be rewritten as

(t−νKtν)xλ ∩Kxµ = KPxλ ∩Kxµ.

But this follows from Proposition 7.1, or more precisely from its equivalent version,

the equality stated in Lemma 7.3(i). �

9. On dimensions of varieties of triangles

9.1. Based triangles. Let α, β, γ ∈ ∆G ∩Λ. Assume that α+ β − γ ∈ Q(Φ∨), which

is a necessary condition for T (α, β; γ) to be nonempty. It is clear that

T (α, β; γ) = Kxα ∩ tγKxβ∗ ,

and, as we explained earlier, this shows that T (α, β; γ) has the structure of a finite-

dimensional quasi-projective variety defined over Fp.
It also shows that we can identify T (α, β; γ) with a fiber of the convolution morphism

mα,β : Sα(o) ×̃ Sβ(o)→ Sα+β(o).

Here

Sα(o)×̃Sβ(o) := {(y, z) ∈ B2 : y ∈ Sα(o), z ∈ Sβ(y)}.
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By definition, mα,β(y, z) = z. It follows that

T (α, β; γ) = m−1
α,β(xγ).

We have the following a priori bound on the dimension of the variety of triangles.

Proposition 9.1. Recall that ρ denotes the half-sum of the positive roots Φ+. Then

dim T (α, β; γ) ≤ 〈ρ, α + β − γ〉.

Moreover, the number of irreducible components of T (α, β; γ) of dimension 〈ρ, α+β−γ〉
equals the multiplicity nα,β(γ).

Proof. This can be proved using the Satake isomorphism and the Lusztig-Kato formula,

following the method of [KLM3], §8.4. Alternatively, one can invoke the semi-smallness

of mα,β and the geometric Satake isomorphism, see [Ha1, Ha2]. Compare [Ha1], The-

orems 1.1 and Proposition 1.3. �

9.2. Based ideal triangles. Fix µ ∈ ∆G ∩ Λ and λ ∈ ∆M ∩ Λ, and assume µ− λ ∈
Q(Φ∨), which is a necessary condition for IT (µ, λ; ξ) to be nonempty.

As for the variety of based triangles T (α, β; γ), we want to give an a priori bound on

the dimension of IT (λ, µ; ξ) and also give a relation between its irreducible components

and the multiplicity rµ(λ).

The key input is the following analogue of Proposition 9.1 for the intersections of N -

and K-orbits in GrG. It is proved by considering (2.3) and manipulating the Satake

transforms and Lusztig-Kato formulas for G and M , in a manner similar to [KLM3],

§8.4.

We set F := Nxλ∩Kxµ, a finite-type, locally-closed subvariety of GrG, defined over

Fp.

Proposition 9.2 ([GHKR1]). Let ρM denote the half-sum of the roots in Φ+
M . Then

dimF ≤ 〈ρ, µ+ λ〉 − 2〈ρM , λ〉,

and the multiplicity rµ(λ) equals the number of irreducible components of F having

dimension equal to 〈ρ, µ+ λ〉 − 2〈ρM , λ〉.

The link between the dimensions of F = Nxλ ∩Kxµ and IT = KPxλ ∩Kxµ comes

from the following relation between these varieties. To state it, we first recall that the

Iwasawa decomposition

G = N M K

determines a well-defined set-theoretic map

G/K →M/KM

nmkK 7→ mKM
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We warn the reader that this is not a morphism of ind-schemes GrG → GrM ; however,

when restricted to the inverse image of an connected component of GrM , it does induce

such a morphism. (Our reference for these facts is [BD], especially sections 5.3.28—

5.3.30.) Since any KP -orbit belongs to such an inverse image, the following lemma

makes sense.

Lemma 9.3. The map nmk 7→ mKM induces a surjective, Zariski locally-trivial fibra-

tion

π : KPxλ ∩Kxµ → KMxλ

whose fibers are all isomorphic to Nxλ ∩Kxµ.

Proof. Let Kλ
M = (tλKM t

−λ) ∩ KM denote the stabilizer of xλ in KM . The essential

point is that the morphism f : KM → KM/K
λ
M is a locally trivial principal fibration

according to [Ha2, Lemma 2.1]. Next note that since π is KM -equivariant, it suffices

to trivialize π over a neighborhood V of xλ. According to the result of loc. cit. there

exists a Zariski open neighborhood V ⊂ KM/K
λ
M of xλ and a section s : V → KM of

f |f−1(V ). Hence for x′ ∈ V we have

s(x′)xλ = x′.

We will now prove that the induced map π : π−1(V )→ V is equivariantly equivalent to

the product bundle V ×F → V where F = Nxλ ∩Kxµ. Indeed, define Φ : π−1(V )→
V ×F by

Φ(x) = (π(x), s(π(x))−1x).

Put π(x) := x′. Note that Φ does indeed map to V ×F because (from the equivariance

of π) we have

π(s(π(x))−1x) = s(π(x))−1π(x) = s(x′)−1x′ = xλ.

Now define Ψ : V ×F → π−1(V ) by

Ψ(x′, u) = s(x′)u.

Clearly Φ and Ψ are algebraic because s and π are. The reader will verify that Φ and

Ψ are mutually inverse. �

Since KMxλ is irreducible of dimension 2〈ρM , λ〉, we immediately deduce the follow-

ing proposition from Proposition 9.2 and Lemma 9.3. It is an analogue of Proposition

9.1 for the ideal triangles.

Proposition 9.4. We have the inequality

dim IT (λ, µ; ξ) ≤ 〈ρ, µ+ λ〉,

and the number of irreducible components of IT (λ, µ; ξ) having dimension equal to

〈ρ, µ+ λ〉 is the multiplicity rµ(λ).
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Remark 9.5. The structure group of the fiber bundle π : KPxλ ∩ Kxµ → KM/K
λ
M

is Kλ
M in the following sense. Choose trivializations Ψ1 : V × F → π−1(V ) and

Ψ2 : V ×F → π−1(V ) determined by sections s1 and s2 as above. Since s1 and s2 are

KM -valued functions on V we may define a new KM -valued function k(x′) on V by

k(x′) = s1(x′)−1s2(x′). Hence, there exists a morphism k : V → Kλ
M with

s2(x′) = s1(x′)k(x′).

It is then immediate that

Ψ−1
1 ◦Ψ2(x′, u) = (x′, k(x′)u).

10. Geometric interpretations of mα,β(γ) and cµ(λ)

The above section gave the geometric interpretations of the numbers nα,β(γ) and

rµ(λ), by describing them in terms of certain irreducible components of the varieties

T (α, β; γ) and II(λ, µ; ξ). The purpose of this section is to give similar geometric

interpretations for mα,β(γ) and cµ(λ). This will be used to deduce Theorem 3.3 from

Theorem 3.2.

10.1. Hecke algebra structure constants. By applying Theorem 8.1 and Lemma

8.5 from [KLM3], and taking into account that |Sλ(o)(Fq)| = |Sλ∗(o)(Fq)|, we see that

Lemma 10.1. mα,β(γ) = |T (α, β; γ)(Fq)|.

10.2. The constant term. The goal of this subsection is to give a geometric inter-

pretation of the constants cµ(λ). Fix the weights λ ∈ ∆M , µ ∈ ∆G. In what follows we

temporarily abuse notation and write G,K,M etc., in place of Gq, Kq,Mq, etc. The

following lemma comes from integration in stages according to the Iwasawa decompo-

sition G = KNM .

Lemma 10.2. We have

|Nxλ ∩Kxµ| = q〈ρN ,λ〉cGM(fµ)(tλ) = q〈ρN ,λ〉cµ(λ).

Proof. The Iwasawa decomposition G = KNM gives rise to an integration formula,

relating integration over G to an iterated integral over the subgroups K, N , and M ,

where if Γ is any of these unimodular groups, we equip Γ with the Haar measure which

gives Γ ∩K volume 1. For a subset S ⊂ G, write 1S for the characteristic function of

S. Using the substitution y = knm in forming the iterated integral, the left hand side
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above can be written as∫
G

1NK(t−λy)1KtµK(y)dy =

∫
G

1NK(t−λy−1)1KtµK(y−1) dy

=

∫
M

∫
N

∫
K

1NK(t−λm−1n−1k−1)1KtµK(m−1n−1k−1) dk dn dm

=

∫
M

∫
N

1NK(m−1n−1)1KtµK(tλm−1n−1) dn dm

=

∫
M

∫
N

1NK(m)1KtµK(tλmn) dn dm

=

∫
N

1KtµK(tλn) dn

= δ
−1/2
P (tλ)cGM(fµ)(tλ),

which implies the lemma since δ
1/2
P (tλ) = q−〈ρN ,λ〉. �

Now we return to the previous notational conventions, where we distinguish between

G,K,M etc. and Gq, Kq,Mq, etc.

Set

I := IT (λ, µ; ξ),

τλµ = |IT (λ, µ; ξ)(Fq)|,

iλ,q := |KM,q : Kλ
M,q|,

where Kλ
M is the stabilizer of xλ in KM and Kλ

M,q := KM,q ∩Kλ
M . In other words, iλ,q

is the cardinality of the orbit KM,q(xλ), and in particular, it is finite. Recall also that

F = Fλµ := Nxλ ∩Kxµ.

By Lemma 9.3 the variety I fibers over KM/K
λ
M = KM(xλ) with fibers isomorphic

to F via the map f which is the restriction of the N -orbit map on NKMxλ to I. In

particular,

|I(Fq)| = iλ,q|F(Fq)|.

It is proved in Lemma 10.2 that

|F(Fq)| = q〈ρN ,λ〉cGM(fµ)(tλ) = q〈ρN ,λ〉cµ(λ).

Set

ϕ(λ, q) :=
1

q〈ρN ,λ〉iλ,q
.

By combining Lemma 10.2 with Lemma 9.3, we obtain the following geometric inter-

pretation of cµ(λ):
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Corollary 10.3.

cµ(λ) = q−〈ρN ,λ〉|F(Fq)| = ϕ(λ, q)τλ,µ = ϕ(λ, q)|IT (λ, µ; ξ)(Fq)|.

11. Proofs of Theorem 3.3 and Corollary 3.4

Proof of Theorem 3.3.

(i) Since ν ≥P µ, by Theorem 3.2, the Fp-varieties T (α, β; γ) = T (ν + λ, µ∗; ν) and

IT (λ, µ; ξ) are isomorphic. Since the cardinalities of their sets of Fq-rational points

are mα,β(γ) and

cµ(λ)q〈ρN ,λ〉|KM,q · xλ|

respectively (see Lemma 10.1 and Corollary 10.3), we conclude that

mα,β(γ) = cµ(λ)q〈ρN ,λ〉|KM,q · xλ|.

(ii) We now prove the equality rµ(λ) = nν,µ(ν + λ). First, it is well-known that

nν,µ(ν + λ) = nν+λ,µ∗(ν). Next, by Proposition 9.1, nλ+ν,µ∗(ν) is the number of irre-

ducible components of T (λ+ ν, µ∗; ν) of dimension

〈ρ, λ+ ν + µ∗ − ν〉 = 〈ρ, λ+ µ〉.

On the other hand, by Proposition 9.4, rµ(λ) is the number of irreducible components

of IT (λ, µ; ξ) of dimension 〈ρ, λ+µ〉. Since T (λ+ ν, µ∗; ν) ∼= IT (λ, µ; ξ), the equality

follows.

(iii) Consider the implication

rµ(λ) 6= 0⇒ cµ(λ) 6= 0.

Set α = ν + λ, β = µ∗, and γ = ν. Using parts (i) and (ii), the implication is

equivalent to the implication

nα,β(γ) 6= 0⇒ mα,β(γ) 6= 0.

Now if nα,β(γ) 6= 0, then by Proposition 9.1 the variety T (α, β; γ) is nonempty and so

|T (α, β; γ)(Fq)| 6= 0 for all q >> 0. But the Hecke path model for T (α, β; γ) then shows

that |T (α, β; γ)(Fq)| 6= 0 for all q (cf. [KLM3], Theorem 8.18). Thus mλ,β(γ) 6= 0.

Consider next the implication

cµ(λ) 6= 0⇒ rkµ(kλ) 6= 0

for k := kΦ. If cµ(λ) 6= 0 then mλ+ν,µ∗(ν) 6= 0 for ν ≥P µ as above. By [KM2],

mλ+ν,µ∗(ν) 6= 0⇒ nk·(λ+ν),k·µ∗(k · ν) 6= 0.
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Since the inequality ≥P is homogeneous with respect to multiplication by positive

integers, we get

kν ≥P kµ.
Therefore,

nk·(λ+ν),k·µ∗(k · ν) = rkµ(kλ).

This concludes the proof of Theorem 3.3. �

Proof of Corollary 3.4.

Assume that µ− ν ∈ Q(Φ∨G).

i. (Semigroup property for r). Suppose (λi, µi) ∈ (∆M ∩Λ)× (∆G∩Λ) are such that

rµi(λi) 6= 0 for i = 1, 2. For each i, choose νi with νi ≥P µi. If we set αi := νi + λi,

βi := µ∗i , and γi = νi, for i = 1, 2, then Theorem 3.3(ii) gives us

nαi,βi(γi) = rµi(λi) 6= 0.

It is well-known that the triples (α, β, γ) with nα,β(γ) 6= 0 form a semigroup, so we have

nα1+α2,β1+β2(γ1+γ2) 6= 0. By the semigroup property of ≥P , we have ν1+ν2 ≥P µ1+µ2,

so Theorem 3.3(ii) applies again and implies

nα1+α2,β1+β2(γ1 + γ2) = rµ1+µ2(λ1 + λ2).

The result is now clear.

ii. (Uniform Saturation for c). Consider the implication

cNµ(Nλ) 6= 0 for some N 6= 0 ⇒ ckΦµ(kΦλ) 6= 0.

As above, take ν ≥P µ and set α := ν + λ, β := µ∗, γ := ν. Then (with some positive

factors Const1, Const2)

cµ(λ) = Const1 ·mα,β(γ), cNµ(Nλ) = Const2 ·mNα,Nβ(Nγ).

Note that our assumption µ− λ ∈ Q(Φ∨) is equivalent to λ+ µ∗ ∈ Q(Φ∨) and thus to

α + β − γ ∈ Q(Φ∨). Now the implication follows from the uniform saturation for the

structure constants m for the Hecke ring HG proved in [KLM3].

iii. (Uniform Saturation for r). Consider the implication

rNµ(Nλ) 6= 0 for some N 6= 0 ⇒ rk2µ(k2λ) 6= 0

for k := kΦ. Similarly to (ii), this implication follows from the implication

nNα,Nβ(Nγ) 6= 0 for some N 6= 0 ⇒ nk2α,k2β(k2γ) 6= 0

proved in [KM2]. Since for type A root systems Φ, kΦ = 1, it follows that the semigroup

{rµ(λ) 6= 0}, is saturated. �
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12. Remarks on equidimensionality

When computing the dimensions of various varieties, we may just as well work over

the algebraic closure k = Fp of Fp. We will also consider all the following schemes and

ind-schemes with reduced structure, as this has no effect on dimension questions.

By [Ha2], we know that when α and β are sums of minuscule cocharacters, then the

variety T (α, β; γ) is either empty, or it is equidimensional of dimension 〈ρ, α+ β − γ〉.
Here we present some analogous results for IT (λ, µ; ξ).

Corollary 12.1. Let G = GLn. Then IT (λ, µ; ξ) = NKMxλ∩Kxµ (resp. Nxλ∩Kxµ)

is either empty or it is equidimensional of dimension 〈ρ, µ + λ〉 (resp. 〈ρ, µ + λ〉 −
2〈ρM , λ〉).

Proof. All coweights for GLn are sums of minuscules. So for any choice of ν with

ν ≥P µ, the cocharacters α = ν + λ and β = µ∗ are sums of G-dominant minus-

cule cocharacters. Hence the result for IT (λ, µ; ξ) follows using Theorem 3.2 and the

equidimensionality of T (ν + λ, µ∗; ν) proved in [Ha2]. The statement on Nxλ ∩Kxµ
follows from the statement on IT (λ, µ; ξ) using Lemma 9.3. �

With more work, one can show the following stronger result.

Proposition 12.2. Let G be arbitrary and suppose µ is a sum of minuscule G-

dominant cocharacters. Then the conclusion of Corollary 12.1 holds for the pair (µ, λ).

Consequently, we have rµ(λ) 6= 0⇔ cµ(λ) 6= 0.

Unlike Corollary 12.1, this is not a direct application of [Ha2]. It would be in the

situation where we can find ν such that ν ≥P µ and such that ν + λ is a sum of

minuscules. However, there is no guarantee we can find ν with such properties in

general.

This proposition is a special case of a more general result. For λ ∈ ∆M and µ ∈ ∆G

we set

Qµ = Kxµ

SNλ = Nxλ.

These are finite-type Fp-varieties which are locally closed in the affine Grassmannian

GrG.

Theorem 12.3. Let µ be a sum of minuscule G-dominant cocharacters. Suppose the

variety SNλ ∩Qµ is non-empty, and let C ⊂ SNλ ∩Qµ be an irreducible component whose

generic point belongs to the stratum Qν ⊂ Qµ, for a G-dominant coweight ν ≤ µ. Then

dim(C) = 〈ρ, ν + λ〉 − 2〈ρM , λ〉.
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In particular, SNλ ∩Qµ is either empty, or it is equidimensional with dimension equal

to 〈ρ, µ+ λ〉 − 2〈ρM , λ〉.

We will prove this theorem in the following section.

13. Proof of Theorem 12.3

13.1. Proof of Theorem 12.3 for SNwµ ∩ Qµ. In this subsection µ will denote an

arbitrary G-dominant coweight, but now we assume λ = wµ for some w ∈ W . We

continue to assume that λ = wµ is M -dominant (this puts some restrictions on w

which we shall not need to use).

It is easy to prove the following generalization of a result of Ngô and Polo [NP],

Lemma 5.2.

Proposition 13.1. [NP] The map n 7→ nxwµ gives an isomorphism of varieties

∏
α∈Φ+

wα∈ΦN

〈α,µ〉−1∏
i=0

Uwα,i −̃→ SNwµ ∩Qµ,

where ΦN is the set of B-positive roots in Lie(N), and Uβ,i is affine root group con-

sisting of the set of elements of form uβ(xti) (x ∈ Fp), where uβ : Ga → G is the

homomorphism determined by the root β, and where i ∈ Z.

In particular, we see that SNwµ ∩Qµ is just an affine space of dimension

dim(SNwµ ∩Qµ) =
∑
α∈Φ+

wα∈ΦN

〈α, µ〉

=
∑

α∈Φ+∩w−1Φ+

〈α, µ〉 −
∑

α∈Φ+∩w−1Φ+
M

〈α, µ〉

= 〈ρ, µ+ wµ〉 −
∑

β∈wΦ+∩Φ+
M

〈β, wµ〉,

where Φ+
M is the BM -positive roots in M . We have used the identity∑

α∈Φ+∩w−1Φ+

α = ρ+ w−1ρ

in simplifying the first sum in the second line.

Now note that the inclusion wΦ+ ∩ Φ+
M ⊆ Φ+

M and the M -dominance of wµ show

that in any event ∑
β∈wΦ+∩Φ+

M

〈β, wµ〉 ≤ 2〈ρM , wµ〉,
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and thus

dim(SNwµ ∩Qµ) ≥ 〈ρ, µ+ wµ〉 − 2〈ρM , wµ〉.
But by the dimension estimate in Proposition 9.2 this inequality is an equality, and we

get the following result.

Proposition 13.2. Assume wµ is M-dominant. Then
∑

β∈wΦ+∩Φ+
M
〈β, wµ〉 = 2〈ρM , wµ〉,

and

SNwµ ∩Qµ ∼= A〈ρ,µ+wµ〉−2〈ρM ,wµ〉.

Note that SNwµ ∩ Qµ is irreducible in this case. If µ is minuscule, then any element

λ ∈ Ω(µ) is of the form λ = wµ for some w ∈ W . Thus Proposition 13.2 proves

Theorem 12.3 for µ minuscule.

13.2. Some morphisms between affine Grassmannians. In the following we find

it convenient to change some of our earlier notations. Let ∗ (resp. ∗M) denote the

obvious base-point in the affine Grassmannian Q = G/K (resp. QM = M/KM).

Recall (section 9.2), the Iwasawa decompostion G = NMK gives rise to a well-defined

set-theoretic map

π : G/K →M/KM

nm∗ → m ∗M .

Recall that if c denotes a connected component of the ind-scheme QM , then (G/K)c :=

π−1(c) ⊂ G/K is a locally-closed sub-ind-scheme, and the restricted map

π : (G/K)c →M/KM

is a morphism of ind-schemes. The upshot is that in the discussion below, all mor-

phisms we will define set-theoretically using the Iwasawa decomposition are actually

morphisms of (ind-)schemes.

For an r-tuple of G-dominant coweights µi, we have the twisted product

Q̃µ• := Qµ1×̃ · · · ×̃Qµr ⊂ Qr

a finite-dimensional projective variety whose points are r-tuples (g1∗, . . . , gr∗) such that

for each i = 1, . . . , r,

g−1
i−1gi∗ ∈ Qµi ,

where by convention g0 = 1.

Projection onto the last factor (g1∗, . . . , gr∗) 7→ gr∗, gives a projective birational

morphism

mµ• : Q̃µ• → Q|µ•|,
where by definition |µ•| =

∑
i µi.
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It is a well-known fact due to Mirković-Vilonen [MV1],[MV2] that mµ• is semi-small

and locally trivial in the stratified sense (cf. also [Ha2]) . We shall make essential use

of the local triviality, which means that around each y ∈ Qν ⊂ Q|µ•|, there is an open

subset V ⊂ Qν and an isomorphism

m−1
µ• (V ) ∼= V ×m−1

µ• (y)

which commutes with the projections onto V .

13.3. Preliminaries for the proof of Theorem 12.3 in general. We will denote

by πc• any morphism of the form

πr : (G/K)c1 × · · · × (G/K)cr →M/KM × · · · ×M/KM ,

for any suitable family of connected components ci of M/KM . We let πc•,r denote the

composition of such a morphism with the projection onto the last factor of (M/KM)r.

Recall we are assuming µ is a sum of G-dominant minuscule coweights. Let us fix

an r-tuple of G-dominant minuscule coweights µi, i = 1, . . . , r, such that µ = |µ•| :=∑
i µi.

Definition 13.3. For ν• an r-tuple of M -dominant coweights νi with νi ∈ Wµi, we

define σi = (ν1, . . . , νi) and an ind-scheme

SN
σi

= N(KM t
ν1KM · · ·KM t

νiKM)K/K,

and set SN
ν• := SN

σ1
× · · · ×SN

σr . Further, define a scheme

SN
ν• ∩ Q̃µ• = (SN

σ1
× · · · ×SN

σr) ∩ Q̃µ• ,

the intersection being taken in Q×· · ·×Q. Finally, if λ is M -dominant and λ ≤M |ν•|,
then let us define the following scheme

(SN
ν• ∩ Q̃µ•)λ = π−1

c•,r(t
λ∗M) ∩ (SN

ν• ∩ Q̃µ•),

where the sequence of connected components c• is the unique one such that

SN
ν• ⊂ (G/K)c1 × · · · × (G/K)cr .

With this notation, we have the following crucial lemma.

Lemma 13.4. We have an equality of locally-closed subvarieties

m−1
µ• (SNλ ∩Qµ) =

⋃
ν•

(SN
ν• ∩ Q̃µ•)λ.

Here ν• = (ν1, . . . , νr) ranges over all ordered r-tuples of M-dominant coweights with

νi ∈ Wµi for all i, whose sum satisfies λ ≤M |ν•|.
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Proof. Since SNλ ∩Q|µ•| is the fiber over tλ∗M for the restriction of the morphism

π : G/K →M/KM

to Q|µ•|, it is clear that the right hand side is contained in the left. Let (g1∗, . . . , gr∗)
belong to the left hand side. By the Iwasawa decomposition, we may represent g1∗ ∈
Qµ1 as g1∗ = x1m1t

ν1∗, where x1 ∈ N , ν1 ∈ Wµ1 is M -dominant, and m1 ∈ KM .

Further, g−1
1 g2 ∈ Qµ2 , so by the same reasoning we can represent g2∗ by

g2∗ = x1m1t
ν1x2m2t

ν2∗

for some x2 ∈ N , m2 ∈ KM , and ν2 ∈ Wµ2 an M -dominant coweight. Continuing we

finally represent gr∗ in the form

gr∗ = x1m1t
ν1 · · ·xrmrt

νr∗,

where xi ∈ N , mi ∈ KM , and νi ∈ Wµi is M -dominant, for all i. It is immediate that

(g1∗, . . . , gr∗) ∈ (SN
ν• ∩ Q̃µ•)λ. � �

In preparation for the next lemma, let us recall some of the standard notation re-

lating to loop groups over a function field k((t)). Let LG = G(k((t))). Let L≥0G =

G(k[[t]]) (= K), and let L<0G denote the kernel of the homomorphism

G(k[t−1])→ G(k),

determined by t−1 7→ 0. A fundamental fact about the topology of loop groups is that

the multiplication map L<0G× L≥0G→ LG defines open immersions

gL<0G →̃ gL<0G ∗ ⊂ Q;

see [BL].

Now let ν• be as in Lemma 13.4. Then using the above remarks applied to the loop

group LM , one can show that Zariski-locally the twisted product Q̃Mν• = QMν1
×̃ · · · ×̃QMνr

is isomorphic to the product QMν1
× · · · × QMνr ; see e.g. [NP]. Further, since the map

L≥0M → Qνi given by m 7→ mtνi∗M has a section Zariski-locally on the base (Lemma

9.3), we see that we may cover Q̃Mν• by sufficiently small Zariski-open subsets on which

an element in the twisted product can be expressed in the form

(m1t
ν1∗M ,m1t

ν1m2t
ν2∗M , . . . , m1t

ν1 · · ·mrt
νr∗M),

for unique elements mi ∈ KM . Let V be such an open set.

The following is the key result allowing us to reduce the general case of Theorem

12.3 to the special case already treated in Proposition 13.2.
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Lemma 13.5. For any ν• as in Lemma 13.4 and any open subset V ⊂ Q̃Mν• as above,

there is an isomorphism

(SN
ν• ∩ Q̃µ•) ∩ π

−1
c• (V ) ∼= (SNν1

∩Qµ1 × · · · × SNνr ∩Qµr)× V.

Further, this induces an isomorphism

(SN
ν• ∩ Q̃µ•)λ ∩ π

−1
c• (V ) ∼= (SNν1

∩Qµ1 × · · · × SNνr ∩Qµr)× (V ∩m−1
ν• (tλ∗M)).

Here mν• : Q̃Mν• → Q
M

|ν•| is the convolution morphism on the affine Grassmannian for

M .

Proof. It is easy to construct the desired isomorphism. By the construction of V and

Proposition 13.1, we may express any element in (SNν1
∩Qµ1 × · · · × SNνr ∩Qµr)× V as

(x1t
ν1∗, . . . , xrtνr∗)× (y1t

ν1∗M , y1t
ν1y2t

ν2∗M , . . . , y1t
ν1 · · · yrtνr∗M)

for some uniquely determined xi ∈ N and yi ∈ KM . We send this to the element

(y1x1t
ν1∗, . . . , y1x1t

ν1 · · · yrxrtνr∗)

in (SN
ν• ∩Q̃µ•)∩π

−1
c• (V ). It is easy to construct the inverse of this morphism and show

that that inverse is algebraic. �

Lemma 13.6. Each space (SNν1
∩Qµ1 × · · · × SNνn ∩Qµn)× (V ∩m−1

ν• (tλ∗M)) is equidi-

mensional of dimension 〈ρ, µ+ λ〉 − 2〈ρM , λ〉.

Proof. By Proposition 13.2 the first term in the product is an affine space of dimension
n∑
i=1

〈ρ, µi + νi〉 − 2〈ρM , νi〉 = 〈ρ, µ+ |ν•|〉 − 2〈ρM , |ν•|〉.

By the main result of [Ha2], the second term in the product is a union of irreducible

components of dimension

〈ρM , |ν•| − λ〉.
Adding these, we see that we need to show that

〈ρ, µ+ λ〉 − 2〈ρM , λ〉 = 〈ρ, µ+ |ν•|〉 − 2〈ρM , |ν•|〉+ 〈ρM , |ν•| − λ〉.

The difference between the two sides is simply

〈ρ− ρM , |ν•| − λ〉 = 0.

This is zero since |ν•| − λ is a sum of BM -positive simple coroots of M : each such α∨

is also a simple B-positive coroot of G , and so 〈ρ, α∨〉 = 〈ρM , α∨〉 = 1. � �

Corollary 13.7. The locally closed varieties (SN
ν• ∩ Q̃µ•)λ are equidimensional of di-

mension 〈ρ, µ + λ〉 − 2〈ρM , λ〉, a number independent of ν•. Consequently by Lemma

13.4 m−1
µ• (SNλ ∩ Q̃µ•) is equidimensional of the same dimension.
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13.4. Proof of Theorem 12.3 in general.

Proof. Let U ⊂ C be a dense open subset of C which misses all the other irreducible

components of SNλ ∩Qµ. By shrinking U if necessary, we may assume U ⊂ Qν and even

that mµ• is trivial over U (recall mµ• is locally trivial in the stratified sense; see [Ha2],

Lemma 2.1). Then for any fixed point y ∈ U, we have an isomorphism

m−1
µ• (U) ∼= U×m−1

µ• (y).

By the main theorem of [Ha2], the fiber is equidimensional of dimension

dim(m−1
µ• (y)) = 〈ρ, µ− ν〉,

recalling that |µ•| = µ. Also, by Corollary 13.7, we see that m−1
µ• (U) is equidimensional

of dimension

dim(m−1
µ• (U)) = 〈ρ, µ+ λ〉 − 2〈ρM , λ〉.

These facts imply that U has dimension 〈ρ, ν + λ〉 − 2〈ρM , λ〉, as desired.

�

14. Appendix

To simplify the notation we set ρξ := bξ,∆M
and ρ−ν := ρ−ν,∆G−ν . Our goal is to give

a geometric proof of Theorem 3.2, which can be restated as follows.

Theorem 14.1. If ν ≥P µ then for every geodesic γ = oz ⊂ BG of ∆-length µ, we

have

ρ−ν |γ = ρξ|γ.

Proof. Throughout the proof we will be using the concept of a generic geodesic in a

building introduced in [KM2]. A geodesic (finite or infinite) γ in BG is generic if it is

disjoint from the codimension 2 skeleton of the polysimplicial complex BG, except for,

possibly, the end-points of γ. It is easy to see that generic segments are dense: Every

geodesic contained in the apartment A is the limit of generic geodesics in A.

We next review basic properties of the retractions ρξ and ρν . Both maps are isometric

when restricted to each alcove in BG; hence, both maps are 1-Lipschitz, in particular,

continuous.

Observe that for every x ∈ BG, there exists an apartment Ax ⊂ BG so that ξ ∈
∂T itsAx, Ax ∩ A has nonempty interior and contains an infinite subray in oξ. This

follows by applying Lemma 5.1 to a generic geodesic γ ⊂ A asymptotic to ξ and

passing through an alcove a ⊂ A containing o. For such an apartment Ax, there

exists a unique isomorphism φx : Ax → A fixing Ax ∩ A. Then y = φx(x) ∈ A is

independent of the choice of Ax (although, φx does). By the definition of bξ,∆M
, we
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see that bξ,∆M
(x) = bξ,∆M

(y). Hence, ρx factors as the composition ρ∆M
◦ ρξ,A, where

ρξ,A(x) = y. (The map ρξ,A equals the map ρIP ,A defined in section 6.3.)

We next make observations about the geometric meaning of the partial order ≥P . In

what follows it will be convenient to extend the partial order ν ≥P µ to arbitrary vectors

µ in A (not only cocharacters) (we will be still assuming however that ν ∈ X∗(T )).

We will also extend the definition of xλ from λ ∈ Λ to general vectors λ in the affine

space A: Given a vector λ in the apartment A, we let xλ ∈ A denote the point so that
−→oxλ = λ.

Given ν ∈ Λ we let aν denote the alcove of (A, W̃ ) with the vertex xν and contained

in the negative chamber −∆G + ν.

Lemma 14.2. Suppose that ν is annihilated by all roots of ΦM . Then the following

are equivalent:

1.

ν ≥P µ

2. Cµ := Conv(W · xµ) ∩∆M is contained in ∆− ν.

3. For every positive root α ∈ Φ \ ΦM ,

α|Cµ ≥ α(x−ν).

4. If a wall H of (A, W̃ ) intersects the set Cµ, then it does not separate x−ν from ξ in

the sense that the ray x−νξ does not cross H.

5. If a wall H of (A, W̃ ) has nonempty intersection with Cµ, then it does not separate

a−ν from ξ in the sense that it does not separate any point of a−ν from ξ.

Proof. The proof is straightforward and is left to the reader. We observe only that for

every positive root α,

max(α|a−ν) = α(x−ν) = −〈α, ν〉.

Thus, if ν ≥P µ, then any wall H of (A, W̃ ) intersecting Cµ does not separate a−ν from

ξ. �

The next lemma establishes equality of the retractions ρξ, ρ−ν on certain subsets of

BM .

Lemma 14.3. 1. If ν ≥P µ then the retractions ρξ, ρ−ν agree on Conv(Wxµ) ⊂ A.

2. Suppose that x ∈ BM is such that ρξ(x) ∈ ∆G − ν. Then, again ρξ(x) = ρ−ν(x).

Proof. 1. Let x ∈ Conv(Wxµ). There exists w ∈ WM such that x′ := w(x) ∈ ∆M ;

then

x′ ∈ Cµ = Conv(Wxµ) ∩∆M .
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Clearly, x′ = ρξ(x). On the other hand, since Cµ ⊂ ∆G − ν, it follows that ρ−ν(x) =

ρ−ν(x
′) = x′.

2. The proof is similar to (1). First, find k ∈ KM such that k(x) ∈ A and w ∈ WM

such that x′ = wk(x) ∈ ∆M . Then, by the definition of ρξ, wk(x) = ρξ(x). On the

other hand, d∆(x−ν , x) = d∆(x−ν , x
′). Then ρ−ν(x) = w′(x′), for some w′ ∈ W−ν .

However, by our assumption, x′ ∈ ∆G − ν, hence w′(x′) = x′. �

Note that, given µ ∈ ∆G, the segment oxµ is the limit of generic segments oxµi ⊂
Conv(W · xµ). In particular, Conv(W · xµi) ⊂ Conv(W · xµ) and, therefore,

ν ≥P µ⇒ ν ≥P µi,∀i.

Thus, since both the retraction ρξ, ρ−ν are continuous, it suffices to prove Theorem

14.1 for µ such that the segment γ is generic.

We will assume from now on that µ is generic and ν ≥P µ. Moreover, we will assume

that µ is rational, i.e., µ ∈ Λ⊗Q.

For convenience of the reader we recall the definition of a Hecke path in the sense

of [KM2]. Let π = π(t), t ∈ [0, r] be a piecewise-linear path in A parameterized by its

arc-length. At each break-point t, the path π has two derivatives π′−(t), π′+(t), which

are unit vectors in A. Then π is a Hecke path if the following holds for each break-point

([KM2], Definitions 3.1 and 3.26):

1. π′+(t) = dw(π′−(t)) for some w ∈ W̃π(t), the stabilizer of π(t) in W̃ .

2. Moreover, w is a composition of affine reflections

w = σm ◦ ... ◦ σ1, σi ∈ W̃π(t),

each σi is the reflection in an affine hyperplane {αi(x) = ti} through the point π(t),

αi ∈ Φ+, so that for each i = 1, ...,m

〈αi, ηi〉 < 0, i = 0, ...,m− 1,

where η0 = π′−(t), ηi := dτi(ηi−1), i = 1, ...,m and ηm = π′+(t). Thus, for π′−(t) ∈ ∆G,

we have m = 0 and, hence, π′−(t) = π′+(t); this means that the corresponding Hecke

path π is geodesic as it does not have break-points.

We will need another property of Hecke paths: Suppose that π is a rational Hecke

path, i.e., it starts at o and ends at a rational point, i.e, a point in Λ⊗Q. Then there

exists N ∈ N so that the path N · π is an LS path in the sense of Littelmann [Li]. The

proof consists in unraveling the definition of an LS path as it was done in [KM2] and

observing that all break-points of a rational LS path occur at rational points. We will

also need the fact that for every geodesic segment σ ⊂ BG and any ν ∈ Λ, the image

of σ under the retraction ρxν ,∆+ν is a Hecke path (see [KM2]). The next proposition

generalizes Lemma 7.2(b) from µ ∈ ∆G ∩ Λ to µ ∈ ∆G.
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Proposition 14.4. ρξ(γ) ⊂ Cµ. In particular, ρξ,A(γ) ⊂ Conv(Wxµ).

Proof. We first prove an auxiliary lemma which is a weak version of Theorem 14.1.

(Cf. Lemma 6.10.)

Lemma 14.5. Given γ, if ν is M-central and very N-dominant (more precisely,

〈α, ν〉 ≥ const(γ) for all roots α ∈ ΦN), then ρξ|γ = ρ−ν |γ.

Proof. Consider geodesic rays xξ from the points x ∈ BG asymptotic to ξ. For every

such ray there exists a unique point x′ = fξ(x) ∈ xξ so that the subray x′ξ is the

maximal subray in xξ contained in BM . Explicitly, the map fξ can be described as

follows. First, recall that for x ∈ BG, there is a unique point x̄ ∈ BM so that x̄ = n(x)

for some n ∈ N (even though, the element n ∈ N is non-unique). Moreover, for every

alcove a ⊂ BG, the element n ∈ N can be chosen the same for all x ∈ a. The function

x 7→ x̄ is isometric on each alcove in BG, hence, it is continuous. Now, given x ∈ γ,

find an element n ∈ N so that x̄ := n(x) ∈ BM . Then, by convexity of BM in BG,

n(xξ) ⊂ BM . By the above observation, the image n(xξ) is independent of the choice

of n. By convexity of Fix(n), the intersection Fix(n) ∩ n(xξ) is an infinite ray.

Claim 14.6. For every n ∈ N such that x̄ = n(x) ∈ BM , we have

x′ξ = Fix(n) ∩ n(xξ),

where x′ = fξ(x).

Proof. Since n(x′) ∈ n(xξ) ⊂ BM , we have n(x′) = x′. For the same reason, n fixes the

entire sub-ray x′ξ pointwise. Thus, x′ξ ⊂ Fix(n)∩ n(xξ). Let y ∈ n(x)x′ \ {x′}. Then

n−1(y) ∈ xx′ \ {x′} and, hence, does not belong to the subbuilding BM . Therefore,

y /∈ Fix(n) and Fix(n) ∩ n(xξ) ⊂ x′ξ. �

We next claim that the function fξ is continuous. Indeed, it suffices to verify its

continuity on each alcove a ⊂ BG. As observed above, n can be (and will be) taken

the same for all points of a. Then (by using the action of KM) continuity of fξ reduces

to the following

Claim 14.7. Let n ∈ N . Then the function p 7→ q, p ∈ A defined by

qξ = Fix(n) ∩ pξ

is continuous.

Proof. The statement follows easily from the fact that the fixed-point set of n inter-

sected with A is a convex polyhedron. �

We now apply the continuous function fξ to the compact γ. Its image is a compact

subset C ′ of BM . Thus C ′′ := ρξ(C
′) ⊂ ∆M is also compact. Then, for all M -central



Ideal triangles and branching to Levi subgroups 43

ν ∈ ∆G which are sufficiently N -dominant (depending on the diameter of C ′′), the set

C ′′ is contained in the relative interior of ∆G − ν in ∆M . We then claim that for such

choice of ν, ρξ|γ = ρ−ν |γ.
For every x ∈ γ, the segment x′x′′ := x′ξ ∩ ρ−1

ξ (∆G − ν) ⊂ BM has positive length.

According to Part 2 of Lemma 14.3, ρξ|x′x′′ = ρ−ν |x′x′′ . Moreover, ρξ(xx′′) is the unique

geodesic segment in A containing the subsegment ρξ(x′x′′) and having the same metric

length as xx′′. (This follows from the fact that ρξ restricts to an isometry on the ray

xξ.)

We now claim that the projection ρ−ν also sends xx′′ to a geodesic segment in ∆G−ν.

Indeed, the path π := ρ−ν(x′′x) is a Hecke path in A. The unit tangent vector τ to π

at ρ−ξ(x
′′) is contained in ∆G since its opposite (pointing to ξ) is contained in −∆G.

Then the definition of a Hecke path above implies that π is geodesic.

The retraction ρ−ν preserves metric lengths of curves [KM2], therefore, π is a geodesic

of the same length as xx′′. Hence, ρ−ν(x) = ρξ(x). Lemma follows. �

The only corollary of this lemma that we will use is

Corollary 14.8. ρξ(γ) is a Hecke path in (A, W̃ ) of the ∆-length µ in the sense of

[KM2].

Proof. By [KM2], the retractions ρ−ν : BG → ∆G − ν send geodesics in BG to Hecke

paths preserving ∆-lengths. Now, the assertion follows from the above lemma. �

We are now ready to prove Proposition 14.4. According to Corollary 14.8, the image

ρξ(γ) is a Hecke path in ∆M with the initial point o. Let π be a subpath of ρξ(γ) starting

at the origin o. Assume for a moment that π = π : [0, 1]→ A is an LS path in the sense

of Littelmann of the ∆-length β. Then the terminal point π(1) of π is a weight of a

representation V Ĝ
β , see [Li]. Therefore, π(1) is contained in Conv(Wxβ) ⊂ Conv(Wxµ).

Since π is contained in ∆M , it then follows that π ⊂ Cµ.

More generally, suppose that π is a subpath of ρξ(γ) which terminates at a rational

point π(1) ∈ Λ⊗Q of the apartment A. Then there exists N ∈ N so that N ·π is an LS

path of the ∆-length Nβ, where β is the ∆-length of π. Then, by the above argument,

N · π(1) ∈ Conv(W · xNβ)

and, hence, π(1) ∈ Conv(W · xβ) ⊂ Conv(W · xµ). The general case follows by density

of rational points in ρξ(γ). Thus, ρξ(γ) ⊂ Cµ. The second assertion of Proposition

14.4 immediately follows from the first. �

Proposition 14.9. For every point x ∈ γ there exists an apartment Ax ⊂ BG con-

necting a−ν , x and ξ, i.e., a−ν ∪ {x} ⊂ Ax and ξ ∈ ∂T itsAx.
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Proof. Clearly, the assertion holds for x = o since o, a−ν , ξ belong to the common

model apartment Ao := A ⊂ X. We cover γ by alcoves ai ⊂ BG, i = 0, ...,m, where

a0 ⊂ A is an alcove intersecting γ only at the point o. Recall that, by the genericity

assumption, γi = ai ∩ γ is contained in the interior of ai except for the end-points of

this arc. Then, if the assertion holds for some point in the interior of γi, it holds for

all points of γi. We suppose therefore that the assertion holds for points in the alcoves

a0, ..., ak and will prove it for the points of γk+1. We will mostly deal with the case

k ≥ 1 and explain how to modify the argument for k = 0. Let x := γk ∩ γk+1 and y be

such that xy = γk+1.

Let Ax be an apartment as above. We assume that x belongs to a wall H in BG
and a = ak+1 is not contained in Ax (for otherwise we again would be done). If k = 0,

we take H ⊂ A. In this case, ν ≥P µ implies that H does not separate ξ from a−ν .

Assume now that k > 0. Since γ is generic, the germ H ∩ a of H at x is contained in

Ax. Therefore, without loss of generality, we can assume that H ⊂ Ax.

Claim 14.10. H does not separate a−ν from ξ in Ax.

Proof. In view of Lemma 14.2, it suffices to show that H does not separate x−ν from

ξ.

Let H ′ ⊂ A be the (unique) wall containing ρξ(H ∩ a). Since ν ≥P µ, ρξ(γ) ⊂ Cµ =

Conv(Wxµ)∩∆M) (Proposition 14.4), it follows that H ′∩Cµ 6= ∅. Hence, H ′ does not

separate a−ν from ξ.

We recall that the map ρξ|Ax is obtained in two steps: First, an isomorphism φ :

Ax → A fixing a−ν , and then applying the projection ρ∆G−ν : A → ∆G − ν (obtained

by acting on φ(p), p ∈ Ax, by an appropriate element w ∈ WM). Let w ∈ WM be the

element which sends φ(ak) (and, hence, φ(H ∩ a)) to ∆M . Note that w fixes ξ and

x−ν . Since H ′ did not separate ξ from x−ν in A, it then follows that w−1(H ′) does not

separate either. Since φ : Ax → A is an isomorphism fixing ξ and a−ν , it then follows

that H = φ−1w−1(H ′) also does not separate ξ and x−ν . The claim follows. �

Since BG is a thick building, there exists a half-apartment A+
y ⊂ BG containing the

alcove a, so that A+
y ∩ Ax = H. Let A−x denote the half-space in Ax bounded by

H and containing a−ν ; hence, ξ ∈ ∂∞A−x . Then Ay := A−x ∪ A+
y is an apartment,

a−ν ⊂ Ay, y ∈ Ay and ξ ∈ ∂∞Ay. Proposition follows. �

We now can finish the proof of the main theorem. Pick x ∈ γ. We will show that

ρ−ν(x) = ρξ(x).

The map ρ−ν : BG 7→ ∆G − ν is the composition of two maps: First the canonical

isomorphism of the apartments ψx : Ax → A which fixes the intersection Ax ∩ A,

and then the quotient map ρ∆G−ν : A → ∆G − ν. The intersection V := Ax ∩ A has
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nonempty interior in A (since a−ν does) Similarly, the projection ρξ : BG 7→ ∆M is

obtained by first taking the isomorphism of apartments

ρξ,A|Ax : Ax → A

(again, fixing V ) and then applying ρ∆M
. Since V has nonempty interior, it follows

that the isomorphisms of apartments ψx and ρξ,Ax|Ax agree on the entire apartment

Ax. Hence,

ρξ,A(x) = ψx(x).

By Proposition 14.4, ρξ,A(x) ∈ Conv(Wxµ). By Lemma 14.3, Part 1,

ρ∆M
|Conv(Wxµ) = ρ∆G−ν |Conv(Wxµ).

Therefore,

ρξ(x) = ρ∆M
◦ ρξ,A(x) = ρ∆G−ν ◦ ψx = ρ−ν(x). �
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