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Abstract. We prove the test function conjecture of Kottwitz and the first named author for
local models of Shimura varieties with parahoric level structure, and their analogues in equal

characteristic.

Contents

1. Introduction 2
1.1. Formulation of the main result 2
1.2. Relation to the Test Function Conjecture for Shimura varieties 4
1.3. Strategy of proof 5
1.4. Other results 7
1.5. Acknowledgements 8
1.6. Overview 9
1.7. Conventions on ind-schemes 9
1.8. Notation 9
2. Recollections on Gm-actions 10
3. Affine Grassmannians 13
3.1. The open cell 13
3.2. Schubert varieties 14
3.3. Torus actions on affine Grassmannians 15
3.4. Cohomology of constant terms 19
4. Affine flag varieties 25
4.1. Schubert varieties 26
4.2. Torus actions on affine flag varieties 27
5. Beilinson-Drinfeld Grassmannians 33
5.1. Torus actions in equal characteristic 34
5.2. Torus actions in unequal characteristic 39
6. Constant terms on affine flag varieties 43
6.1. Geometric constant terms for affine flag varieties 44
6.2. Geometric constant terms for ramified groups 46
6.3. Applications to local models 48
6.4. Central sheaves 50
7. Application to the test function conjecture 51
7.1. From sheaves to functions 51
7.2. Review of Satake parameters and definition of zss

G,I(V ) 53

7.3. Statement of the test function conjecture for local models 54
7.4. Reduction to minimal F -Levi subgroups 56
7.5. Reduction from anisotropic mod center groups to quasi-split groups 58
7.6. Proof in the quasi-split case 60
7.7. On values of the test functions 60

Research of T.H. partially supported by NSF DMS-1406787 and by Simons Fellowship 399424, and research of

T.R. partially funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - 394587809.

1



Appendix A. Spreading of connected reductive groups 63
A.1. Outer twisting. 64
A.2. Inner twisting. 65
References 66

1. Introduction

A prototypical example of a Shimura variety is the Q-space of isomorphism classes of g-dimensional
principally polarized abelian varieties with level structure. If the level at a prime p is parahoric,
one can construct an integral model of this space over Z(p) by considering isogeny chains of abelian
schemes having the same shape as the lattice chain which determines the parahoric subgroup of
GSp2g(Qp). Typically the resulting schemes have bad reduction. The local models serve as a tool
to understand the singularities arising in the reduction modulo p. They are projective schemes over
Z(p) defined in terms of linear algebra -thus are easier to handle- and are étale locally isomorphic to
the integral model for the Shimura variety. The study of local models for these and more general
Shimura varieties started with the work of Deligne and Pappas [DP94], Chai and Norman [CN92], de
Jong [dJ93] and was formalized to some degree in the book of Rapoport and Zink [RZ96], building
on their earlier results. Much work has been done in the intervening years, and we refer to the
survey article of Pappas, Rapoport and Smithling [PRS13] for more information.

Recently, Kisin and Pappas [KP] constructed integral models for many Shimura varieties of
abelian type with a parahoric level structure whenever the underlying group G splits over a tamely
ramified extension (assuming p > 2). One application of such models is to Langlands’ program
[La76] to compute the Hasse-Weil zeta function of a Shimura variety in terms of automorphic L-
functions. The zeta function has a local factor at p which is determined by the points in the
reduction modulo p of the integral model, as well as its étale local structure - more precisely the
sheaf of nearby cycles. In pursuing the Langlands-Kottwitz approach to the calculation of the (semi-
simple) Lefschetz number, one needs to identify the test function that is plugged into the counting
points formula which resembles the geometric side of the Arthur-Selberg trace formula. This is the
purpose of the test function conjecture promulgated in [Hai14, Conj 6.1.1].

Étale locally the integral models of Kisin and Pappas are isomorphic to the local models con-
structed by Pappas and Zhu [PZ13]. The determination of the nearby cycles reduces to that of
the local model. The aim of the present manuscript is to prove the test function conjecture for
these local models and their equal characteristic analogues, i.e., to express the (semi-simple) trace
of Frobenius function on the sheaf of nearby cycles on the local model in terms of automorphic data
as predicted by the conjecture. We refer to the survey articles of Rapoport [Ra90], [Ra05] and of
the first named author [Hai05], [Hai14] for how local models may be used in the Langlands-Kottwitz
method.

1.1. Formulation of the main result. Let p be a prime number. Let F be a non-archimedean
local field with ring of integers OF and finite residue field kF of characteristic p and cardinality q,
i.e. either F/Qp is a finite extension or F ' Fq((t)) is a local function field. Let F̄ /F be a separable
closure, and denote by ΓF the Galois group with inertia subgroup IF and fixed geometric Frobenius
lift ΦF ∈ ΓF .

We fix a triple (G, {µ},G) where G is a connected reductive F -group, {µ} a (not necessarily
minuscule) conjugacy class of geometric cocharacters defined over a finite separable extension E/F ,
and G is a parahoric OF -group scheme in the sense of Bruhat-Tits [BT84] with generic fiber G. If
F/Qp, we assume that G splits after a tamely ramified extension. Attached to these data is the
(flat) local model

M{µ} = M(G,{µ},G),

which is a flat projective OE-scheme, cf. Definition 6.11 (we are using the definitions of local model
given in [PZ13] if F/Qp and in [Zhu14], [Ri16a] if F ' Fq((t)), which, unlike the prototypical
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definitions tied to Shimura varieties, are not explicitly moduli schemes). The generic fiber M{µ},E is
naturally the Schubert variety in the affine Grassmannian of G/F associated with the class {µ}. The
special fiber M{µ},kE is equidimensional, but not irreducible in general. For a detailed treatment of
local models and the problem of finding moduli descriptions, we refer to the survey article [PRS13].

Fix a prime number ` 6= p, and fix a square root of the `-adic cyclotomic character (cf. §3.4). Let
dµ be the dimension of the generic fiber M{µ},E , and denote the normalized intersection complex by

IC{µ}
def
= j!∗Q̄`[dµ](

dµ
2 ) ∈ Db

c(M{µ},E , Q̄`)

cf. §3.4.1 below. Under the geometric Satake equivalence [Gi, Lu81, BD, MV07, Ri14a, RZ15, Zhu],

the complex IC{µ} corresponds to the LGE = Ĝ o ΓE-representation V{µ} of highest weight {µ}
defined in [Hai14, 6.1], cf. Corollary 3.12 below. Both Ĝ and V{µ} are taken over Q̄`.

Let E0/F be the maximal unramified subextension of E/F , and let ΦE = ΦE0 = Φ
[E0:F ]
F and

qE = qE0
= q[E0:F ]. The semi-simple trace of Frobenius function on the sheaf of nearby cycles

τ ss
{µ} : M{µ}(kE)→ Q̄`, x 7→ (−1)dµ trss(ΦE |ΨM{µ}(IC{µ})x̄),

is naturally a function in the center Z(G(E0),G(OE0
)) of the parahoric Hecke algebra. This is of

course well-known when G is unramified (cf. [PZ13] if F/Qp, and [Ga01], [Zhu14] if F ' Fq((t))).
The general case is more subtle and is explained in section 7.3.

The values of the function τ ss
{µ} on each Kottwitz-Rapoport stratum were determined in the

Drinfeld case in [Hai01] by matching Hecke algebra computations with earlier geometric calculations
of Rapoport [Ra90]. This inspired Gaitsgory [Ga01] to prove the centrality of τ ss

{µ} for all {µ} and

all split groups in the function-field setting; he also characterized the functions using the Bernstein
isomorphism between the center of the Iwahori Hecke algebra and the spherical Hecke algebra.
Translating Gaitsgory’s method to the p-adic setting using explicit lattice chains, Ngô and the first
named author handled in [HN02] the cases G = Gln,GSp2n, again proving centrality and expressing
the functions τ ss

{µ} in terms of the Bernstein presentation for H(G(E0),G(OE0
)). Further explicit

calculations of the values of τ ss
{µ} on each Kottwitz-Rapoport stratum are due to Görtz [Goe04]

for G = Gl4,Gl5, and to Krämer [Kr03] for ramified unitary groups. Rostami treated in his 2011
thesis [Ro17] the case of unramified unitary groups. In [Zhu15], Zhu determined the values of
τ ss
{µ} for quasi-split ramified unitary groups with a very special level structure, i.e., G is special

parahoric and stays special parahoric when passing to the maximal unramified extension (e.g. if G
is unramified, i.e. quasi-split and split after an unramified extension, then very special is equivalent
to hyperspecial). For general unramified F -groups G, the semi-simple trace of Frobenius on the
nearby cycles is determined in [PZ13] in terms of the Bernstein isomorphism. For general quasi-
split groups G, but now very special level G, our main theorem below reduces to [PZ13, 10.4.5],
[Zhu15, §6]. Let us point out that our main result holds for general groups G and general parahoric
levels G under the hypotheses in the beginning of §1.1; every connected reductive group over a local
field admits a parahoric subgroup by the work of Bruhat-Tits. Our result is the first which is valid
for not necessarily quasi-split groups and arbitrary parahoric level. Further, being “spectral” in
nature, our characterization is tailor-made to building the connection with automorphic forms, cf.
§1.2.

Main Theorem (The test function conjecture for parahoric local models). Let (G, {µ},G) be a
general triple as above. Let E/F be a finite separable extension over which {µ} is defined, and let
E0/F be the maximal unramified subextension. Then

τ ss
{µ} = zss

{µ}

where zss
{µ} = zss

G,{µ} ∈ Z(G(E0),G(OE0)) is the unique function which acts on any G(OE0)-spherical

smooth irreducible Q̄`-representation π by the scalar

tr
(
s(π)

∣∣ Ind
LGE0
LGE

(V{µ})
1oIE0

)
,
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where s(π) ∈ [ĜIE0 o ΦE0
]ss/Ĝ

IE0 is the Satake parameter for π [Hai15]. The function q
dµ/2
E0

τ ss
{µ}

takes values in Z and is independent of ` 6= p and q1/2 ∈ Q̄`.

The construction of s(π) is reviewed in section 7.2, and the values of q
dµ/2
E0

τ ss
{µ} are studied in sec-

tion 7.7. We remark that in the mixed characteristic case, τ ss
{µ} lives in the center Z(G′(E′0),G′(OE′0))

of the Q̄`-valued Hecke algebra attached to function field analogues (G′,G′, E′0) of (GE0
,GOE0

, E0);

we are implicitly identifying this with Z(G(E0),G(OE0)) via Lemma 5.10. The definition of the
local models M{µ} depends on certain auxiliary choices (cf. Remark 5.2 and 5.14), but the function
τ ss
{µ} depends canonically only on the data (G, {µ},G). In mixed characteristic, this is related to

[PZ13, Remark 3.2] and is not at all obvious, but it follows from our main theorem.

Remark 1.1. The Main Theorem can also be proved for the mixed characteristic local models
constructed by B. Levin [Lev16], where G = ResF ′/FG

′ for a tamely ramified F ′-group G′ and a
possibly wildly ramified extension F ′/F , cf. [HaRi]. In particular, this settles the test function
conjecture for all mixed characteristic local models and primes p ≥ 5. The remaining cases are
effectively reduced to four series of wildly ramified groups in residue characteristics p = 2, 3: ramified
unitary, orthogonal and exceptional type E6 groups if p = 2, and the ramified “triality” if p = 3.
We hope that combining our techniques with the wildly ramified mixed characteristic local models
constructed by Lourenço [Lou] will yield the test function conjecture in these cases as well. In
Conjecture 21.4.1 of [SW], Scholze predicts the existence of local models which are characterized
using his theory of diamonds. We expect our results to apply to those local models as well.

1.2. Relation to the Test Function Conjecture for Shimura varieties. The test function
conjecture makes sense for all levels, but here we consider only the case of parahoric level. Consider
the Shimura data (G, X,KpKp), where Kp ⊂ G(Qp) is a parahoric subgroup, with corresponding
parahoric group scheme G/Zp. Let {µ} = {µh} for µh ∈ X∗(GQ̄p) corresponding to h ∈ X. Let

E ⊂ Qp be the field of definition of {µ} ⊂ X∗(GQ̄p), with Ej/E the degree j unramified extension.

Let E0/Qp (resp.Ej0/Qp) be the maximal unramified subextension of E/Qp (resp.Ej/Qp). Note
Ej0 = Qpr for r = j[E0 : Qp].

We assume G := GQp is a tamely ramified group, and consider the local models M{µ} of Pappas-
Zhu [PZ13], cf. Def. 6.11. In order to compute the (semi-simple) local Hasse-Weil zeta function
of ShKp(G, X) at a prime ideal of E, the Test Function Conjecture [Hai14] specifies a function
in Z(G(Ej0),G(OEj0)) = Z(G(Qpr ),G(Zpr )) which should be plugged into the twisted orbital in-

tegrals in the counting points formula for trss(ΦjE |H∗(ShKp(G, X)Ē , Q̄`)). Setting I(V{µ}) :=

Ind
LGEj0
LGEj

(V{µ}), the test function is predicted to be q
jdµ/2
E0

ZI(V{µ}) ? 1G(OEj0 ) cf. section 7.2, where

ZI(V{µ}) is a distribution which is associated, assuming the local Langlands correspondence, to
an element in the stable Bernstein center. The function zss

GOEj0 ,{µ}
is an unconditional version of

ZI(V{µ}) ? 1GOEj0
. By our Main Theorem

zss
GOEj0 ,{µ}

= (−1)dµtrss
(
ΦEj |ΨM{µ}⊗OEj (IC{µ})

)
,

and therefore the test function is expressed in terms of the geometry of the local model M{µ}.
Similar statements are in force in the function-field setting, where G is any group over Fq((t))

and where ShKp(G, X) is replaced by a moduli space of global G-shtukas over a connected smooth
projective curve X/Fq.

In light of recent progress on the Langlands-Rapoport conjecture for the Shimura varieties
ShKp(G, X) [Zhou] and for moduli stacks of global G-shtukas [ArHa], our Main Theorem allows one
to pursue the Langlands-Kottwitz approach to the description of the cohomology of these spaces in
terms of automorphic representations. In particular, this sort of local information could be helpful
in situations where knowledge of global objects is lacking (for example in cases where the existence
and properties of global Arthur/Langlands parameters have not yet been established). This will be
addressed in future work.
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1.3. Strategy of proof. The local model M{µ} is not semistable in general (cf. [PRS13]), and it
is difficult to determine the value of τ ss

{µ} at a given point in the special fiber. On the other hand,

the global cohomology of the nearby cycles is by construction the intersection cohomology of the
generic fiber M{µ},E which is well understood due to the geometric Satake isomorphism. The idea
of the proof is to take advantage of the latter, and proceeds in three steps as follows.

a) Reduction to minimal Levi subgroups of G.

b) Reduction from anisotropic modulo center groups to quasi-split groups.

c) Proof for quasi-split groups.

Let us comment on steps b) and c) first. If G is quasi-split, then a) reduces the proof of the Main
Theorem to the case of tori which is easy, and implies c), cf. §7.6. If G is anisotropic modulo center,
then the local model M{µ} has a single kE-point in the special fiber, cf. §7.5. An application of
the Grothendieck-Lefschetz trace formula expresses τ ss

{µ} in terms of the cohomology of the generic

fiber. Using c) and properties of the normalized transfer homomorphisms [Hai14], we can express
zss
{µ} in terms of the same cohomology groups, which implies b). The main part of the manuscript

is concerned with the proof of a) which is summarized as follows.
Let M ⊂ G be a minimal Levi which is in good position relative to G. As we already know that

τ ss
{µ} is a central function, it is uniquely determined by its image under the injective constant term

map

cM : Z(G(E0),G(OE0
)) ↪→ Z(M(E0),M(E0) ∩ G(OE0

)),

cf. section 7.1.3 for a review. Our aim is to show cM (τ ss
{µ}) = cM (zss

{µ}).

Remark 1.2 (Other approaches). If G is an unramified reductive group, i.e., quasi-split and split
over an unramified extension, then it is possible to determine τ ss

{µ} using the projection to the affine

Grassmannian, cf. [PZ13, Thm 10.16]. Further, if G is quasi-split but G very special, then one
may use the ramified geometric Satake equivalence [Zhu15, Ri16a] to deduce the Main Theorem, cf.
[PZ13, Thm 10.23; 10.4.5]. In our general set-up, both techniques are not available.

1.3.1. Geometric constant terms. By our choice of Levi M , we can find a cocharacter χ : Gm,OF → G
whose centralizer M is a parahoric OF -group scheme with generic fiber M . Attached to χ is by
the dynamic method promulgated in [CGP10] also the smooth OF -subgroup scheme P ⊂ G whose
generic fiber is a minimal parabolic subgroup P ⊂ G with Levi subgroup M . The natural maps
M← P → G give rise to the diagram of Beilinson-Drinfeld Grassmannians

(1.1) GrM
q← GrP

p→ GrG ,

which are OF -ind-schemes that degenerate the affine Grassmannian into the (twisted) affine flag
variety, cf. [PZ13] if F/Qp, and [Zhu14] (tamely ramified) and [Ri16a] if F ' Fq((t)). In the equal
characteristic case, similar families in global situations where considered by Gaitsgory [Ga01] and
Heinloth [He10] before. The generic fiber of (1.1) is the diagram of affine Grassmannians denoted
by

GrM
qη← GrP

pη→ GrG,

and the special fiber of (1.1) is the diagram on affine flag varieties denoted by

F`M
qs← F`P

ps→ F`G ,
cf. §5 below. Associated with these data are two pairs of functors: nearby cycles (ΨG ,ΨM) and
pull-push functors (CTM ,CTM) - the geometric constant terms. The nearby cycles

ΨG : Db
c(GrG) −→ Db

c(F`G ×s η),

take as in [SGA 7 XIII] values in the constructible bounded derived category of Q̄`-complexes on
F`s̄ compatible with a continuous action of ΓF . Replacing G by M (resp. G by M), we also have
ΨM. The (normalized) geometric constant term in the generic (resp. special) fiber is

CTM : Db
c(GrG)→ Db

c(GrM ) (resp. CTM : Db
c(F`G ×s η)→ Db

c(F`M ×s η))
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given by CTM = (qη)! ◦ (pη)∗〈χ〉 (resp. CTM = (qs)! ◦ (ps)
∗〈χ〉) where 〈χ〉 denotes a certain shift

and twist associated with the cocharacter χ, cf. Definition 3.15, 6.4 below. The functor CTM is
well-known in Geometric Langlands [BD, BG02, MV07] whereas the functor CTM only appears
implicitly in the literature, cf. [AB09, Thm 4], [HNY13, §9].

Under the sheaf function dictionary, the nearby cycles ΨG are a geometrization of the Bernstein
isomorphism identifying the spherical Hecke algebra as the center of the parahoric Hecke algebra (cf.
[Ga01]), and the geometric constant term CTM is a geometrization of the map cM in the following
sense: by definition the local model M{µ} is a closed reduced subscheme of GrG ⊗OF OE , and, up
to a sign, the function cM (τ ss

{µ}) ∈ Z(M(E0),M(OE0
)) is the function associated with the complex

CTM ◦ΨG,OE (IC{µ}),

cf. §7 below. The following result is the geometric analogue of the compatibility of the Bernstein
isomorphism with the constant term map [Hai14, (11.11.1)].

Theorem A. The usual functorialities of nearby cycles give a natural transformation of functors
Db
c(GrG)→ Db

c(F`M ×s η) as

CTM ◦ΨG −→ ΨM ◦ CTM ,

which is an isomorphism when restricted to Gm-equivariant complexes. Here Gm-equivariant means
with respect to the Gm-action induced by the cocharacter χ on GrG.

When the group G is split, G is an Iwahori and M a maximal torus (i.e.χ is regular), then
–forgetting the Galois action– Theorem A may be seen as a version of the result of Arkhipov and
Bezrukavnikov [AB09, Thm 4] (cf. also [Zhu14, §7] for tamely ramified groups). Another interesting
application of this result is given in the work of Heinloth, Ngô and Yun [HNY13, §9]. Let us remark
that our proof is based on a general commutation result for nearby cycles with hyperbolic localization
[Ri19, Thm 3.3] (cf. also [Na16, Prop 5.4.1(2)] for complex manifolds), and does not use Wakimoto
filtrations. Along with [Ri19] (adapted to ind-schemes in Theorem 6.1), the main geometric input
is the following result (cf. Theorem 5.5, 5.17 below): the cocharacter χ induces a Gm-action on GrG
trivial on OF . Let (GrG)0 denote the fixed points, and let (GrG)+ be the attractor ind-scheme in
the sense of Drinfeld [Dr] (cf. §2). There are natural maps

(GrG)0←(GrG)+→GrG ,

which relate to (1.1) as follows.

Theorem B. The maps (1.1) induce a commutative diagram of OF -ind-schemes

GrM GrP GrG

(GrG)0 (GrG)+ GrG ,

ι0 ι+ id

where the maps ι0 and ι+ are closed immersions which are open immersions on reduced loci. There
are the following properties:

i) In the generic fiber, the maps ι0F and ι+F are isomorphisms.

ii) If F ' Fq((t)) and G = G0 ⊗Fq F is constant, then ι0 (resp. ι+) identifies GrM (resp. GrP) as

the flat closure of the generic fiber in (GrG)0 (resp. in (GrG)+).

In down to earth terms, the Gm-action equips GrG with a stratification into locally closed strata.
The flat strata belong to GrP , and all other strata are concentrated in the special fiber and belong to
(GrG)+\ι+(GrP). Theorem A says that the cohomology of the nearby cycles on the strata belonging
to (GrG)+\ι+(GrP) vanishes.
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1.3.2. Translation to the local model. Let us explain what Theorem A means when translated to
the local model. The local model M{µ} is a closed subscheme of GrG which is stable under the
Gm-action. It induces a stratification of M{µ} into locally closed strata

M{µ} =
∐
w

(M{µ})
+
w ,

where w runs over the connected components of the fixed points (M{µ})
0, and the underlying

topological space of (M{µ})
+
w is the subspace of points x such that the limit limλ→0 χ(λ) · x lies in

the component for w ∈ π0((M{µ})
0). If G is quasi-split, and χ is regular, then π0((M{µ})

0) can be
identified with the {µ}-admissible set in the sense of Kottwitz-Rapoport, cf. Corollary of Theorem
C below.

Example. For G = Gl2,Qp , {µ} minuscule, and G an Iwahori, the local model M{µ} is the blow up

of P1
Zp in the point {0}Fp of the special fiber. The generic fiber is P1

Qp , and the special fiber consists

of two P1
Fp ’s meeting transversally at a single point {e}Fp . Choose χ : Gm,Zp → G, λ 7→ diag(λ, 1).

Then M is the maximal split diagonal torus in G. The Gm-action on P1
Zp , given in coordinates by

λ ∗ [x0 : x1] = [λ · x0 : x1], lifts uniquely to M{µ}, and agrees with the action constructed from χ.
Then the Gm-fixed points are

(M{µ})
Gm = {0}Zp q {∞}Zp q {e}Fp ,

and M{µ} decomposes into the three strata A1
Zp q {∞}Zp and A1

Fp . The first pair of strata are flat,

and contained in the smooth locus of M{µ}. Up to our choice of normalization, we get on compact
cohomology

H∗c(A1
F̄p q {∞}F̄p ,ΨG(Q̄`)) = Q̄`[−2](−1)⊕ Q̄`.

The non-flat stratum passes through the singularity {e}Fp , and a calculation shows

H∗c(A1
F̄p ,ΨG(Q̄`)) = 0,

which is in accordance with Theorem A.

For general groups and minuscule {µ} the situation is similar: the flat Gm-strata are contained in
the smooth locus of the local model, and the compact cohomology of the nearby cycles on the non-
flat Gm-strata vanishes by virtue of Theorem A. In particular, the sheaf ΨG(IC{µ}) is (a posteriori)
uniquely determined by its values on the Gm-strata lying in the smooth locus, and we do not need
to bother about the type of the singularities in the special fiber of M{µ}.

For general {µ} we make use of the fact that the functor in the generic fiber CTM corresponds
under the geometric Satake equivalence to the restriction of LG-representations V 7→ V |LM where
LM ⊂ LG is the closed subgroup associated with M ⊂ G. Hence, we know that the complex

CTM (IC{µ}),

decomposes according to the irreducible LM -representations appearing in V{µ}|LM with strictly
positive multiplicities. Hence, cM (τ ss

{µ}) decomposes accordingly, cf. Lemma 7.9. As cM (zss
{µ}) be-

haves similarly by Lemma 7.8, we conclude cM (τ ss
{µ}) = cM (zss

{µ}) by steps b), c) above, and hence

τ ss
{µ} = zss

{µ}.

1.4. Other results. Let us mention other results in the paper which we think are of independent
interest. We use the following version of the geometric Satake equivalence

ωG : SatG
'−→ RepQ̄`(

LG), A 7→
⊕
i∈Z

Hi(GrG,A)(i/2),

where SatG is the full subcategory of PervL+G(GrG) generated by the intersection complexes on the
L+G-orbits, and Q̄`-local systems on Spec(F ) which are trivial after a finite extension, cf. §3.4 for
details. We consider the composition of functors

CTM ◦ΨG : SatG → Db
c(F`G ×s η)→ Db

c(F`M ×s η).
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Let us specialize to the case whereM is a very special parahoric group scheme, i.e. M⊗OF̆ is special

in the sense of Bruhat-Tits where F̆ /F is the completion of the maximal unramified extension. In
this case, there is the ramified version of the geometric Satake equivalence [Zhu14, Ri16a] which
gives an equivalence of Tannakian categories

ωM : SatM
'−→ RepQ̄`(

LMr), A 7→
⊕
i∈Z

Hi(GrG,A)(i/2),

where SatM is a certain subcategory of PervL+M(F`M×s η), and LMr = M̂ IF oΓF considered as a

closed subgroup of LG = ĜoΓF . Note that the group of invariants M̂ IF is a possibly disconnected
reductive group over Q̄`. The following result is a generalization of [AB09, Thm 4] to not necessarily
split reductive groups.

Theorem C. Let M be very special, and hence M is quasi-split. For every A ∈ SatG, one has
CTM ◦ΨG(A) ∈ SatM, and there is a commutative diagram of Tannakian categories

SatG SatM

RepQ̄`(
LG) RepQ̄`(

LMr),

CTM ◦ΨG

res
ωG ωM

where res : V 7→ V |LMr
is the restriction of representations.

The theorem allows us to calculate the support of the nearby cycles Supp(ΨG(IC{µ})), and we
obtain the following result.

Corollary. The smooth locus (M{µ})
sm is fiberwise dense in M{µ}, and on reduced subschemes

(M{µ},k)red = Supp(ΨG(IC{µ})) =
⋃

w∈Admf
{µ}

F`≤wG ,

where Admf
{µ} denotes the admissible set in the sense of Kottwitz-Rapoport, cf. §6.3 for details.

If G splits over a tamely ramified extension and p - |π1(Gder)|, then the corollary is a weaker form
of [PZ13, Thm 9.3] (if F/Qp) and [Zhu14, Thm 3.8] (if F ' Fq((t))). Hence, the result is new when
either p | |π1(Gder)| or F ' Fq((t)) and G splits over a wildly ramified extension. Let us point out
that these are still classes containing infinite families: the first case happens e.g. for PGln with p | n,
the second case e.g. for unitary groups in characteristic 2 as follows. Let q = 2 and F = F2((t)), and
assume n > 2. Outer forms of Sln,F are classified by the Galois cohomology set H1(F,Z/2) which
by Artin-Schreier theory is equal to

F2((t))/PF2((t)) = F2[t−1]/PF2[t−1],

where P := (-)2−id is considered as an additive map. For distinct odd integers a, b ∈ Z<0, the classes
[ta] and [tb] are different, and hence give rise to non-isomorphic special unitary groups. Explicitly,
if Fa (resp. Fb) denotes the quadratic field extension determined by the equation X2 − X − ta

(resp. X2−X − tb), then the associated quasi-split ramified special unitary groups SUn(Fa/F ) and
SUn(Fb/F ) are non-isomorphic. It would be interesting to give a moduli theoretic description of
the local models for these cases.

1.5. Acknowledgements. It is a pleasure for us to thank the following people for inspiration,
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Görtz, Jochen Heinloth, Eugen Hellmann, George Pappas, Michael Rapoport, Larry Washington
and Torsten Wedhorn.

The authors are grateful to the Simons Foundation, to Michael Rapoport and the University of
Bonn, and to Benoit Stroh and the University of Paris VI, for providing financial and logistical
support which made this research possible.



THE TEST FUNCTION CONJECTURE FOR PARAHORIC LOCAL MODELS 9

1.6. Overview. In §2 we collect some basic facts about Gm-actions on (ind-)schemes. These are
applied in §3 and §4 to study Gm-actions on affine Grassmannians and affine flag varieties, laying the
foundations towards proving Theorem B, which is needed to deduce our Theorem A from Theorem
6.1. In §5 we study the degeneration of the Gm-stratification on affine Grassmannians to affine
flag varieties and prove Theorem B. Our geometric study is applied in §6 to the construction of
geometric constant term functors on affine flag varieties and the proofs of Theorems A and C from
the introduction. In the last section §7, we explain the reduction steps a)-c) in order to prove our
Main Theorem.

1.7. Conventions on ind-schemes. Let R be a ring. An R-space X is a fpqc sheaf on the category
of R-algebras, i.e. X : R-Alg→ Sets is a (covariant) functor that respects finite products, and such
that, for every R′ → R′′ faithfully flat, the set X(R′) is the equalizer of X(R′′) ⇒ X(R′′ ⊗R′ R′′).
Let SpR denote the category of R-spaces. It contains the category SchR of R-schemes as a full
subcategory. An R-ind-scheme is a (covariant) functor

X : R-Alg→ Sets

such that there exists a presentation as presheaves X = colimiXi where {Xi}i∈I is a filtered system
of R-schemes Xi with transition maps being closed immersions. Note that filtered colimits exist
in the category SpR, and agree with the colimits as presheaves. Hence, every R-ind-scheme is an
R-space. The category of R-ind-schemes IndSchR is the full subcategory of SpR whose objects are
R-ind-schemes. If X = colimiXi and Y = colimjYj are presentations of ind-schemes and all Xi are
quasi-compact, then as sets

HomIndSchR(X,Y ) = limi colimj HomSchR(Xi, Yj),

because every map Xi → Y factors over some Yj (by quasi-compactness of Xi, cf. e.g. [Goe08, Lem
2.4]). The category IndSchR is closed under fiber products, i.e., colim(i,j)(Xi×RYj) is a presentation
of X×RY . If P is a property of schemes, then an R-ind-scheme X is said to have ind-P if there exists
a presentation X = colimiXi where each Xi has property P. A map f : X → Y of ind-schemes is
said to have property P if f is schematic and for all R-schemes T , the pullback f ×R T has property
P.

1.8. Notation. Let F be a non-archimedean local field1 with ring of integers OF and finite residue
field kF ' Fq of characteristic p > 0. Let F̄ be a fixed separable closure with ring of integral

elements OF̄ , and residue field k̄F (an algebraic closure of kF ). The field F̆ is the completion of the
maximal unramified subextension with ring of integers OF̆ . Let ΓF = Gal(F̄ /F ) the Galois group

with inertia subgroup IF ' ΓF̆ and quotient ΣF = ΓF /IF ' Gal(k̄F /kF ). Let σF ∈ ΣF denote the

arithmetic Frobenius, and write ΦF = σ−1
F for the geometric Frobenius. We normalize the valuation

|-|F : F → Q so that an uniformizer in OF has valuation q−1. If the field F is fixed, we sometimes
drop the subscript F from the notation.

We fix a prime ` 6= p, and an algebraic closure Q̄` of Q`. We fix once and for all q1/2 ∈ Q̄`, and
the square root of the cyclotomic character ΓF → Z×` which maps any lift of ΦF to q−1/2, cf. §3.4.

If X is an Fq-scheme and x ∈ X(Fq), then the geometric Frobenius ΦF acts on Q̄`(−1/2)x̄ by q1/2.

For a connected reductive F -group G, we denote by Ĝ the Langlands dual group viewed as an
algebraic group over Q̄`. The action of the Galois group ΓF on Ĝ via outer automorphism is trivial
restricted to ΓE for any finite separable E/F which splits G. Throughout the paper, we denote by
LG = Ĝo ΓF the Galois form of the L-group which we view via Ĝo ΓF = lim←−E Ĝo Gal(E/F ) as

an algebraic group over Q̄`.
Our Hecke algebras H(G(F ),G(OF )) consist of functions taking values in the field Q̄`. Convolu-

tion is always defined using the Haar measure giving volume 1 to G(OF ). We let Z(G(F ),G(OF ))
denote the center of H(G(F ),G(OF )).

1Sometimes we consider more general fields which we indicate at the beginning of the section.
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2. Recollections on Gm-actions

We recall some set-up and notation from [Dr] and [Ri19]. Let R be a ring, and let X be an
R-scheme (or R-ind-scheme) equipped with an action of Gm which is trivial on R. There are three
functors on the category of R-algebras

(2.1)

X0 : R′ 7−→ HomGm
R (Spec(R′), X)

X+ : R′ 7−→ HomGm
R ((A1

R′)
+, X)

X− : R′ 7−→ HomGm
R ((A1

R′)
−, X),

where (A1
R)+ (resp. (A1

R)−) is A1
R with the usual (resp. opposite) Gm-action. The functor X0 is

the functor of Gm-fixed points in X, and X+ (resp. X−) is called the attractor (resp. repeller).
Informally speaking, X+ (resp. X−) is the space of points x such that the limit limλ→0 λ · x (resp.
limλ→∞ λ · x) exists. The functors (2.1) come equipped with natural maps

(2.2) X0 ← X± → X,

where X± → X0 (resp. X± → X) is given by evaluating a morphism at the zero section (resp. at
the unit section). If R is a field and if X is a quasi-separated R-scheme of finite type, the functors
X0 and X± are representable by quasi-separated R-schemes of finite type, cf. [Dr, Thm 1.4.2] and
[AHR, Thm 2.24]. If X = colimiXi is an ind-scheme, and if each Xi is Gm-stable, quasi-separated
and of finite type, then X0 = colimiX

0
i and X± = colimiX

±
i are ind-schemes.

More generally, whenever the Gm-action on a scheme X is étale locally linearizable, i.e., the
Gm-action lifts - necessarily uniquely - to an étale cover which is affine over R and on which Gm
acts linearly, then the functors X0 and X± are representable by [Ri19, Thm 1.8]. The property of
being étale locally linearizable comes from the generalization of Sumihiro’s theorem [AHR, §2.3].
In the present manuscript, the Gm-actions are even Zariski locally linearizable, i.e. the Gm-action
is linear on a Zariski open cover (cf. Lemma 3.3, 5.3 below). Let us explain how [Ri19, Thm 1.8]
generalizes to ind-schemes. We say a Gm-action on an R-ind-scheme X is étale (resp. Zariski)
locally linearizable if there is a Gm-stable presentation X = colimiXi where the Gm-action on each
Xi is étale (resp. Zariski) locally linearizable.

Theorem 2.1. Let X = colimiXi be an R-ind-scheme equipped with an étale locally linearizable
Gm-action.

i) The subfunctor X0 of X is representable by a closed sub-ind-scheme, and X0 = colimiX
0
i .

ii) The functor X± is representable by an ind-scheme, and X± = colimiX
±
i . In particular, the

map X± → X is schematic. The map X± → X0 is ind-affine with geometrically connected fibers.

iii) If X = colimiXi is of ind-finite presentation (resp. separated), so are X0 and X±.

Proof. By definition of an ind-scheme, each Xi is quasi-compact, and hence the schemes X0
i and

X±i are again quasi-compact by [Ri19, Thm 1.8 iii)]. Further, if Xi ↪→ Xj is a closed immersion,
then X0

i = Xi ×Xj X0
j ↪→ X0

j is a closed immersion. This implies i). If Xi is affine, then X±i ⊂ Xi

is a closed immersion by [Ri19, Lem 1.9 ii)]. It follows that if both Xi and Xj are affine, then
X±i ↪→ X±j is a closed immersion. For the general case, choose an affine étale Gm-equivariant cover
U → Xj . Then the following diagram of R-schemes

(U ×Xj Xi)
± X±i

U± X±j

is cartesian which immediately follows from the definition. As Xi ↪→ Xj is a closed immersion, the
map U ×Xj Xi ↪→ U is a closed immersion of affine schemes. Hence, (U ×Xj Xi)

± ↪→ U± is a closed
immersion by the affine case. As being a closed immersion is étale local on the target we conclude
X±i ↪→ X±j is a closed immersion (note that U± → X±j is étale surjective by [Ri19, Lem 1.10, 1.11]).
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Hence, X± = colimiX
±
i is an ind-scheme, and X± → X is schematic because for any quasi-compact

test scheme T → X we have X± ×X T = X±i ×Xi T for i >> 0. Since all maps X±i → X0
i are

affine (resp. geometrically connected) by [Ri19, Prop 1.17 ii)], the map X± → X0 is ind-affine
(resp. geometrically connected) as well. Part ii) follows. If each Xi is of finite presentation (resp.
separated), so are X0

i and X±i because the properties locally of finite presentation, quasi-compact
and quasi-separated (resp. separated) are preserved by [Ri19, Thm 1.8 iii)]. Hence, X0 = colimiX

0
i

and X± = colimiX
±
i is of ind-finite presentation. This implies iii), and the theorem follows. �

We shall use the following fact.

Lemma 2.2. Let Spec(R) be connected. Let X (resp. Y ) be an R-ind-scheme, endowed with an étale
(resp. Zariski) locally linearizable Gm-action. Let Y be separated, and let X → Y be a schematic
Gm-equivariant morphism.

i) If X → Y is locally of finite presentation (resp. quasi-compact; resp. quasi-separated; resp. separated;
resp. smooth; resp. proper), so is the morphism X0 → Y 0.

ii) If X → Y is locally of finite presentation (resp. quasi-compact; resp. quasi-separated; resp. separated;
resp. smooth), so is the morphism X± → Y ±.

Proof. The statement for X− → Y − follows from the statement for X+ → Y + by inverting the Gm-
action, and it is enough to treat the latter. Further, all properties listed are stable under base change
and fpqc local on the base, which will be used throughout the proof without explicit mentioning.

Let Y = colimj Yj be a Gm-stable presentation. Using (X ×Y Yj)0 = X0 ×Y 0 Y 0
j (resp. (X ×Y

Yj)
+ = X+ ×Y + Y +

j ) and noting that the property of being étale locally linearizable is preserved

under closed immersions, we reduce to the case that Y = Yj is a (quasi-compact) separated scheme.
Hence, X is a scheme as well (because X → Y is schematic).

Let U → X (resp. V → Y ) be an Gm-equivariant étale (resp. Zariski) cover with U (resp. V )
being a (resp. finite) disjoint union of affine schemes. As Y is separated, the map V → Y is affine,
i.e. the intersection of two open affines is again affine. The cartesian diagram of R-schemes

U ×Y V X ×Y V V

U X Y,

shows that the map U ×Y V → U is affine (because affine morphisms are stable under base change).
Hence U ×Y V is a disjoint union of affine schemes as well, and the Gm-action on X ×Y V is
étale locally linearizable. By [Ri19, Thm 1.8 i), ii)] the map V 0 → Y 0 (resp. V + → Y +) is étale
surjective, and we reduce to the case that Y is affine.

As Spec(R) is connected a Gm-action on Y is the same as a Z-grading on its ring of global
functions, and by [Ri19, Lem 1.9] both Y 0 ⊂ Y and Y + ⊂ Y are closed (affine) subschemes. Using
X0 = (X ×Y Y 0)0 (resp. X+ = (X ×Y Y +)+) and noting again that the property of being étale
locally linearizable is preserved under closed immersions, we reduce in part i) (resp. in part ii))
to the case Y = Y 0 (resp. Y = Y +). Now by [Ri19, Thm 1.8 iii)], X0 → Y satisfies each of the
properties listed which X → Y satisfies (“proper” is not listed there but this follows using that
X0 ⊂ X is a closed immersion). This shows i).

For ii) note that the property of being locally of finite presentation is equivalent to the property
of being limit preserving [StaPro, Tag 04AK], and the latter is immediate from the definition of
X+. Now consider the map Y = Y + → Y 0 of affine schemes. The map X+ → Y factors as
X+ → X0×Y 0 Y → Y , and using i), the map X0×Y 0 Y → Y has each of the properties listed. The
map X+ → X0 being affine (cf. [Ri19, Cor 1.12]) implies that X+ → X0 ×Y 0 Y is affine, hence
quasi-compact and separated, and ii) for the properties “quasi-compact” and “(quasi)-separated”
follows.

It remains to treat the property “smooth”. Consider the cover U → X again. Using [Ri19, Thm
1.8 ii)], the map U+ → X+ is étale surjective. Applying [StaPro, Tag 02K5] to the commutative
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diagram of R-schemes

U+ X+

Y ,

we reduce to the case where X is affine. By a standard reduction (cf. [Mar15, Lem 3.1]), we may
further assume Y (hence X) is Noetherian. Following the arguments in [Mar15, Lem 3.2] we proceed
in two steps.

The map X+ → Y is smooth at all points in X0. Let x ∈ X0, and denote by y ∈ Y 0 its image. We
first consider the case where κ(y) ' κ(x). Let A (resp. B; resp. C = B/J) denote the coordinate
rings of Y (resp. X; resp. X+). Let A = ⊕i∈ZAi (resp. B = ⊕i∈ZBi; resp. C = ⊕i∈ZCi) be the
grading given by the Gm-action. As X → Y is Gm-equivariant, the maps A→ B and B → B/J = C
are Z-graded. The equality Y = Y + (resp. (X+)+ = X+) means that Ai = 0 (resp. Ci = 0) for
all i < 0. Further, κ(y) ' κ(x) means that there is an isomorphism A/my ' B/mx on residue
fields. Let (b̄1, . . . , b̄d) be a homogeneous basis of mx/m

2
x. Since the surjective map mx → mx/m

2
x is

Z-graded, we can lift each b̄i to an homogeneous element bi ∈ Bni of some degree ni ∈ Z. By [EGA
IV, Prop 17.5.3 d”)] there is an isomorphism on completed local rings

Â[[t1, . . . , td]]
'−→ B̂, ti 7−→ bi.

Recall that we arranged Y to be Noetherian. After renumbering the bi we may assume that for
some r ≥ 1 we have ni < 0 for all 1 ≤ i ≤ r − 1 and ni ≥ 0 for all r ≤ i ≤ d. As B is Noetherian,
we have Ĉ ' B̂/JB̂, and further JB̂ is the ideal generated by the ti for 1 ≤ i ≤ r − 1. Thus,

Ĉ ' Â[[tr, . . . , td]] which implies that the map A→ C is smooth at x.

Using the “diagonal trick” as in [Mar15, Lem 3.2 “General case”], we reduce to the case κ(y) ' κ(x)
on residue fields, while preserving the property Y = Y +. We have commutative diagrams

X+ //

��

X

}}

X+ ×Y X //

pr2

��

X ×Y X

xx
Y X

where the second diagram arises from the first by base-change along X → Y . The horizontal arrows
are closed immersions. Since X → Y is smooth, as in [Mar15, Lem 3.2] it is enough to prove pr2

is smooth at (x, x). But its image x satisfies κ(x) ' κ(x, x); hence we are reduced to the case
κ(y) ' κ(x). However we need to do the reduction to Y + = Y again, since the target X of pr2 need
not have this property. But in that reduction pr2 above is replaced by pr2 : X+ ×Y X+ → X+,
and (x, x) is still sent to x. Therefore the reduction does not alter the property κ(y) ' κ(x) when
x ∈ X+.

The map X+ → Y is smooth. Let X+
sm denote the open locus where the map X+ → Y is smooth

which is Gm-invariant and contains X0 by the previous step. The Gm-action on X extends to a
monoid action A1

R×X+ → X+. Let X+
sm = (A1

R×X+)×X+X+
sm which is an open Gm×Gm-invariant

subscheme of A1
R ×X+ which contains {0}R ×X+. Hence, X+

sm = A1
R ×X+ and thus X+

sm = X+.
For details the reader may consult [Mar15, Claim 3.4]. The lemma follows. �

Corollary 2.3. Under the assumptions of Lemma 2.2. If X → Y is a quasi-compact immersion
(resp. closed immersion; resp. open immersion), so are the maps X0 → Y 0 and X± → Y ±.

Proof. As above we may assume that X and Y are schemes. If X → Y is a quasi-compact immersion,
then by [StaPro, Tag 01RG] there is a factorization X → X̄ → Y into an open immersion followed
by a closed immersion. Here X̄ denotes the scheme theoretic image of X → Y which is Gm-invariant.
Using the preservation of quasi-compactness from Lemma 2.2, it is enough to treat the case of an
open immersion and a closed immersion separately. Closed immersions where already treated in the
proof of Theorem 2.1 above. If X → Y is a monomorphism, so are X0 → Y 0 and X± → Y ±. As
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being an open immersion is equivalent to being a smooth monomorphism (cf. [StaPro, Tag 025G]),
the corollary follows for open immersions. �

3. Affine Grassmannians

We collect some facts on the geometry and cohomology of constant term maps on affine Grass-
mannians as considered in [BD, BG02, MV07]. We include full proofs of those statements where we
did not find a reference.

Let F be any field, and let G be a smooth affine F -group. The loop group LG = LzG is the
group functor on the category F -algebras

LG : R 7−→ G(R((z))),

where z denotes an additional formal variable. Then LG is representable by an ind-affine ind-group
scheme, and in particular defines a fpqc sheaf on the category of F -algebras. The positive loop group
L+G = L+

z G is the group functor on the category F -algebras

L+G : R 7−→ G(R[[z]]),

and we view L+G ⊂ LG as a subgroup functor. The affine Grassmannian GrG = GrG,z is the fpqc
sheaf on the category of F -algebras associated with the functor

R 7−→ LG(R)/L+G(R).

Then GrG is representable by a separated ind-scheme of ind-finite type over F , and is ind-proper
(and then even ind-projective) if and only if the neutral component G◦ is reductive. The affine
Grassmannian is equipped with a transitive action of the loop group

(3.1) LG×GrG −→ GrG,

i.e. a surjection of sheaves.

3.1. The open cell. The Beauville-Laszlo gluing lemma [BL95] shows that the sheaf GrG represents
the functor on the category F -algebras R parametrizing isomorphism classes of tuples (F , α) with

(3.2)

{
F a G-torsor on P1

R;

α : F|P1
R\{0} ' F

0|P1
R\{0} a trivialization,

where F0 denotes the trivial G-torsor. The variable z is identified with a local coordinate of P1
F at

the origin, and we let P1
F \{0} = Spec(F [z−1]). The negative loop group L−G = L−z G is the functor

on the category of F -algebras

L−G : R 7−→ G(R[z−1]).

Then L−G is representable by an ind-affine ind-group scheme of ind-finite type over F (ind-finite
type because the functor commutes with filtered colimits). Let L−−G = ker(L−G→ G), z−1 7→ 0.

Lemma 3.1. Let G be a smooth affine F -group scheme, and let e0 ∈ GrG(F ) denote the base point.
The orbit map

L−−G→ GrG, g 7→ g · e0

is representable by an open immersion, and identifies L−−G with those pairs (F , α) where F is the
trivial torsor.

Proof. For any F -algebra R, the loop group LG(R) parametrizes isomorphism classes of triples
(F , α, β) where (F , α) ∈ GrG(R) and β : F0|R[[z]] ' F|R[[z]]. Hence, the multiplication map is given
in the moduli description as

L−−G× L+G −→ LG, (g−, g+) 7→ (F0, g−, g+).

Conversely, every triple (F , α, β) with F being the trivial torsor is isomorphic to a triple of the
form (F0, g−, g+) for unique g− ∈ L−−G(R) and g+ ∈ L+G: as F ' F0 is trivial, the trivialization
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α defines an element in Aut(F0|P1
R\{0}) = L−G(R). We extend the image ᾱ ∈ G(R) under the

reduction z−1 7→ 0 constantly to α̃ ∈ G(P1
R). We put

g− = α ◦ (α̃|P1
R\{0})

−1 and g+ = (α̃|R[[z]]) ◦ β.

Then (F0, g−, g+) and (F , α, β) define the same element in LG(R), and g− ∈ L−−G(R) (because
g− ≡ 1 mod z−1 by construction). The uniqueness of g− (and hence g+) follows from G(P1

R) =
G(R). Thus, the map L−−G → GrG identifies L−−G with the pairs (F , α) where F is the trivial
torsor, and it is enough to show that being the trivial G-torsor on P1

R is an open condition on
Spec(R).

As L−−G and GrG commute with filtered colimits, we may assume R to be a local ring: if we have
a map Spec(R)→ GrG which factors on a point p ∈ Spec(R) through L−−G, then from the case of
a local ring we would get a unique section Spec(Rp)→ L−−G. Since L−−G is of ind-finite type, we
get a section Spec(Rf )→ L−−G for some f ∈ R\p. These maps glue by uniqueness of the section,
and there is some biggest open U ⊂ Spec(R) together with a section U → L−−G. It remains to
treat the case of a local ring R with maximal ideal m. Again as L−−G and GrG commute with
filtered colimits, we may further assume that R is Noetherian.

Let (F , α) ∈ GrG(R) be a point. Assume that F|P1
R0

is trivial where R0 = R/m is the residue

field. Being trivial is equivalent to the existence of a section s0 : P1
R0
→ F . Our aim is to lift s0

successively to a compatible family of sections sn : P1
Rn
→ F where Rn = R/mn+1 for n ≥ 0. As F

is smooth (because G is smooth), the obstruction of lifting sn to sn+1 lives in

(3.3) H1(P1
R0
, s∗0(gF/P1

R0
)⊗OP1

R0

(mn+1OP1
R
/mn+2OP1

R
)),

where gF/P1
R0

= (Ω1
F/P1

R0

)∗, cf. [SGA1, Exp. III, Cor 5.4]. Now F|P1
R0

is trivial, and hence

s∗0(gF/P1
R0

) ' g ⊗R0 OP1
R0

where g = e∗(Ω1
G/F )∗ is the Lie algebra of G. On the other hand, it is

clear that
mn+1OP1

R
/mn+2OP1

R
= (mn+1/mn+2)⊗R0

OP1
R0
.

Since H1(P1
R0
,OP1

R0
) = 0, we see that (3.3) vanishes. Thus, we get a compatible family of sections

sn : P1
Rn
→ F . As F is affine over P1

R, we get a section P1
R̂
→ F where R̂ = limnR/m

n. Hence,

we showed that F|P1
R̂

is trivial, and so (F , α) defines a point in L−−G(R̂). As R is noetherian,

the map R → R̂ is faithfully flat, and we can use the sheaf property of L−−G and GrG as follows:
the map L−−G → GrG is a monomorphism which implies that (F , α) lies in the equalizer of

L−−G(R̂) ⇒ L−−G(R̂⊗R R̂), i.e. defines a point of L−−G(R). Therefore, F|P1
R

needs to be trivial
which is what we wanted to show. �

The lemma shows that the map LG→ GrG has sections Zariski locally whenever GrG is covered
by L−−G-translates, e.g. G split connected reductive. The following corollary is an immediate
consequence of Lemma 3.1, and is due to [LS97, Prop 4.6] for connected reductive groups (see also
[Fal03, dHL]).

Corollary 3.2. The multiplication map L−−G×L+G→ LG is representable by an open immersion.

3.2. Schubert varieties. Let G be a connected reductive group over an arbitrary field F . By a
Theorem of Grothendieck [SGA3, XIV, 1.1], there exists a maximal F -torus T ⊂ G. The absolute
Weyl group is

W abs
0

def
= NormG(T )(F̄ )/T (F̄ ).

The Weyl group W abs
0 acts on the F̄ -cocharacter lattice X∗(T ). As all maximal F̄ -tori are conjugate,

the set X∗(T )/W abs
0 parametrizes the GF̄ -conjugacy classes of geometric cocharacters. Each class

{µ} ∈ X∗(T )/W abs
0 has a field of definition E/F which is a finite separable extension. The {µ}-

Schubert variety is the reduced L+GF̄ -orbit closure

(3.4) Gr
≤{µ}
G

def
= L+GF̄ · zµ · e0,
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where e0 ∈ GrG denotes the base point. The scheme Gr
≤{µ}
G is a projective variety which is defined

over E. The unique open L+GE-orbit

(3.5) Gr
{µ}
G ↪→ Gr

≤{µ}
G

is a smooth dense open subvariety of Gr
≤{µ}
G . If the class {µ} has an E-rational representative µ, then

we simply write GrµG (resp. Gr≤µG ). The Cartan decomposition LG(F̄ ) = L+G(F̄ ) ·LT (F̄ ) ·L+G(F̄ )
implies that there is a presentation on reduced loci

(3.6) (GrG)red = colim{λ}
⋃

{µ}∈ΓF ·{λ}

Gr
≤{µ}
G ,

where {λ} runs through the Galois orbits in X∗(T )/W abs
0 , and each finite disjoint union of Schubert

varieties is defined over F .

3.3. Torus actions on affine Grassmannians. Let G be a connected reductive group over an
arbitrary field F . Let χ : Gm,F → G be a F -rational cocharacter. The cocharacter χ induces via
the composition

(3.7) Gm ⊂ L+Gm
L+χ−→ L+G ⊂ LG

a (left) Gm-action on the affine Grassmannian GrG. As in (2.2) we obtain maps of F -spaces

(3.8) (GrG)0 ← (GrG)± → GrG.

Let us mention the following lemma which implies the ind-representability of the spaces (3.8), in
light of Theorem 2.1.

Lemma 3.3. The Gm-action on GrG via (3.7) is Zariski locally linearizable.

Proof. Let G ↪→ Gln be a faithful representation. The fppf quotient Gln /G is affine, and hence the
map GrG ↪→ GrGln is representable by a closed immersion (cf. [Zhu, Prop 1.2.6]) and equivariant

for the Gm-action via Gm
χ→ G → Gln. We reduce to the case G = GLn. After conjugation, we

may assume that Gm → Gln factors through the diagonal matrices. Let Λ0 denote the standard
F [[z]]-lattice of F ((z))n and let Λ0,R = R[[z]]⊗F [[z]] Λ0. We write GrG = colimi GrG,i where

GrG,i(R) = {Λ ⊂ R((z))n | ziΛ0,R ⊂ Λ ⊂ z−iΛ0,R},

is the moduli space of R[[z]]-lattices in R((z))n bounded by i ≥ 0. The F -vector space Vi =
z−iΛ0/z

iΛ0 has a canonical basis and is equipped with a linear Gm-action which preserves this
basis. The projective F -scheme Quot(Vi) which parametrizes quotients of Vi is a finite disjoint
union of the classical Grassmannians Grassd(Vi) for 0 ≤ d ≤ dim(Vi). Then the closed immersion

pi : GrG,i ↪→ Quot(Vi), Λ 7→ z−iΛ0/Λ

is Gm-equivariant with a linear action on the target. For varying i, the maps pi can be arranged
into a system compatible with the standard affine opens of Quot(Vi) given by the canonical basis of
Vi. The lemma follows. �

3.3.1. Fixed points, attractors and repellers. Our aim is to express (3.8) in terms of group theoretical
data related to the cocharacter χ, cf. Proposition 3.4 below.

Let χ act on G via conjugation (λ, g) 7→ χ(λ) · g · χ(g)−1. The fixed points M = G0 is the
centralizer of χ and defines a connected reductive subgroup of G. The attractor P+ = G+ (resp.
the repeller P− = G−) is a parabolic subgroup of G with P+ ∩ P− = M . By (2.2) we have natural
maps of F -groups

(3.9) M ← P± → G,

and the map P± →M identifies M as the maximal reductive quotient, cf. [CGP10, 2.1].
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Proposition 3.4. The maps (3.9) induce a commutative diagram of F -ind-schemes

(3.10)

GrM GrP± GrG

(GrG)0 (GrG)± GrG,

' ' id

where the vertical maps are isomorphisms.

Remark 3.5. The statement GrM ' (GrG)0 appeared in [Zhu09, Thm 1.3.4], but its proof contains
a mistake: [Zhu09, Lem 1.3.5] only holds in the case that R is a field and fails otherwise. The authors
were told by the author of [Zhu09] (private communication) that he was aware of the mistake and
knew how to fix it. In view of Proposition 3.4 the results of [Zhu09] remain valid.

Let us construct the diagram in Proposition 3.4. As the Gm-action on GrM is trivial, the
natural map GrM → GrG factors as GrM → (GrG)0 → GrG. We use a construction explained
in Heinloth [He, 1.6.2] to define the map GrP+ → (GrG)+ in terms of the moduli description
(3.2) (the construction of GrP− → (GrG)− is given by inverting the Gm-action). The Gm-action
P+ × Gm,F → P+, (p, λ) 7→ χ(λ) · p · χ(λ)−1 via conjugation extends via the monoid action of A1

on (A1
F )+ in (2.1) to a monoid action

(3.11) mχ : P+ × A1
F −→ P+

such that mχ(p, 0) ∈ M . We let grχ : P+ × A1
F → P+ × A1

F , (p, λ) 7→ (mχ(p, λ), λ) viewed as

an A1
F -group homomorphism. Then the restriction grχ |{1} is the identity whereas grχ |{0} is the

composition P+ →M → P+. For a point (F+, α+) ∈ GrP+(R), the Rees bundle is

(3.12) Reesχ(F+, α+)
def
= grχ,∗(F+

A1
R
, α+

A1
R

) ∈ GrP+(A1
R),

where grχ,∗ denotes the push forward under the A1-group homomorphism. The Rees bundle

Reesχ(F+, α+)|{1}R is equal to (F+, α+) whereas Reesχ(F+, α+)|{0}R is the image of (F+, α+)

under the composition GrP+ → GrM ↪→ GrP+ . One checks that Reesχ(F+, α+) is Gm-equivariant,
and hence defines an R-point of (GrP+)+. As the Rees construction is functorial, we obtain a map
of F -ind-schemes

(3.13) Reesχ : GrP+ → (GrP+)+,

which is inverse to the map (GrP+)+ → GrP+ given by evaluating at the unit section. We define
the map GrP+ → (GrG)+ to be the composition GrP+ ' (GrP+)+ → (GrG)+ where the latter
map is deduced from the natural map GrP+ → GrG. This constructs the commutative diagram in
Proposition 3.4.

Proof of Proposition 3.4. We may assume F to be algebraically closed. The Iwasawa decomposition
G(F ((z))) = P±(F ((z))) ·G(F [[z]]) (which follows from the valuative criterion applied to the proper
scheme G/P±) implies that the vertical maps are bijections on F -points. It is enough to see that
the maps are isomorphisms of ind-schemes in an open neighborhood of the base point. By Lemma
3.1 the natural map

(3.14) L−−G −→ GrG

is representable by an open immersion, and likewise for P± (resp. M) replacing G. Further, the
map (3.14) is Gm-equivariant for the conjugation action on L−−G. Hence, we are reduced to proving
that the natural closed immersions of ind-affine ind-schemes

L−M −→ (L−G)0(3.15)

L−P± −→ (L−G)±(3.16)

are isomorphisms. For any F -algebra R, we have on points

(L−G)0(R) = {g ∈ G(R[z−1]) | ∀S ∈ (R-Alg), λ ∈ S× : χ(λ) · g · χ(λ)−1 = g},
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and L−M(R) is by definition (remember M = G0) the subset of those g ∈ G(R[z−1]) such that
χ(λ) · g ·χ(λ)−1 = g holds for all λ ∈ S[z−1]× with S ∈ (R -Alg). In particular, if R is reduced, then
the point g : Spec(R)→ L−G factors through the reduced locus, and it is enough to test on reduced
R-algebras S. But for reduced S, we have S[z−1]× = S× which implies that (3.15) is a bijection on
R-valued points.

In general, as all functors in (3.15) and (3.16) commute with filtered colimits, we may assume
R to be Noetherian. Let I ⊂ R be the nilradical, and let g ∈ (L−G)0(R). As L−M is formally
smooth (because M is smooth), we reduce to the case that g lies in the kernel of the reduction map
L−G(R)→ L−G(R/I). Let N+ (resp. N−) be the unipotent radical of P+ (resp. P−) which also
is the kernel of the map P+ →M (resp. P− →M). Then the multiplication map

N− ×M ×N+ −→ G

is an open immersion, and clearly contains the unit section in its image. Hence, the element
g ∈ G(R[z−1]) has a factorization of the form g = n+ · m · n− for unique n± ∈ N±(R[z−1]) and
m ∈ M(R[z−1]). As each group N± is stable under the Gm-action, the elements n± must be Gm-
fixed points which implies n± = 1 (by definition of N±). Hence, g = m ∈ L−M(R). The reasoning
in the case of (3.16) is similar. The proposition follows. �

The following lemma is the analogue of Proposition 3.4 over a discrete valuation ring, and is
needed in the proof of Theorem 5.17 below.

Lemma 3.6. Assume that (G,χ) are defined over a discrete valuation ring O, i.e., G is a reductive
group scheme over O with geometrically connected fibers, and χ : Gm,O → G a cocharacter. Then
(3.10) is defined over O, and the vertical maps are isomorphisms.

Proof. The fixed point subgroup M ⊂ G, and the attractor (resp. repeller) subgroup P+ ⊂ G (resp.
P− ⊂ G) are defined over O, and representable by smooth closed subgroups of G, cf. [Mar15]. Then
the functors GrM , GrP± and GrG are defined over O, and representable by separated O-ind-schemes
of ind-finite type. Further, the diagram (3.10) is defined over O by the same construction as above.

By Proposition 3.4, the vertical maps in (3.10) are fiberwise isomorphisms, i.e., after passing to
its fraction field Frac(O) resp. its residue field k. We do not know whether the O-ind-schemes are
ind-flat, and hence we have to argue differently. Lemma 3.1 holds for F replaced with O – in fact
for any ring – by the same argument. Hence, the maps (3.15) are isomorphisms over O by the same
proof as in Proposition 3.4. By fpqc-descent, it is enough to prove that the vertical maps in (3.10)

are isomorphisms after passing to the strict Henselization Ŏ. We consider the open subset

VM
def
=
⋃
m

m · L−−M · e0 (resp. VP±
def
=
⋃
p

p · L−−P± · e0),

of GrM (resp. GrP±), where the union runs over all m ∈ LM(Ŏ) (resp. p ∈ LP±(Ŏ)). By LM -
equivariance (resp. LP±-equivariance) of the map GrM → (GrG)0 (resp. of the map GrP± →
(GrG)0), it is an isomorphism restricted to VM (resp. VP±). As we already know that the maps
are isomorphism over Frac(O), it is enough to show that the map VM

∐
GrM,Frac(O) → GrM (resp.

VP±
∐

GrP±,Frac(O) → GrP±) is an fpqc-cover. Flatness is immediate from the construction, and

we need to show the surjectivity, i.e., that VM (resp. VP±) contains the special fiber GrM ⊗ k̄ (resp.
GrP± ⊗ k̄).

Let us start with the case of M . As GrM is of ind-finite type, and GrM (k̄) = LM(k̄)/L+M(k̄),

it is enough to prove that the reduction map LM(Ŏ)→ LM(k̄) = M(k̄((z))) is surjective. As k̄((z))
is a field and GŎ is split, we have the Bruhat decomposition

M(k̄((z))) =
∐

w∈W0,M

(UwM · ẇ ·BM ) (k̄((z))),

where UwM and BM are defined over Ŏ and where W0,M is a constant finite étale Ŏ-group. Clearly,

the elements ẇ lift. Further, we have as Ŏ-schemes UwM ' AlŎ and BM ' Gm
m,Ŏ × AnŎ for some
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l,m, n ∈ Z≥0. Hence, to show the surjectivity of LM(Ŏ) → LM(k̄), we reduce to the case of
Gm,Ŏ and A1

Ŏ (because the L-construction commutes with finite products). But the reduction maps

Ŏ((t))× → k̄((t))× and Ŏ((t))→ k̄((t)) are clearly surjective. This finishes the case of M , and the case
of P± is similar. The lemma follows. �

3.3.2. Connected components. We discuss connected components of GrM and GrP± .

Lemma 3.7. i) The map p± : GrP± → GrG is a schematic quasi-compact monomorphism, and the
restriction to each connected component of GrP± is a locally closed immersion.

ii) The map q± : GrP± → GrM is ind-affine with geometrically connected fibers, and induces an
isomorphism on the group of connected components π0(GrP±E

) ' π0(GrME
) for any field extension

E/F .

Proof. Use Proposition 3.4 to identify p resp. q with the map on attractor resp. repeller schemes.
The “schematic” assertion in part i) as well as part ii) follow from Theorem 2.1 ii) using Lemma
3.3, and the fact that GrG is of ind-finite type. It remains to explain why the restriction of p±

to each connected component of GrP± = (GrG)± is a locally closed immersion. By the proof of
Lemma 3.3, there is an Gm-equivariant closed embedding GrG = colimi GrG,i ↪→ colimi P(Vi) where
Vi are finite dimensional F -vector spaces equipped with a linear Gm-action. Since (GrG,i)

± =
GrG,i ×P(Vi) P(Vi)

±, it is enough to show that the restriction to each connected component of

P(Vi)
± → P(Vi) is a locally closed immersion. This is easy to see, and left to the reader. The lemma

follows. �

Let T ⊂ G be a maximal (not necessarily split) F -torus. We may choose T such that χ factors as
Gm → T ⊂ G, in particular T ⊂M . The cocharacter χ induces a natural Z-grading on π0(GrM ) '
π0(GrP ) as follows: We have π0(GrMF̄

) ' π1(M) where π1(M) is the algebraic fundamental group
in the sense of Borovoi [Bo98]. The group π1(M) can be defined as the quotient of the Galois lattices

(3.17) π1(M) = X∗(T )/X∗(TMsc
),

where TMsc is the preimage of T ∩Mder in Msc. Hence, there is a decomposition into connected
components

(3.18) GrMF̄
=

∐
ν∈π1(M)

GrMF̄ ,ν ,

and likewise for GrPF̄ compatible with the map qF̄ = qν∈π1(M)qF̄ ,ν , cf. Lemma 3.7 ii).

Let P± = M n N± be the Levi decomposition. Let either N = N+ or N = N−, and denote
by ρN the half-sum of the roots in NF̄ with respect to TF̄ . To every ν ∈ π1(MF̄ ), we attach the
number

(3.19) nν = 〈2ρN , ν̇〉,

where ν̇ is any representative in X∗(T ), and 〈-, -〉 : X∗(T )×X∗(T )→ Z is the natural pairing. Since
〈ρN , α∨〉 = 0 for all α∨ ∈ X∗(TMsc), the number nν is well-defined. For every m ∈ Z, let GrP±,m
(resp. GrM,m) be the disjoint union of all GrP±

F̄
,ν (resp. GrMF̄ ,ν) with nν = m. As T and N are

defined over F , the function π1(M) → Z, ν 7→ nν is constant on Galois orbits. Hence, GrP±,m
(resp. GrM,m) is defined over F , and we get a decomposition into open and closed ind-subschemes

(3.20) q± =
∐
m∈Z

q±m : GrP± =
∐
m∈Z

GrP±,m −→
∐
m∈Z

GrM,m = GrM .

Likewise, we can write p± =
∐
m∈Z p

±
m where p±m := p±|GrP±,m

. One checks that the decomposition

(3.20) does not depend on the choice of T as above. Further, the decomposition for N = N+ differs
by a sign from the decomposition for N = N−.
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3.4. Cohomology of constant terms. Let F be a field whose cyclotomic character ΓF → Z×`
composed with Z×` ↪→ Z̄×` admits a square root. For non-archimedean local fields F with residue
characteristic p 6= `, the `-adic cyclotomic character is unramified and choosing such a square root
is equivalent to choosing q1/2 ∈ Z̄×` , where q is the cardinality of the residue field of F .

For a separated ind-scheme X = colimiXi of ind-finite type over F , we denote the bounded
derived category of Q̄`-complexes with constructible cohomology sheaves by

Db
c(X)

def
= colimiD

b
c(Xi, Q̄`),

where the transition maps are given by push forward along the closed immersions Xi ↪→ Xj for
j ≥ i. We let Perv(X) = colimi Perv(Xi) the full abelian subcategory of Db

c(X) given by the heart
of the perverse t-structure.

For any `-adic complex A and any integer n ∈ Z, we define the operator

A〈n〉 def
= A[n](n/2),

where (1/2) denotes the half twist using the square root of the cyclotomic character. We say that
a sheaf on a smooth equidimensional F -scheme of dimension n is constant if it is a direct sum of
copies of Q̄`〈n〉.

3.4.1. The geometric Satake isomorphism. Let G be a connected reductive F -group. The affine
Grassmannian GrG admits a presentation GrG = colimi GrG,i by L+G-stable projective subschemes
GrG,i. The group L+G is proalgebraic, and the action factors on each GrG,i through a smooth
algebraic group. Hence, we define the category of L+G-equivariant perverse sheaves on GrG as

PervL+G(GrG) = colimi PervL+G(GrG,i).

By definition the L+G-equivariance is a condition on the perverse sheaves and not an additional
datum: as L+G is connected both concepts give equivalent categories. The category PervL+G(GrG)
is a Q̄`-linear abelian category.

Definition 3.8. i) The Satake category SatG,F̄ over F̄ is the category PervL+GF̄
(GrG,F̄ ).

ii) The Satake category SatG over F is the full subcategory of PervL+G(GrG) of semi-simple objects
A such that after passing to AE , for a sufficiently big finite separable extension E/F which splits G,
the 0-th perverse cohomology sheaves p H0(ι∗µAE) and p H0(ι!µAE) are constant for all L+GE-orbits

ιµ : Gr
{µ}
GE

↪→ GrGE , cf. (3.5).

Let us make Definition 3.8 ii) explicit. If Gr
≤{µ}
G is as in (3.4) defined over E/F , then for the

normalized intersection complex

(3.21) IC{µ}
def
= j!∗Q̄`〈n〉 ∈ SatGE ,

where j : Gr
{µ}
G ↪→ Gr

≤{µ}
G is the inclusion, and n = dim(Gr

{µ}
G ) is the dimension. Hence, summing

over the Galois orbit of {µ} as in (3.6), the complex⊕
{λ}∈ΓF ·{µ}

IC{λ}

descends to F , and defines an object of SatG. Since SatG,F̄ is semi-simple (cf. [Ga01, Prop 1] and
[Ri14a, Prop 3.1] for details), every object in PervL+G(GrG) is a direct sum of

(3.22) (⊕{λ}IC{λ})⊗ L,

where L is a local system on Spec(F ). The objects in SatG are those objects of PL+G(GrG) where
the local systems L in (3.22) are trivial after some finite separable extension of F . We have a
natural pullback functor (-)F̄ : SatG → SatG,F̄ . We view ΓF as a pro-algebraic group, and we let

RepQ̄`(ΓF ) be the category of algebraic representations of ΓF on finite dimensional Q̄`-vector spaces,
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i.e., representations which factor through a finite quotient of ΓF . There is the Tate twisted global
cohomology functor

(3.23)

ω : PervL+G(GrG) −→ RepQ̄`(ΓF )

A 7−→
⊕
i∈Z

Hi(GrG,F̄ ,AF̄ )(i/2).

Lemma 3.9. Let E/F be a finite separable extension which splits G, and let A ∈ PervL+G(GrG).
Then the ΓE-Galois action on ω(A) is trivial if and only if AE is a direct sum of normalized
intersection complexes. In this case, A ∈ SatG.

Proof. First, let A = IC{µ} be a normalized intersection complex. Choose a Chevalley Z-group
scheme H together with an isomorphism H ⊗Z E ' GE . Then under this isomorphism, there
is an identification of E-ind-schemes GrH ⊗Z E = GrGE . The `-adic étale cohomology does not
depend on the choice of a separable closure. In particular, if E is of characteristic p, then [NP01,
Thm 3.1] shows that the ΓE-Galois action on ω(IC{µ}) is trivial, cf. the twist in (3.23). If E is of
characteristic 0, then the inertia group IE acts trivially on ω(IC{µ}) by [PZ13, Prop 10.12]. Hence,
the claim follows by proper base change applied to GrH ⊗Z OE from the previous case. Conversely,
let A ∈ PervL+G(GrG). Then AE is a direct sum of IC{µ}⊗L where L is a local system on Spec(E)
(because GE is split the class {µ} is defined over E). Further, IC{µ} ⊗ L = IC{µ} ? L by definition
of convolution. Hence, if the ΓE-action on ω(IC{µ} ⊗ L) = ω(IC{µ})⊗ L is trivial, then L must be
trivial. Clearly, we have A ∈ SatG. �

By the geometric Satake equivalence [Gi, Lu81, BD, MV07, Ri14a, Zhu], the category SatG,F̄
admits a unique structure of a neutralized Tannakian category such that taking global cohomology
is an equivalence of Tannakian categories

(3.24) ω : SatG,F̄
'−→ RepQ̄`(Ĝ),

where RepQ̄`(Ĝ) is the category of algebraic representations of the Langlands dual group Ĝ on finite

dimensional Q̄`-vector spaces. The tensor structure on SatG,F̄ is given by the convolution of perverse
sheaves, cf. [Ga01]. Let us recall from [RZ15] why SatG is stable under convolution as well. If G is
split, then every L+G-orbit is defined over F , and we have IC{µ} ∈ SatG for all {µ} ∈ X∗(T )/W abs

0 .
Thus by Lemma 3.9 the Galois action on ω(IC{µ1} ? IC{µ2}) = ω(IC{µ1})⊗ω(IC{µ2}) is trivial, and
hence IC{µ1} ? IC{µ2} is a direct sum of normalized intersection complexes. The general case follows
from this observation by Galois descent applied to SatGE where E/F is a Galois extension which
splits G, cf. [RZ15, Prop A.10].

Further, the Satake equivalence (3.24) gives a canonical way of constructing the dual group Ĝ

together with a canonical pinning (Ĝ, B̂, T̂ , X̂) which is fixed by the action of the Galois group

ΓF , cf. [Zhu15, §4], [Ri16a, Rmk 4.7 ii)]. Then ΓF acts through a finite quotient on Ĝ via outer

automorphisms, and we form the dual group LG = Ĝ o ΓF viewed as a pro-algebraic group over
Q̄`. The following result is derived from [RZ15] (cf. also [Ri14a, §5] and [Zhu, §5.5]).

Theorem 3.10. The functor ω : SatG → RepQ̄`(ΓF ) can be upgraded to an equivalence of abelian
tensor categories such that the diagram

SatG SatG,F̄

RepQ̄`(
LG) RepQ̄`(Ĝ)

(-)F̄

res
ω ω

is commutative up to natural isomorphism, where res denotes the restriction of representations along
Ĝ ↪→ LG.
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Remark 3.11. As RΓ(P1
F̄
, Q̄`) = Q̄` ⊕ Q̄`[−2](−1) everything is normalized such that for Gl2 and

the minuscule Schubert cell, the representation ω(Q̄`〈1〉) = Q̄2
` is the standard representation with

the trivial Galois action.

Corollary 3.12. Let {µ} be a conjugacy class of a geometric cocharacters defined over E/F . Then

the normalized intersection complex IC{µ} on Gr
≤{µ}
G is an object of SatGE , and the cohomology

ω(IC{µ}) is under Theorem 3.10 the LGE-representation V{µ} of highest weight {µ} defined in [Hai14,
6.1].

Proof. It is enough to check that ΓE acts trivially on the highest weight subspace of ω(IC{µ})
attached to any E-rational Borel subgroup B, cf. [Hai14, §6.1]. Passing to GE we may assume that
E = F . The Galois action on ω(IC{µ}) only depends on the quasi-split inner form G∗ of G: the

cocycle defining G is of the form c : ΓF → Aut(G∗
F̄

), γ 7→ Int(gγ) where gγ ∈ (G∗)(F̄ ), and Int(gγ)
denotes conjugation by gγ . The formation of the affine Grassmannian is functorial in the group,
and GrG is constructed from GrG∗ by twisting against the cocycle c. Hence, for any A ∈ SatG, the
action of γ ∈ ΓF under the identification ωG(A) ' ωG∗(A) is given by Int(gγ) · γ∗. Since Int(gγ)
belongs to the smooth connected algebraic group G∗ad which acts on GrG∗ , the induced action on
ωG∗(A) is trivial, cf. Lemma 3.13 below. Thus, ωG(A) ' ωG∗(A) as LG-representations, and hence,
we may assume G = G∗ is quasi-split.

By [Ko84, Lem 1.1.3] the class {µ} admits an F -rational representative µ : Gm → T where T
is the centralizer of a maximal F -split torus in G. Given an F -rational Borel subgroup B ⊂ G,
containing T , we may choose the representative such that µ is B-antidominant. As in [MV07, Eq
(3.6)] (or [Zhu, Eq (5.3.11)], or also Lemma 6.10 below), one has

Gr
≤{µ}
G,F̄

∩ (GrB,F̄ )µ = {zµ},

which is an F -rational point by construction. We have IC{µ}|{zµ} = Q̄`〈〈2ρB ,−µ〉〉 by our choice of
normalization. The cohomology

H〈2ρB ,µ〉c ((GrB)µ, IC{µ}) = H〈2ρB ,µ〉((GrB)µ, IC{µ}) = Q̄`(〈ρB ,−µ〉),

is a direct summand of ω(IC{µ}), and identifies with the subspace of weight µ ∈ X∗(T ) = X∗(T̂ ),
cf. [MV07, Thm 3.6] (or [Zhu, Thm 5.3.9]). Taking the twists in (3.23) into account, we conclude
that ΓF acts trivially on the highest weight space. �

Lemma 3.13. Let X be an F̄ -scheme acted on by a smooth geometrically connected F̄ -group H.
Then, for each i ∈ Z, the induced action of H(F̄ ) on the intersection cohomology groups Hi(X, ICX)
is trivial.

Proof. Let f : X → Spec(F̄ ) be the structure morphism. The argument to show that H(F̄ ) acts
trivially on Hi(X, ICX) = Hi(f∗ICX) is the same as in [LN08, Lem 3.2.3]. �

3.4.2. Induction and restriction. The geometric Satake equivalence in Theorem 3.10 is compatible
with induction and restriction of representations in the following sense. For a finite separable
extension E/F , let LGE = Ĝo ΓE considered as a closed algebraic subgroup of LG. Then we have
the induction and restriction of representations

I(-) = Ind
LG
LGE

(-) : RepQ̄`(
LGE)→ RepQ̄`(

LG);

R(-) = (-)|LGE : RepQ̄`(
LG)→ RepQ̄`(

LGE),

which form a pair of adjoint functors (R, I). The projection onto the first factor

π : GrGE = GrG ×Spec(F ) Spec(E)→ GrG

is finite étale. Hence, we have the push-forward and pull-back on Satake categories

π∗ : SatGE → SatG;

π∗ : SatG → SatGE ,
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which form an adjoint pair of functors (π∗, π∗).

Proposition 3.14. There are commutative diagrams of neutral Tannakian categories

SatGE SatG and SatG SatGE

RepQ̄`(
LGE) RepQ̄`(

LG) RepQ̄`(
LG) RepQ̄`(

LGE),

π∗

I
ωGE ωG

π∗

R
ωG ωGE

the vertical arrows are given by the equivalence in Theorem 3.10.

Proof. As π is finite étale, it is easy to see from proper (resp. smooth) base change that π∗ (resp.
π∗) admits a symmetric monoidal structure with respect to convolution. Clearly, the operation π∗

corresponds to R. As the pairs (π∗, π∗) and (R, I) are adjoint, the Yoneda lemma implies that π∗
corresponds to I. �

3.4.3. Constant terms. Let χ : Gm,F → G be a cocharacter. Let M be its centralizer and let P±

be the associated parabolic subgroups as in (3.9). The natural maps M ← P± → G give maps of
F -ind-schemes

GrM
q±← GrP±

p±→ GrG,

and identify with the maps on the attractor, resp. repeller by Proposition 3.4. The positive parabolic
P+ induces as in (3.20) a decomposition into open and closed F -ind-subschemes

(3.25) q+ =
∐
m∈Z

q+
m : GrP+ =

∐
m∈Z

GrP+,m −→
∐
m∈Z

GrM,m = GrM .

We write q− = qm∈Zq−m : GrP− = qm∈ZGrP−,m → qm∈ZGrM,m = GrM according to (3.25), i.e.
the ind-scheme GrM,m is contained in GrP−,m ∩GrP+,m for any m ∈ Z.

Definition 3.15. The (normalized) geometric constant term is the functor CT+
χ : Db

c(GrG) →
Db
c(GrM ) (resp. CT−χ : Db

c(GrG)→ Db
c(GrM )) defined as the shifted pull-push functor

CT+
χ

def
=
⊕
m∈Z

(q+
m)!(p

+)∗〈m〉 (resp. CT−χ
def
=
⊕
m∈Z

(q−m)∗(p
−)!〈m〉).

As in [Br03, DG15, Ri19], there is a natural transformation of functors

(3.26) CT−χ −→ CT+
χ ,

which is an isomorphism for Gm-equivariant complexes. As the Gm-action on GrG factors through
the L+G-action, the transformation (3.26) is an isomorphism of functors CT−χ ' CT+

χ when re-

stricted to SatG. We define the functor CTGM : SatG → Db
c(GrM ) as

CTGM
def
= CT+

χ |SatG .

We also denote CTGM = CTM if G is understood. We derive the following result from [BD, MV07,
RZ15].

Theorem 3.16. i) For each A ∈ SatG, the complex CTM (A) is an object in SatM and does not
depend on the choice of χ such that ZG(χ) = M .

ii) There is commutative diagram of neutral Tannakian categories

SatG SatM

RepQ̄`(
LG) RepQ̄`(

LM)

CTM

res
ωG ωM

where res : V 7→ V |LM is the restriction of representations, and the vertical arrows are given by the
equivalence in Theorem 3.10.
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Proof. Over F̄ , there is a canonical isomorphism ωG ' ωM ◦CTGM [MV07, Thm 3.6], [Zhu, Thm 5.3.9
(3); Rmk 5.3.16], and we have to show that it is Galois equivariant (bear in mind [RZ15, Cor A.8],
[Zhu, Lem 5.5.7], which allows us to pass between the “geometric” and “algebraic” notions of LG
here). We need to unravel its construction. Let πG : GrG → Spec(F ) (resp. πM : GrM → Spec(F ))
denote the structure morphism.

First case. Let G be quasi-split. First assume that B± = P± is a Borel subgroup, and hence
T = M a maximal torus, i.e., the cocharacter χ is regular. Let ν be a Galois orbit in X∗(T ), and
denote by GrB±,ν the corresponding connected component of GrB± . The map p±ν := p±|GrB±,ν

factors by Lemma 3.7 i) as

GrB±,ν
j±ν−→ GrB±,ν

i±ν−→ GrG,

where j±ν is a quasi-compact open immersion and i±ν is a closed immersion. Further, let i<ν± :=
i±ν |GrB±,<ν

where GrB±,<ν := GrB±,ν\GrB±,ν is the complement. This induces two Galois stable

filtrations on the global (unshifted) cohomology functor H∗G :=
(
⊕i∈ZHi

)
◦ πGF̄ ,∗: one is given for

any A ∈ SatG by the kernels of

(3.27) Fil≥ν H∗G(A)
def
= ker(H∗G(A)→ H∗G((i+<ν)∗A)),

and one given by the images of

(3.28) Fil′<ν H∗G(A)
def
= im(H∗G((i−<ν)!A)→ H∗G(A)).

Here ν runs through the Galois orbits X∗(T )/ΓF , which is partially ordered by the requirement that
ν ≤ ν′ if one (and then any) representative of ν′−ν in X∗(T ) is a sum of coroots for roots appearing
in N+

F̄
with non-negative integer valued coefficients. That (3.27) and (3.28) are indeed filtrations

on H∗G indexed by the partially ordered set (X∗(T )/ΓF ,≤) follows immediately from [MV07, Prop
3.1], [Zhu, Cor 5.3.8]. We claim that the Galois stable filtrations (3.27) and (3.28) split each other
and (taking the shifts into account) induce the desired isomorphism.

Let π̄± denote the structure morphism of GrB± . There is a diagram of natural transformations

(3.29)

(π̄−
F̄

)∗ ◦ (i−ν )! πGF̄ ,∗ (π̄+
F̄

)! ◦ (i+ν )∗

(π̄−
F̄

)∗ ◦ (j−ν )∗ ◦ (j−ν )! ◦ (i−ν )! (π̄+
F̄

)! ◦ (j+
ν )! ◦ (j+

ν )∗ ◦ (i+ν )∗

(πTF̄ )∗ ◦ (q−ν )∗ ◦ (p−ν )! (πTF̄ )! ◦ (q+
ν )! ◦ (p+

ν )∗

(1) (2)

' '
'

where we have used that π̄± (resp. πG) is ind-proper, and j±ν is an open immersion. The bottom
arrow is the isomorphism in Braden’s theorem [Br03] (cf. also [DG15, ?]) which is justified by
Proposition 3.4. One checks that (3.29) commutes up to natural isomorphism. As in the proof of
[Zhu, Thm 5.3.9 (3)], the main point to prove the claim is that the maps (1) and (2) in (3.29) are on
the i-cohomology an isomorphism if i = nν , and zero otherwise. Note that nν̇ = nν̈ for any ν̇, ν̈ in
the Galois orbit ν, and that iν,F̄ =

∐
ν̇∈ν iν̇ . We may without loss of generality assume that F = F̄

and ν ∈ X∗(T ). Then the statement about the maps (1) and (2) for A ∈ SatG follows from the
equality

(3.30) Hi ◦ (q+
ν )! ◦ (p+

ν )∗A = 0, i 6= nν ,

which ultimately rests on the dimension formula for Gr
≤{µ}
G ∩ (GrB±)ν (cf. [MV07, Thm 3.2]). For

general ground fields the dimension formula can be derived as in [Ri14a, Prop 4.2] from [GHKR06]
and [NP01] using a flatness argument. This shows the claim.

We see that the isomorphism ωG ' ωM ◦ CTGM is ΓF -equivariant in the case where M = T is a
maximal torus. Note the construction also shows the compatibility with shifts and twists. The case
of where M is a general Levi follows from the base change identity CTMT ◦CTGM ' CTGT whenever



24 T. J. HAINES AND T. RICHARZ

we choose a regular cocharacter χ′ : Gm → M , cf. [BD, Prop 5.3.29]. It is also not difficult to see
that this is independent of the auxiliary choice of χ′.

This reasoning also implies that CTM (A) is perverse: Indeed, we may assume F to be alge-
braically closed, and if M = T is a maximal torus, this is just (3.30). For a general Levi M , we have

CTGM (A) ∈ PervL+M (GrM ) if and only if CTMT ◦CTGM (A) ' CTGT (A) ∈ PervL+T (GrT ) (cf. [MV07,
Lem 3.9]) which holds true.

General case. Let G be a general connected reductive group. By the proof of Corollary 3.12, for
A ∈ SatG the Galois action on ωG(A) only depends on the quasi-split form of G. The functor

CTGM is defined over the ground field F , and since we already know that CTGM (A) is perverse, the

same holds true for the Galois action on ωM ◦ CTGM (A), cf. Lemma 3.13. Thus, the isomorphism

ωG ' ωM ◦ CTGM is ΓF -equivariant by the previous case.

Proof of i). We claim that for A ∈ SatG, one has CTM (A) ∈ SatM . We already know that CTM (A)
is perverse. Further, if E/F splits G, and AE is a direct sum of normalized intersection complexes,

so is CTM (AE) ∈ PervL+ME
(GrM,E) by using the isomorphism ωG ' ωM ◦ CTGM and Lemma 3.9.

This easily implies CTM (A) ∈ SatM .
Let χ′ : Gm → G be another cocharacter with ZG(χ′) = M = ZG(χ). Then the corresponding

parabolic subgroups (P ′)+ = (G)χ
′,+ and P+ are conjugate by an element g ∈ G(F ): say g · P+ ·

g−1 = (P ′)+. The isomorphism G→ G, h 7→ ghg−1 gives by transport of structure an isomorphism
cg : GrG → GrG, and we have

CT+
χ′ = CT+

χ ◦ (cg)
∗.

But on Satake categories (cg)
∗ : SatG ' SatG is the identity since every L+G-orbit is stable under

conjugation by g, and hence CT+
χ′ |SatG ' CT+

χ |SatG . This implies i).

Proof of ii). We have to equip CTM with a (necessarily unique) monoidal structure such that the
isomorphism ωG ' ωM ◦CTM is monoidal. If F is separably closed, this follows from the arguments
in [BD], [MV07] (cf. [Xue17, Thm 1.7.4] for details). As all ind-schemes are defined over the ground
field F , we deduce the general case by descent. For convenience we give a short proof of the definition
of the monoidal structure on CTM which is based on [Ri19, Thm 3.1]. Let us denote by GrBD

G,A1
F

the functor on the category of F -algebras R parametrizing triples (x,F , α) consisting of a point
x ∈ A1

F (R), a G-torsor F → P1
R and a trivialization

α : F|P1
R\({x}∪{0}) ' F

0|P1
R\({x}∪{0}),

where F0 is the trivial torsor. The forgetful map GrBD
G,A1

F
→ A1

F is representable by an ind-projective

ind-scheme, cf. [Zhu, Thm 3.1.3]. Let Spec(F [[z]]) → A1
F be the completed local ring at zero, and

define

GrBD
G

def
= GrBD

G,A1
F
×A1

F
Spec(F [[z]]).

Let s (resp. η) denote the closed (resp. open) point in Spec(F [[z]]). We have as F -ind-schemes

(3.31) GrBD
G,s = GrG and GrBD

G,η = GrG ×GrG × Spec(F ((z))).

The construction is functorial in G, and there are maps of F [[z]]-ind-schemes

(3.32) GrBD
M ← GrBD

P± → GrBD
G .

The cocharacter χ induces a Gm-action on GrBD
G,A1

F
trivial on A1

F , and hence a Gm-action on GrBD
G

which is the action (3.7) on each factor in (3.31). Similar to the argument in Lemma 3.3, one sees

that the Gm-action on GrBD
G is Zariski locally linearizable. In view of Theorem 2.1, there are maps

of F [[z]]-ind-schemes

(3.33) (GrBD
G )0 ← (GrBD

G )± → GrBD
G ,

and it is possible to see that this diagram identifies with (3.32). Note that this is true fiberwise by
Proposition 3.4. Further, as in [Ga01] (cf. also [Zhu14]), we obtain for A,B ∈ SatG a canonical
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isomorphism of complexes

(3.34) ΨBD
G (A� B � Q̄`) ' A ? B,

where ΨBD
G : Db

c(GrBD
G,η, Q̄`)→ Db

c(GrBD
G,s×sη, Q̄`) is the functor of nearby cycles with the conventions

as in the appendix to [Il94] (same conventions in [Ri19]). First, let us ignore the shifts in the
definition of CTM . By the functorial properties of nearby cycles, there is a canonical map in
Db
c(GrBD

M,s ×s η, Q̄`) as

(3.35) CTM ◦ΨBD
G (A� B � Q̄`) −→ ΨBD

M (CTM (A) � CTM (B) � Q̄`),

where ΨBD
M denote the nearby cycles for the family GrBD

M . As all objects in SatG are Gm-equivariant,
the result [Ri19, Thm 3.3] applies and (3.35) is an isomorphism. Combining (3.34) and (3.35) we
obtain the desired monoidal structure on CTM . Up to sign (cf. [MV07, Prop 6.4] or [Xue17]) the
commutativity constraint is given by switching A, B on the left hand side of (3.34). Hence, once
we know the compatibility of (3.35) with shifts it follows that CTM is a tensor functor. That the
shifts agree is implied by the decomposition into open and closed sub-ind-schemes

GrBD
M =

∐
m∈Z

GrBD
M,m,

which is the decomposition (3.25) in the special fiber and takes in the generic fiber the form

GrBD
M,m,η =

∐
(m1,m2)

GrM,m1
×GrM,m2

× η.

The coproduct runs over all pairs (m1,m2) ∈ Z2 with m1 +m2 = m. The theorem follows. �

4. Affine flag varieties

Let k be either a finite field or an algebraically closed field. Let F = k((t)) be the Laurent power
series local field with ring of integers O = k[[t]]. For a smooth affine (geometrically) connected
F -group scheme G, the (twisted) loop group LG is the group functor on the category of k-algebras

LG : R 7−→ G(R((t))).

The loop group LG is representable by an ind-affine ind-group scheme, cf. [PR08, §1]. Let G be a
smooth affine O-group scheme of finite type with geometrically connected fibers and generic fiber
GF = G. The (twisted) positive loop group L+G is the group functor on the category of k-algebras

L+G : R 7−→ G(R[[t]]).

The positive loop group L+G is representable by a reduced closed subgroup scheme of LG. The
(partial) affine flag variety F`G is the fpqc-sheaf on the category of affine k-algebras associated with
the functor

R 7−→ LG(R)/L+G(R).

The affine flag variety F`G is a separated ind-scheme of ind-finite type over k, and the quotient map
LG → F`G admits sections étale locally, cf. [PR08, Thm 1.4]. The affine flag variety is equipped
with a transitive action of the loop group

(4.1) LG×F`G −→ F`G .

As the group scheme G is smooth, the ind-scheme F`G represents the functor which assigns to every
k-algebra R the isomorphism classes of pairs (F , α) with

(4.2)

{
F a GR[[t]]-torsor on Spec(R[[t]]);

α : F|R((t)) ' F0|R((t)) a trivialization,

where F0 denotes the trivial torsor (this can be extracted from the reference [Zhu] by comparing
the definition given in its equation (1.2.1) with its Proposition 1.3.6).
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4.1. Schubert varieties. Let G be a connected reductive F -group. Then the affine flag variety F`G
is ind-proper (and then even ind-projective) if and only if G is parahoric in the sense of Bruhat-Tits,
cf. [Ri16a, Thm A]. Recall that parahoric group schemes G = Gf correspond bijectively to facets
f of the (enlarged) Bruhat-Tits building, i.e. Gf is (by definition) the fiberwise neutral component
of the unique smooth affine O-group scheme whose generic fiber is G, and whose O-points are the
pointwise fixer of f in G(F ). In this case, we also write

F`f = F`G .

Let I be the inertia subgroup of ΓF , and let Σ = Gal(F̆ /F ) ' Gal(k̄/k), cf. notation. Let A ⊂ G be
a maximal F -split torus such that f is contained in the corresponding apartment of the Bruhat-Tits
building. Denote by M ⊂ G the centralizer of A which is a minimal Levi subgroup. By Bruhat-Tits
there exists a maximal F̆ -split torus S containing A and defined over F . As GF̆ is quasi-split by
Steinberg’s Theorem, the centralizer T of S is a maximal torus. We obtain a chain of F -tori

(4.3) A ⊂ S ⊂ T,

which are all contained in the minimal Levi subgroup M .

Definition 4.1. i) The Iwahori-Weyl group over F̆ is the group

W̆
def
= NormG(S)(F̆ )/T̆1,

where T̆1 denotes the unique parahoric subgroup of T (F̆ ), cf. [HR08].

ii) The Iwahori-Weyl group over F is the group

W
def
= NormG(A)(F )/M1,

where M1 denotes the unique parahoric subgroup of M(F ), cf. [Ri16b].

For each w ∈ W̆ , we choose a lift ẇ ∈ LG(k̄); the choice is normalized by requiring that, if

w ∈ T (F̆ )/T̆1 ⊂ W̆ , then ẇ ∈ T (F̆ ) ⊂ LG(k̄) has κT (ẇ) = κT (w) for the Kottwitz homomorphism

κT : T (F̆ )/T̆1 → X∗(T )IF .
By [Ri16b, §1.2], there is an injective group morphism

(4.4) W ↪→ W̆ ,

which identifies W = (W̆ )Σ. For any w ∈ W̆ , the Schubert variety F`≤wf associated with w is the
reduced L+Gk̄-orbit closure

(4.5) F`≤wf
def
= L+Gk̄ · ẇ · e0,

where ẇ ∈ LG(k̄) is the element associated above to w, and e0 ∈ F`f denotes the base point.

The Schubert variety F`≤wf is a geometrically irreducible projective scheme which is defined over
some finite extension kE/k. The L+GkE -orbit of ẇ ·e0 is denoted F`wf and is a smooth geometrically

connected open dense kE-subscheme of F`≤wf . Further, F`wf (and hence F`≤wf ) is defined over kE = k

if w ∈ W̆f ·W · W̆f .
The Iwahori-Weyl group W (resp. W̆ ) acts on the (enlarged) apartment A = A (G,A, F ) (resp.

Ă = Ă (G,S, F̆ )) by affine transformations (this is normalized as follows: if the Kottwitz homo-

morphism [Ko97, §7] takes w ∈ T (F̆ )/T̆1 ⊂ W̆ to λ ∈ X∗(T )IF , then w acts on Ă by translation
by λ[, where λ[ is the image of λ in X∗(T )IF ⊗ Q). There is a natural inclusion of poly-simplicial
complexes

A ↪→ Ă ,

which identifies A = (Ă )Σ. Let a be an alcove containing f in its closure. Then there is a unique

alcove ă (resp. facet f̆) in Ă containing a (resp. f). The choice of a (resp. ă) equips W (resp.

W̆ ) with a quasi-Coxeter structure and thus a length function and Bruhat order (l,≤) (resp. (l̆,≤)),
i.e., the simple reflections are the reflections at the walls meeting the closure of a (resp. ă). More
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precisely, if Ωă is the subgroup of W̆ stabilizing ă, and W̆aff is the Coxeter group generated by the
simple reflections corresponding to the walls of ă, then we have the decomposition

(4.6) W̆ = W̆aff o Ωă

and the decomposition of W is obtained by taking Σ-invariants. The subgroup of W (resp. W̆ )

associated with f (resp. f̆) is the subgroup

(4.7) Wf
def
= NormG(A)(F ) ∩ Gf (O)/M1 (resp. W̆f

def
= NormG(S)(F̆ ) ∩ Gf (Ŏ)/T̆1).

Note that Gf ,Ŏ = Gf̆ because parahoric group schemes are compatible with unramified extensions.

The group Wf (resp. W̆f ) is a finite group which identifies with the subgroup generated by the

reflections at the walls passing through f (resp. f̆). Note that Wf = (W̆f )
Σ under (4.4) ([Ri16b, Cor

1.7]).

Lemma 4.2. The natural map

Wf\W/Wf
'−→ L+G(k)\F`f (k), [w] 7−→ L+G(k) · ẇ · e0

is bijective.

Proof. The group L+G is an inverse limit of smooth geometrically connected k-groups. As k is finite
(or algebraically closed), an approximation argument and Lang’s lemma show that H1(Σ,G(Ŏ))
vanishes, and hence F`G(k) = LG(k)/L+G(k). The lemma reduces to [Ri16b, Thm 1.4]. �

If k is algebraically closed, then W = W̆ and the map W̆f\W̆/W̆f ' L+G(k̄)\F`f (k̄) is bijective
by Lemma 4.2. By [HR08, Rmk 9], the natural map

Wf\W/Wf
'−→ (W̆f\W̆/W̆f )

Σ

is bijective. The Bruhat order ≤ induces a partial order on the double quotient W̆f\W̆/W̆f com-
patible with the order on Wf\W/Wf , and we have

F`vf ⊂ F`
≤w
f

if and only if [v] ≤ [w] in the induced Bruhat order on W̆f\W̆/W̆f (resp. equivalently on Wf\W/Wf

if both classes are Σ-fixed). In particular, there is a presentation on reduced loci

(F`f )red = colimv

⋃
w∈Σ·v

F`≤wf

where v runs through the Σ-orbits in W̆f\W̆/W̆f . Each such union of Schubert varieties is defined
over k, stable under the L+G-action and the stabilizers are geometrically connected, cf. [Ri16a, Cor
2.3].

4.2. Torus actions on affine flag varieties. Let G = Gf , and let χ : Gm,O → G be a O-
cocharacter. The composition

Gm,k ⊂ L+Gm,O
L+χ−→ L+G

defines a Gm-action on the affine flag variety F`G = F`f . As in (2.2) we have the hyperbolic
localization diagram

(4.8) (F`G)0 ← (F`G)± → F`G .
For a proof of the following lemma, which implies (F`G)± and (F`G)0 are representable as ind-
schemes by Theorem 2.1, we refer to Lemma 5.3 below.

Lemma 4.3. The Gm-action on F`G is Zariski locally linearizable.

Lemma 4.4. i) The map (F`G)± → F`G is schematic.

ii) The map (F`G)± → (F`G)0 is ind-affine with geometrically connected fibers, and induces an
isomorphism on the group of connected components π0((F`Gk̄)±) ' π0((F`Gk̄)0).
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Proof. Part i) and ii) follow from Theorem 2.1 ii) using Lemma 4.3.
�

4.2.1. Fixed points, attractors and repellers. Our aim is to express (4.8) in terms of group theoretical
data, cf. Proposition 4.7 below.

The cocharacter χ acts on G via (λ, g) 7→ χ(λ) · g · χ(λ)−1. Let M = G0 be the centralizer, and
let P+ = G+ (resp. P− = G−) be the attractor (resp. the repeller). Note that the definition of
the fixed point (resp. attractor, resp. repeller) functors (2.1) makes sense over any base ring (or
base scheme), cf. [Ri19]. As G is affine, the OF -group functors are representable by closed subgroup
schemes of G (cf. [Ri19, Lem 1.9]), and there are natural maps of OF -groups

(4.9) M← P± → G.
The generic fiber M =MF is an F -Levi subgroup of G and P± = P±F are parabolic subgroups with
P+ ∩ P− = M . The following result is similar to [He, Lem 3.4].

Lemma 4.5. i) The group schemes M and P± are smooth closed subgroup schemes of G with
geometrically connected fibers.

ii) The centralizer M is a parahoric group scheme for M .

iii) There is a semidirect product decomposition P± =MnN± where N± is a smooth affine group
scheme with geometrically connected fibers.

Proof. The groups M, P± and the map P± → M are smooth by [Mar15, Rmk 1.2, Thm 1.1 &
Rmk 3.3]. In particular, M (resp. P±) agrees with the flat closure of M (resp. P±) inside G, and
the groupM is parahoric by [Ri16a, Lem A.1]. In particular,M has geometrically connected fibers
which implies P± having geometrically connected fibers by [Ri19, Cor 1.12]. Part i) and ii) follow.
The scheme N± is the kernel of P± →M, and hence smooth with geometrically connected fibers.
The lemma follows. �

The maps (4.9) induce maps of k-ind-schemes

(4.10) F`M ← F`P± → F`G .

Lemma 4.6. i) The map F`M → F`G is representable by a closed immersion.

ii) The map F`P± → F`G is schematic, and factors as a quasi-compact immersion F`P± → (F`G)±.

iii) The map F`P± → F`M has geometrically connected fibers, and induces an isomorphism on the
group of connected components π0(F`P±

k̄

) ' π0(F`Mk̄
).

Proof. By [Co14, Thm 2.4.1], the quotient G/M is quasi-affine, and hence the map F`M → F`G is
representable by a quasi-compact immersion (cf. [Zhu, Prop 1.2.6]) which implies closed immersion
because F`M is ind-proper. For ii) let either P = P+ or P = P−. Choose G ↪→ Gln,O such that
Gln,O /G is quasi-affine, cf. [PR08, Prop 1.3 b)]. Let PO ⊂ Gln,O be defined by the cocharacter
Gm,O → G → Gln,O. Then we have P = PO ×Gln,O G. By Lemma 4.5 iii), the group P has
geometrically connected fibers, and the main result of [Ana73] implies that the fppf-quotient PO/P
is representable by a quasi-projective scheme. The map PO/P ↪→ Gln,O /G is a monomorphism of
finite type, and hence separated and quasi-finite [StaPro, Tag 0463] (use that “quasi-finite”=“locally
quasi-finite”+“quasi-compact”). By Zariski’s main theorem [StaPro, 02LR] the map is hence quasi-
affine, and as the composition of quasi-affine maps is quasi-affine [StaPro, Tag 01SN], the quotient
PO/P is quasi-affine as well. Now there is a commutative diagram of k-ind-schemes

(4.11)

F`P F`G

F`PO F`Gln,O ,

where all maps are monomorphisms. As Gln,O /G (resp. PO/P) is quasi-affine, the vertical maps
are representable by quasi-compact immersions. By [Co14, Prop 6.2.11] any two maximal split tori
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in Gln,O are O-conjugate which implies that Gm,O → Gln,O is defined over k after conjugation.
We may apply Lemma 3.7 i) to see that the map F`PO ' (F`Gln,O )± → F`Gln,O is schematic.
Hence, the composition F`P → F`G → F`Gln,O is schematic which by (the proof of) [LMB00,
Cor 1.6.2 (b) (iii)] implies that F`P → F`G is schematic. Further, observe that in (4.11) we have
(F`G)± = F`PO ×F`Gln,O

F`G because F`G → F`Gln is a closed immersion. As the composition

F`P → (F`G)± → F`PO is a quasi-compact immersion, it follows that F`P → (F`G)± is a quasi-
compact immersion as well. For iii), let k = k̄ and write P =MnN with generic fiber P = M nN
as in Lemma 4.5 iii). The fiber above the base point of F`P → F`M is F`N = LN/L+N (which is
enough to consider by transitivity of the LM -action on F`M). As the map LN → F`N is surjective,
it suffices to show that LN is connected. But N is a successive Ga-extension, and we reduce to the
case that N = Ga which is obvious. �

Proposition 4.7. The maps (4.8) and (4.10) fit into a commutative diagram of k-ind-schemes

F`M F`P± F`G

(F`G)0 (F`G)± F`G ,
ι0 ι± id

where ι0 and ι± are monomorphisms with the following properties:

i) The maps ι0 and ι± are closed immersions which are open on reduced loci.

ii) If G = G0 ⊗k F is constant (hence unramified over F ) then the maps ι0 and ι± are open and
closed immersions.

iii) If GŎ is a special parahoric (i.e. G is very special), then the maps ι0 and ι± are surjective on
topological spaces.

Remark 4.8. We conjecture that the maps ι0 and ι± are always open and closed immersions. The
method of proof below shows that this already follows from the case of a very special vertex. For
tamely ramified groups, this can be done by taking inertia invariants. For general groups, we lack
a sufficiently good theory of the open cell in twisted affine flag varieties in order to prove this.

The proof of Proposition 4.7 is finished in 4.2.3 below. We first explain how to construct the
diagram. As the Gm-action on F`M is trivial, Lemma 4.6 i) implies that we obtain a closed immersion
ι0 : F`M → (F`G)0. The map ι± : F`P± → (F`G)± is constructed in Lemma 4.6 ii) and is a quasi-
compact immersion. In terms of the moduli interpretation (4.2) the map ι± is given by a Rees
construction as in §2 above: For a k-algebra R, and a point (F±, α±) ∈ F`P±(R), the pullback
(F±A1

R
, α±A1

R
) ∈ F`P±(A1

R) is by definition a bundle

F± → Spec(R[z][[t]]),

where we identify A1
R = Spec(R[z]). As in (3.11) there is a A1

O-group morphism

(4.12) gr±χ : P± × A1
O −→ P± × A1

O.

such that gr±χ |{1} = id and gr±χ |{0} factors as P± → M → P±. The base change of (4.12) along

Spec(R[z][[t]])→ Spec(O[z]) = A1
O gives a morphism of Spec(R[z][[t]])-groups, and we define

Reesχ(F±, α±)
def
= gr±χ,∗(F±A1

R
, α±A1

R
) ∈ F`P±(A1

R).

As in (3.13) the Gm-equivariance follows from the construction, and one shows that this gives an
isomorphism of k-schemes Reesχ : F`P± → (F`P±)± which is inverse to the map given by evaluating
at the unit section. This constructs the diagram in Proposition 4.7, and we need some preparation
for its proof.
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4.2.2. Changing the facet. If c is any facet in the closure of f , then we obtain a morphism Gf → Gc
of O-groups which is the identity in the generic fiber, and gives a closed immersion L+Gf → L+Gc.
Hence, we obtain a Gm-equivariant surjective map of k-spaces F`Gf → F`Gc . If G0 denotes the
maximal reductive quotient of the special fiber Gc,k, and if P0 denotes the image of the map of
k-groups Gf ,k → Gc,k → G0, then P0 ⊂ G0 is a parabolic subgroup, and there is an isomorphism of
k-schemes

L+Gc/L+Gf ' G0/P0.

Lemma 4.9. i)The map F`Gf → F`Gc is étale locally trivial on the base with general fiber G0/P0.
In particular, the map F`Gf → F`Gc is schematic smooth proper and surjective.

ii) The induced morphism (F`Gf )0 → (F`Gc)0 is smooth proper and surjective.

iii) The induced morphism (F`Gf )± → (F`Gc)± is smooth and surjective.

Proof. The étale local triviality of LG→ LG/L+Gc is proved in [PR08, Thm 1.4]. This also follows
from (4.2): let F → Spec(R[[t]]) be a Gc,R[[t]]-torsor. If we denote F0 = F ⊗R[[t]] R for R[[t]] → R,
t 7→ 0, then F0 is an Gc,R-torsor which has a section over some étale cover R→ R′ (because Gc,R is
smooth). By the formal lifting criterion for smooth morphism, we obtain a section Spf(R′[[t]])→ F
which gives a section Spec(R′[[t]])→ F (because F is affine).

Now let Y → F`Gc be a map from a scheme, and denote by X = F`Gf ×F`Gc Y the base change.
We want to prove that X is a scheme, and that the map X → Y is smooth proper. The desired
properties are Zariski local on the base, and hence we may assume that Y = Spec(R) is affine. By
the discussion above, there exists an étale affine cover U → Y , and a section

LG

U F`Gc .

g

Consider the map π : (G0/P0) ×k U ⊂ F`Gf ,U
mg−→ F`Gf ,U → F`Gf where mg denotes the operator

which is induced from multiplication with g. By definition, we have a cartesian diagram of k-ind-
schemes

X ×Y U U

F`Gf F`Gc ,

which induces a U -map (π, id) : (G0/P0)×k U → X ×Y U =: XU . The map is an isomorphism with
inverse constructed similarly using mg−1 . Now XU → X is a surjective morphism of ind-schemes,
since surjectivity is stable under base change in the category of ind-schemes. As X is an ind-scheme
and XU is a quasi-compact scheme, the surjective morphism XU → X factors through a closed
subscheme Xi ↪→ X, hence Xi

∼= X, i.e.X is a scheme. Further, as (G0/P0)U ' XU → U is the
projection, the scheme X is proper and smooth over Y as these properties can be checked étale
locally on the base. These remarks imply i). Lemma 2.2 now implies ii) and iii). �

Remark 4.10. Using the formal smoothness of LG in a similar way, one can prove that F`Gf →
Spec(k) is formally smooth.

4.2.3. End of proof. Write P±f (resp. Mf ) for P± (resp. M) when G = Gf .

Proof of Proposition 4.7. We may assume k = k̄ is algebraically closed. Let G = Gf for a facet f of
the Bruhat-Tits building. The proof proceeds in three steps (1) f = f0 is a special vertex, (2) f = a
is an alcove and (3) f is a general facet.

Step (1). Let f = f0 be a special vertex, i.e.G = Gf0 is a special parahoric. The Iwasawa decompo-
sition

LG(k) = LP±(k) · L+G(k)



THE TEST FUNCTION CONJECTURE FOR PARAHORIC LOCAL MODELS 31

implies that the maps ι0 and ι± are bijections on k-points which shows part iii). As the map ι0 (resp.
ι±) is a closed immersion (resp. locally closed immersion), it is an isomorphism on the underlying
reduced subschemes which shows i). If G = G0⊗k F , then any special parahoric is hyperspecial and
part ii) reduces to Proposition 3.4. Step (1) follows.

Step (2). Let f = a be an alcove, i.e. G = Ga is an Iwahori group scheme. Choose a special facet
f0 contained in the closure of a. Then the morphism Ga → Gf0 induces a Gm-equivariant proper
smooth map on affine flag varieties F`a −→ F`f0 by Lemma 4.9. Hence, we obtain a commutative
diagram of k-ind-schemes

(4.13)

F`Ma F`Mf0

(F`a)0 (F`f0)0,

(∗)

where F`Mf0
→ (F`f0)0 is an isomorphism on reduced loci. The morphism on fixed points (F`a)0 →

(F`f0)0 is proper surjective and smooth by Lemma 4.9. After passing to reduced loci, we want to
show (∗) is an immersion which is both open and closed. It is enough to check that the map (∗) is
an open immersion on fibers over points in (F`Mf0

)red. Let us check why this is enough. We invoke
the critère de platitude par fibres of EGAIV, 11.3.10, which implies that a morphism of finitely
presented flat S-schemes f : X → Y is flat (resp. an open immersion) if and only if fs̄ : Xs̄ → Ys̄ is
flat (resp. an open immersion) for all geometric points s̄ of S (cf. [DR73, 7.4]). We may apply this
to the diagram of ind-schemes above, since the horizontal arrows are smooth (hence flat) by Lemma
4.9. For “closed immersion”, we use Lemma 4.6 i).

So we need to prove that the map (∗) is an open immersion on fibers. By the transitivity of
the LMf0 -action, it is enough to consider the fiber above the base point. Let Gf0,k → G0 be the
maximal reductive quotient. The image ofMf0,k in G0 is the Levi subgroup M0 ⊂ G0 given by the
centralizer of the cocharacter

(4.14) Gm,k
χk−→ Gf0,k −→ G0.

The image B0 of the composition Ga,k → Gf0,k → G0 is a Borel subgroup in G0. The cocharacter
(4.14) factors by definition through B0 ⊂ G0, and the image of Ma,k in B0 is its centralizer which
is M0 ∩B0. Thus, the map (∗) in (4.13) becomes on the fiber above the base point

(4.15) M0/(M0 ∩B0) −→ (G0/B0)0.

This map is easily seen to be an open immersion by using the big open cell in the split connected
reductive group G0. This implies part i) for ι0 in the case of an alcove. For ι± we use Lemma 4.9
iii) to deduce, analogously to the case of ι0, that ι± is an open immersion on reduced loci. Note
that we already know that ι± is a quasi-compact immersion (cf. Lemma 4.6 ii)). Hence, to deduce
that ι± is a closed immersion it remains to show that ι± maps F`P±a bijectively onto a union of

connected components of (F`a)±. Using the result for ι0, this is shown in Lemma 4.11 below. This
implies i) for ι±. If G = G0 ⊗k F , then by step (1) we do not need to pass to the reduced loci in
(4.13) which implies ii) and finishes the proof of step (2).

Step (3). Next let f be a general facet, and choose an alcove a containing f in its closure. As in the
previous case, we obtain now a commutative diagram of k-ind-schemes

(4.16)

F`Ma F`Mf

(F`a)0 (F`f )0,

where the dashed arrow is smooth on reduced loci (as the composition of an open immersion with
a smooth morphism, cf. Lemma 4.9). The map F`Ma → F`Mf

is smooth surjective, and hence the
closed immersion F`Mf

→ (F`f )0 is smooth on reduced loci by [StaPro, Tag 02K5]. In particular,
it is an open immersion as well. This finishes i) for ι0 and the argument for ι± is analogous. Again
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for ii), we do not need to pass to reduced loci by virtue of step (2). This finishes step (3) and the
proposition follows. �

The following lemma is used in the proof above, and implies that the fibers of the map (F`G)± →
(F`G)0 agree on k̄-valued points with the fibers of the map F`P± → F`M for all points in F`M(k̄):
Let

C0 = (F`G)0(k)\ι0(F`M(k)) (resp. C± = (F`G)±(k)\ι±(F`P±(k))).

Lemma 4.11. Under (F`G)0 ' F`M(k) q C0 and (F`G)±(k) ' F`P±(k) q C±, the diagram in
Proposition 4.7 gives on k-points the commutative diagram of sets

F`M(k) F`P±(k) F`G(k)

F`M(k)q C0 F`P±(k)q C± F`G(k).

ι0 ι± id

Proof. We may assume k̄ = k (the assertion follows by taking Galois invariants). If P± =MnN±
as in Lemma 4.5 iii), then the fiber over the base point of F`P±(k) → F`M(k) is X := F`N±(k).
Let Y denote the fiber over the base point of (F`G)±(k) → (F`G)0(k). As the above diagram is
LM(k)-equivariant, it is enough to show that the map of sets

(4.17) ι±(k)|X : X → Y

is a bijection. Since ι± is a monomorphism, the map (4.17) is clearly injective. Now if G = Gf0 is a
special parahoric, then ι± is bijective by Proposition 4.7 iii), and hence (4.17) is surjective as well
in this case. If G = Ga is an Iwahori, then we choose a special facet f0 contained in the closure of
a. The diagram in the formulation of the lemma is functorial with respect to the map of O-groups
Ga → Gf0 , and we consider the left square. For the respective fibers above the base points, we obtain
a commutative diagram of sets

(4.18)

Xf0 Xa

Yf0 Ya,

and one checks that the horizontal maps are surjective. A diagram chase together with consideration
of the LN -action shows that it is enough to see that the fibers above the base points of Xf0 resp.
Yf0 map bijectively onto each other. These fibers are identified with the k-points of the horizontal
fibers over the base points in the commutative diagram of k-schemes

M0/M0 ∩B0 P±0 /P
±
0 ∩B0

(G0/B0)0 (G0/B0)±,

where G0 is the maximal reductive quotient of Gf0,k and P±0 are the parabolic subgroups given by
the image of P±f0,k ⊂ Gf0,k in G0, cf. (4.15). The classical Bruhat decomposition implies that these

horizontal fibers agree. This implies the surjectivity of (4.17) for an Iwahori. If G = Gf is a general
parahoric, we choose an alcove a containing f in its closure. As in (4.18) one checks that the map
Ya → Yf is surjective which implies the surjectivity of Xf → Yf using the diagram analogous to
(4.18). This proves the lemma. �

4.2.4. Connected components. We fix a chain of F -tori A ⊂ S ⊂ T as in (4.3) such that the facet f is
contained in the apartment A = A (G,A, F ). We assume that the cocharacter χF factors through
A ⊂ G (hence A ⊂ M), and that T ⊂ M which can always be arranged. We use the maximal
torus T to form the algebraic fundamental group π1(M) = X∗(T )/X∗(TMsc), cf. (3.17). Let I ⊂ ΓF
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be the inertia group, and let Σ = ΓF /I the Galois group of k. By [PR08, §2.a.2], the Kottwitz
morphism (defined in [Ko97, §7]) is a locally constant morphism of ind-group schemes

(4.19) κM : LMk̄ −→ π1(M)
I
,

where π1(M)I denotes the coinvariants under the inertia group I. In particular, as L+M is geo-
metrically connected, the map (4.19) gives an isomorphism on the group of connected components

(4.20) π0(F`Mk̄
)
'−→ π1(M)I .

By Lemma 4.4, we have an inclusion on connected components

π0(F`P±
k̄

) = π0(F`Mk̄
) ⊂ π0((F`Gk̄)0) = π0((F`Gk̄)±).

For ν̄ ∈ π1(M)I , denote by (F`Gk̄)0
ν̄ (resp. (F`Gk̄)±ν̄ ) the corresponding connected component. Note

that all maps in Proposition 4.7 are compatible with the decomposition into connected components.
The disjoint sum of connected components

(4.21) (F`Gk̄)0,c =
∐

ν̄∈π1(M)I

(F`Gk̄)0
ν̄ (resp. (F`Gk̄)±,c =

∐
ν̄∈π1(M)I

(F`Gk̄)±ν̄ ).

is Σ-stable, and hence defined over k. The ind-scheme (F`Gk̄)0,c agrees on reduced loci with F`M
by Proposition 4.7 i). Further, we have a monomorphism

F`P±
k̄

↪→ (F`Gk̄)±,c,

which is a bijection on k̄-points by Lemma 4.11.
Let P± = M n N± with generic fiber P± = M n N±. Let N be either N+ or N−. Let ρN

denote the half-sum of the roots in NF̄ with respect to TF̄ . To every ν̄ ∈ π1(M)I , we attach the
number

nν̄
def
= 〈2ρN , ν̇〉,

where ν̇ ∈ X∗(T ) denotes a representative of ν̄. Since the pairing 〈-, -〉 is I-invariant, and 〈ρN , α∨〉 =
0 for all α∨ ∈ X∗(TMsc

), the number nν̄ is well-defined. As in (3.20) above the function π1(M)I →
Z, ν̄ 7→ nν̄ is constant of Σ-orbits, and we obtain a decomposition

(4.22) (F`G)0,c =
∐
m∈Z

(F`G)0
m (resp. (F`G)±,c =

∐
m∈Z

(F`G)±m),

where (F`G)0
m (resp. (F`G)±m)) denotes the disjoint sum over all (F`Gk̄)0

ν̄ (resp. (F`Gk̄)±ν̄ ) with
nν̄ = m. The diagram in Proposition 4.7 restricts to a commutative diagram of k-ind-schemes

(4.23)
F`M F`P± F`G

(F`G)0,c (F`G)±,c F`G ,

q± p±

ι0,c ι±,c id

where ι0,c and ι±,c are nilpotent thickenings, i.e., isomorphisms on reduced loci. The maps q± =∐
m∈Z q

±
m and p± =

∐
m∈Z p

±
m are compatible with the disjoint union decomposition (4.22). If

G = G0 ⊗k F is constant, then ι0,c and ι±,c are isomorphisms.

5. Beilinson-Drinfeld Grassmannians

The Beilinson-Drinfeld Grassmannians GrG are OF -ind-schemes which degenerate the affine
Grassmannian into the twisted affine flag variety. If F ' Fq((t)), then GrG is constructed in [Zhu14]
for tamely ramified groups and in [Ri16a] in general. If F/Qp is a finite extension, then GrG is con-
structed in [PZ13] for tamely ramified groups. We are interested in the study of fiberwise Gm-actions
on GrG .
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5.1. Torus actions in equal characteristic. Let F = k((t)) be a Laurent series local field with
ring of integers O = k[[t]]. The field k is either finite or algebraically closed. Let G be a connected
reductive F -group, and choose (A,S, T ) as in (4.3) above. Let G = Gf be a parahoric group whose
facet f is contained in the apartment of A. Hence, the lft Néron model A (resp. S, T ) of A (resp. S,
T ) is a closed subgroup scheme of G. Note that as A (resp. SF̆ ) is split, the smooth group scheme

A (resp. SŎ) is a O-split (resp. Ŏ-split) torus.

5.1.1. Beilinson-Drinfeld Grassmannians. A technical but necessary step in the construction of BD-
Grassmannians from local data is the spreading of the O-group schemes (G,A,S, T ) over a curve
X.

Proposition 5.1. There exists a smooth affine connected k-curve X of finite type with a point
x0 ∈ X(k), an identification ÔX,x0 = O on completed local rings, and a tuple of smooth affine
X-group schemes (G,A,S, T ) of finite type together with an isomorphism of O-group schemes

(G,A,S, T )⊗X O ' (G,A,S, T ),

with the following properties:

i) The group scheme G|X\x0
is connected reductive with maximal torus T |X\{x0}, and the group

G|(X\x0)k̄
is quasi-split.

ii) The group A is a maximal X-split torus, S is a maximal Xk̄-split torus, and T is the centralizer
of S in G.

iii) The group scheme G ⊗ OhX,x0
over the Henselization of the algebraic local ring is uniquely

determined (up to non-unique isomorphism) by the property G ⊗O ' G.

Proof. We follow the argument given in [Ri16a, Lem 3.1] using Proposition A.1 below. Let us
recall the major steps: Let v denote the restriction of the valuation of k((t)) to E := k(t). Then
Ev = F on completions, and we let F ′ denote the Henselization of (E, v). The subfield F ′ ⊂ F is a
Henselian valued field with completion F , and the same residue field k. By Proposition (A.1), there
exists a tuple of F ′-groups (G,A, S, T ) with the properties as in i) extending the tuple (G,A, S, T ).
For clarity, let us replace the tuple (G,A, S, T ) by (GF , AF , SF , TF ). Using the Beauville-Laszlo
gluing lemma [BL95] (cf. also [He10, Lem 5] for another method) we can glue G with G using
the identification GF = GF = GF . As in [Ri16a, Lem 3.1, Cor A.3] we obtain a smooth affine
group scheme G′ of finite type over OF ′ which extends G. Since the Beauville-Laszlo construction
is functorial, we obtain also a tuple of smooth closed OF ′-subgroup schemes (A′,S ′, T ′) extending
the tuple (A,S, T ). As we glued along the identity morphism, it follows that the group A′ (resp.

S ′) is a OF ′ -split (resp. ŎF ′ -split) torus. Further, the centralizer ZG′(S ′) is a smooth affine group

scheme of finite type by [Co14, Lem 2.2.4], and contains the commutative closed subscheme T ′.
Thus, we must have T ′ = ZG′(S ′) as both agree on an fpqc cover. Recall that OF ′ is the colimit

over all finite étale local OE,v-algebras (B,m) with B/m = k. As the group scheme G′ is of finite
type, it is defined over some (B,m). Hence, the tuple (G′,A′,S ′, T ′) extends to a tuple (G,A,S, T )
with the desired properties i) and ii) defined over some pointed curve (X,x0) with algebraic local
ring OX,x0

= B (again because of the finite type hypothesis). In light of Proposition A.1, part iii)
is immediate from the construction. �

Now as in [Ri16a, Def 3.3], we use the spreading G to define the BD-Grassmannian GrG which
is a separated O-ind-scheme of ind-finite type together with a transitive action of the global loop
group

(5.1) LG ×GrG −→ GrG ,

such that the generic fiber of (5.1) is identified with the usual affine Grassmannian (3.1) (formed
using an additional formal parameter), and the special fiber is identified with the twisted affine flag
variety (4.1). The BD-Grassmannian GrG is ind-proper (and then even ind-projective) over O if
and only if G is parahoric in the sense of Bruhat-Tits, cf. [Ri16a, Thm A]. The construction is as
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follows: Denote by GrG,X the functor on the category of k-algebras R given by the isomorphism
classes of triples (x,F , α) with

(5.2)


x ∈ X(R) is a point;

F a GXR -torsor on XR;

α : F|XR\Γx ' F0|XR\Γx a trivialization,

where F0 denotes the trivial torsor, and Γx ⊂ XR is the graph of x. Denote by R[[Γx]] the ring of
regular functions on the formal affine R-scheme given by the completion of XR along Γx. Then Γx ⊂
Spec(R[[Γx]]) defines a Cartier divisor (in particular locally principal), and hence its complement
is an affine scheme with ring of regular functions denoted by R((Γx)). The global loop group is the
functor on the category of k-algebras given by

(5.3) LXG : R 7→ {(x, g) | x ∈ X(R) and g ∈ G(R((Γx)))},
which is representable by an ind-affine ind-group scheme over X. By replacing R((Γx)) with R[[Γx]]
in (5.3), one defines the global positive loop group L+

XG which is a flat affine X-group scheme,
cf. [Ri16a]. Again by the Beauville-Laszlo gluing lemma [BL95] there is a natural isomorphism
GrG,X ' LXG/L+

XG, and we obtain a transitive action morphism

(5.4) LXG ×GrG,X −→ GrG,X .

The map (5.1) is the base change of (5.4) along the map Spec(O) = Spec(ÔX,x0)→ X.

Remark 5.2. i) Since the formation of GrG,X is compatible with étale localizations on X (cf.
[Zhu14, Lem 3.2]), Proposition 5.1 iii) implies that the ind-scheme GrG together with the map (5.1)
is uniquely determined up to unique isomorphism by the data (G,G, t). Indeed, for different choices
of (X,x0) the ind-schemes GrG are canonically isomorphic by the above mentioned lemma.

ii) Spreading out is necessary for the following reason. If one copies and pastes (5.2) by replacing X
with Spec(O), and one tries to compute the generic fiber of the resulting functor, then one runs into
the problem of computing the completion of k((t))⊗k k((t)) along the diagonal - a huge power series
ring in an infinite number of variables. If one instead computes the completion of k((t))⊗k k(t) along
the diagonal, then one obtains k((t))((z − t)) where z is identified with 1 ⊗ t. See however [Ri19b,
§0.3] for a partial remedy.

5.1.2. Torus actions. Let χ : Gm,O → G be any cocharacter whose generic fiber χF factors through
A. Then χ factors through A because it is a maximal split torus in G. As the curve X is connected,
the cocharacter χ spreads uniquely to a cocharacter χ : Gm,X → A. Hence, by functoriality of the
loop group construction, we obtain via the composition

(5.5) Gm,O ⊂ L+Gm,O
L+χ−→ L+G ⊂ LG

a fiberwise Gm-action on GrG → Spec(O).

Lemma 5.3. The Gm-action on GrG is Zariski locally linearizable.

Proof. We may replace X by the spectrum of the algebraic local ring at x, and choose a faithful
X-representation G ↪→ Gln,X such that Gln,X /G is quasi-affine (cf. e.g. [He10, §2 Ex (1)] for the
existence of the representation). Then the induced map on BD-Grassmannians i : GrG → GrGln is
representable by a quasi-compact immersion (cf. [Zhu, Prop 1.2.6]), and Gm-equivariant if we equip

Gln with an action via Gm,X
χ→ G → Gln,X . As both GrG and GrGln are ind-proper, the map i is a

closed immersion, and in particular affine. We are reduced to show that the Gm,O-action on GrGln

is Zariski locally linearizable. As X is local affine, any two maximal split tori of Gln,X are conjugate
over X, cf. [Co14, Prop 6.2.11]. Hence, we may assume that the image of Gm,X in Gln,X lies in the
diagonal matrices. Then χ is defined over k, and the Gm,O-action on the ind-scheme

GrGln,O = GrGln,k ×Spec(k) Spec(O)

comes from the ground field k. The lemma follows from Lemma 3.3. �
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In light of Theorem 2.1, Lemma 5.3 implies that there are maps of separated O-ind-schemes of
ind-finite type

(5.6) (GrG)0 ← (GrG)± → GrG ,

where (GrG)0 are the fixed points and (GrG)+ (resp. (GrG)−) is the attractor (resp. repeller), cf.
(2.2). As the cocharacter χ spreads, the O-groups

(5.7) M← P± → G
defined in (4.9) together with the maps spread as well. The following lemma is proven analogously
to Lemmas 4.4 and 4.6.

Lemma 5.4. i) The map (GrG)± → GrG is schematic.

ii) The map (GrG)± → (GrG)0 is ind-affine with geometrically connected fibers, and induces an
isomorphism on the group of connected components π0((GrG)±) ' π0((GrG)0).

iii) The map GrP± → GrM has geometrically connected fibers.

5.1.3. Fixed points, attractors and repellers.

Theorem 5.5. The maps (5.7) induce a commutative diagram of O-ind-schemes

GrM GrP± GrG

(GrG)0 (GrG)± GrG ,

ι0 ι± id

with the following properties.

i) The generic fiber (resp. special fiber) is the diagram constructed in Proposition 3.4 (resp. Proposition
4.7).

ii) The maps ι0 and ι± are closed immersions which are open immersions on the underlying reduced
loci.

iii) If G = G0 ⊗k F is constant, then ι0 and ι± are open and closed immersions.

As in Proposition 4.7 above, the map GrM → GrG is representable by a closed immersion (because
G/M is quasi-affine and GrM is ind-proper). The Gm-action on GrM is trivial, and hence we obtain
the closed immersion ι0 : GrM → (GrG)0. The map ι± can be constructed in terms of the moduli
description using a Rees construction, cf. Proposition 3.4, 4.7. Here we use the argument given in
Lemma 4.6 ii) to construct a quasi-compact immersion ι± on the spreadings GrP±,X → (GrG,X)±

as follows. As in the proof of Lemma 5.3, we choose G ↪→ Gln,X such that Gln,X /G is quasi-affine.

Let P+
X ⊂ Gln,X (resp. P−X ⊂ Gln,X) be the attractor (resp. repeller) subgroup defined by the

cocharacter Gm,X
χ→ G → Gln,X . Then we have P± = P±X ×Gln,X G. By Lemma 4.5 iii), the

group P± has geometrically connected fibers, and the main result of [Ana73] implies that the fppf-
quotient P±X /P

± is representable by a quasi-projective scheme. The map P±X /P
± ↪→ Gln,X /G is a

monomorphism of finite type, and by Zariski’s main theorem it is quasi-affine, cf. proof of Lemma
4.6 ii). Hence, P±X /P

± is quasi-affine as well. Now there is a commutative diagram of X-ind-schemes

(5.8)

GrP±

(GrG)± GrG

GrP±X
(GrGln,X )± GrGln,X ,

'

constructed as follows. The map GrG → GrGln,X is a closed immersion (cf. proof of Lemma 5.3), and
hence the square is Cartesian by general properties of attractor resp. repeller ind-schemes. This also
constructs the dotted arrow in (5.8) whose base change along Spec(O) ' Spec(ÔX,x0) → X is the
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map ι±. We claim that the dotted arrow is representable by a quasi-compact immersion. The map
GrP±X

→ (GrGln,X )± is an isomorphism by Proposition 3.4 because the cocharacter Gm,X → Gln,X is

defined over k after conjugation, cf. proof of Lemma 5.3. The map GrP± → GrP±X
is a quasi-compact

immersion because P±/P±X is quasi-affine, and since (GrG)± → (GrGln,X )± is closed immersion, the

claim follows. This constructs the diagram in Theorem 5.5, and shows that ι0 is a closed immersion
and ι± is a quasi-compact immersion.

Proof of Theorem 5.5 i). It is immediate from the construction that the generic fiber (resp. special
fiber) of the diagram in Theorem 5.5 gives the diagram in Proposition 3.4 (resp. Proposition 4.7). �

The following proposition decomposes the image of the maps ι0 and ι± into connected compo-
nents, and part i) below implies Theorem 5.5 ii).

Proposition 5.6. Let either N = N+ ⊗ F or N = N− ⊗ F with N± as in Lemma 4.5 iii). There
exists an open and closed O-ind-subscheme (GrG)0,c (resp. (GrG)±,c) of (GrG)0 (resp. (GrG)±)
together with a disjoint decomposition, depending up to sign on the choice of N , as O-ind-schemes

(GrG)0,c =
∐
m∈Z

(GrG)0
m (resp. (GrG)±,c =

∐
m∈Z

(GrG)±m),

which has the following properties.

i) The map ι0 : GrM → (GrG)0 (resp. ι± : GrP± → (GrG)±) factors through (GrG)0,c (resp.
(GrG)±,c) inducing a closed immersion ι0,c : GrM → (GrG)0,c (resp. ι±,c : GrP± → (GrG)±,c) which
is an isomorphism on reduced loci.

ii) The decomposition gives in the generic fiber decomposition (3.20) and in the special fiber decom-
position (4.22).

iii) The complement (GrG)0\(GrG)0,c (resp. (GrG)±\(GrG)±,c ) has empty generic fiber, i.e., is
concentrated in the special fiber.

Proof. Let us construct the decomposition. Let π1(M) = X∗(T )/X∗(TMsc
) be the algebraic funda-

mental group of M , cf. (3.17). For ν ∈ π1(M), denote by ν̇ ∈ X∗(T ) a representative which gives
rise to a map

ν̇ : Spec(F̄ ) → GrM = GrM,F ↪→ GrM.

By the ind-properness of GrM → Spec(O), the map ν̇ extends uniquely to a map (still denoted)

ν̇ : Spec(Ō)→ GrM,

where Ō ⊂ F̄ is the valuation subring of integral elements. By [Ri16a, Lem 2.21], the special
fiber ν̄ of ν̇ is the image under the canonical projection X∗(T ) → X∗(T )I . Furthermore, since

GrM,Ŏ → Spec(Ŏ) is ind-proper and Ŏ is Henselian, the natural map

π0(GrM,Ŏ)
'−→ π0(F`M,k̄)

(4.20)
= π1(M)I

is an isomorphism by [SGA4 1
2 , Arcata; IV-2; Prop 2.1]. This shows that there is a decomposition

into connected components

GrM,Ŏ =
∐

ν̄∈π1(M)I

(GrM,Ŏ)ν̄

such that (GrM,Ŏ)ν̄ ⊗ k̄ ' (F`M,k̄)ν̄ and (GrM,Ŏ)ν̄ ⊗ F̄ '
∐
ν 7→ν̄(GrM,F̄ )ν . Likewise, we have

π0((GrG,Ŏ)0) ' π0((F`G,k̄)0) on connected components. Using Lemma 5.4 ii), we get an inclusion

π1(M)I = π0(GrM,Ŏ) ⊂ π0

(
(GrG,Ŏ)0

)
= π0

(
(GrG,Ŏ)±

)
.

For ν̄ ∈ π1(MI), we denote the corresponding connected component of (GrG,Ŏ)0 (resp. (GrG,Ŏ)±)

by (GrG)0
ν̄ (resp. (GrG)±ν̄ ).
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For our choice of N , let ρN denote the half-sum of the roots in NF̄ with respect to TF̄ which was
used to define the integer nν = 〈2ρN , ν̇〉 (resp. nν̄ = 〈2ρN , ν̇〉) in (3.20) (resp. (4.22)). Note that
we have nν = nν̄ for all ν 7→ ν̄ by definition of nν̄ . As in (4.22), we consider

(GrG)0
m

def
=
∐
ν̄

(GrG)0
ν̄ (resp. (GrG)±m

def
=
∐
ν̄

(GrG)±ν̄ ),

where the disjoint sum is indexed by all ν̄ ∈ π1(M)I such that nν̄ = m. As the Galois action preserves
the integers nν̄ , the ind-scheme (GrG)0

m (resp. (GrG)±m) is defined over O. Note that (GrG)±m is the
preimage of (GrG)0

m along (GrG)± → (GrG)0. We obtain a decomposition as O-ind-schemes

(GrG)0,c def
=

∐
m∈Z

(GrG)0
m (resp. (GrG)±,c

def
=

∐
m∈Z

(GrG)±m).

For part i), note that we have the factorization ι0,c : GrM → (GrG)0,c (resp. ι±,c : GrP± → (GrG)±,c)
by construction which is a closed immersion (resp. quasi-compact immersion) because ι0 (resp. ι±)
is. Theorem 5.5 i) implies that the maps are bijective on the underlying topological spaces, and i)
follows from Lemma 5.7 below applied to ι0,c and ι±,c. Part ii) and iii) are immediate from the
construction. �

Lemma 5.7. Let ι : Y ↪→ Z be a quasi-compact immersion of ind-schemes which is bijective on the
underlying topological spaces. Then ι is a closed immersion which is an isomorphism on reduced
loci.

Proof. Writing Z = colimi Zi we reduce to the case where Z and hence Y are schemes. By [StaPro,
Tag 01QV], we can factor ι = i ◦ j where j : Y → Ȳ is an open immersion, and i : Ȳ → Z is a closed
immersion. Since ι is bijective, j is bijective as well, and hence j : Y ' Ȳ is an isomorphism. Thus,
ι is a bijective closed immersion. To see that ι is an isomorphism on reduced loci, we may assume
that Z = Spec(A) and hence Y = Spec(B) is affine. Since the induced surjective map ι# : A→ B is
bijective on spectra, its kernel is contained in the nilradical of A and hence is generated by nilpotent
elements. This implies that ι# is an isomorphism on reduced loci, and the lemma follows. �

Proof of Theorem 5.5 iii). If G = G0 ⊗k F is constant, then we claim that the maps ι0,c and ι±,c

constructed in Proposition 5.6 are isomorphisms. Using Proposition 3.4 and 4.7 ii), we already
know that they are fiberwise isomorphisms. By applying Lemma 5.8, it is enough to prove that
GrM (resp. GrP±) is ind-flat over O. We claim that this holds for any smooth affine group scheme
G of finite type over a smooth curve X with constant generic fiber.2 The map LXG → GrG,X is a

torsor under the flat affine X-group scheme L+
XG, and it is enough to show that LXG is ind-flat over

X. Working locally at x ∈ |X|, we may assume that X admits a global coordinate. Let us consider
the functor X on the category of k-algebras R with

X : R 7→ {(x, ϕ) | x ∈ X(R); ϕ : R[[Γx]] ' R[[z]] continuous},
where ϕ is a continuous isomorphism of R-algebras. The forgetful map X → X is a left L+Gm-

torsor, and we have LG0×L
+GmX ' LXG. In particular, LXG is fpqc locally isomorphic to LG0×X.

This shows the ind-flatness of LXG → X and Theorem 5.5 follows. �

Lemma 5.8. Let f : Y → Z be a map of O-schemes of finite type where Y is flat. If fη and fs are
isomorphisms, then f is an isomorphism.

Proof. By [SGA I, Exp I, Prop 5.7] it is enough to show that Z is flat. As Y is flat, the map f
factors as Y → Zfl ⊂ Z where Zfl is the scheme theoretic closure of the generic fiber. As the map
f is fiberwise an isomorphism, this implies Zfl = Z as follows. Let I be the ideal of definition of
Zfl ⊂ Z. Then Iη = 0, and as Z is of finite type this implies I = I ⊗ O/(tN ) for N >> 0. Now the
short exact sequence of OZ-modules

0→ I → OZ → OZfl → 0.

2Note that the generic fiber of M (resp. P±) is constant as well if the generic fiber of G is constant.
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stays exact after applying -⊗O k because OZfl is O-flat. As the composition OZ ⊗ k → OZfl ⊗ k →
OY ⊗k is an isomorphism, it follows that I ⊗k = 0, i.e., I = tI, and hence I = tI = . . . = tNI = 0.

�

5.2. Torus actions in unequal characteristic. We translate the arguments of the previous para-
graph to the BD-Grassmannians of Pappas-Zhu [PZ13]. Here we restrict our attention to the case
of tamely ramified groups. To handle restriction of scalars along wildly ramified extensions as in
[Lev16] more effort is needed.

Let F be a finite extension of Qp with uniformizer denoted $. Let G be a connected reductive
F -group, and choose (A,S, T ) as in (4.3) above. As in [PZ13], we assume that G splits over a tamely
ramified extension of F .

5.2.1. Pappas-Zhu-Beilinson-Drinfeld Grassmannians. In [PZ13, §3] a spreading (G,A, S, T ) over
O[t, t−1] = O[t±1] is constructed. The group G is a connected reductive O[t±1]-group, the groups
A ⊂ S ⊂ T are O[t±1]-subtori of G with the following properties. The torus A is a maximal split

O[t±1]-torus, the torus S is a maximal Ŏ[t±1]-split torus defined over O[t±1], and the torus T is a
maximal torus of G. If we take the base change along the specialization O[t±1] → F, t 7→ $, then
as F -groups

(5.9) (G,A, S, T )⊗O[t±1] F ' (G,A, S, T ),

cf. [PZ13, 4.3]. Interestingly, we may also consider the specialization along O[t±1]→ k((t)), $ 7→ 0.
Let us denote

(G′, A′, S′, T ′)
def
= (G,A, S, T )⊗O[t±1] k((t)).

Then G′ is a connected reductive F ′ := k((t))-group, and (A′, S′, T ′) is as in (4.3) above, cf. the
discussion in [PZ13, 4.1.2; 4.1.3]. Further, we obtain a canonical identification of the apartments
A (GF , AF ) = A (G′, A′) (cf. [PZ13, 4.1.3]), and hence under (5.9) an identification

(5.10) A (G,A) = A (G′, A′).

In fact by [PZ13, 4.1.2; 4.1.3], we have a canonical identification of apartments

(5.11) A (G,A) = A (Gκ((t)), Aκ((t)))

for both κ = k, F . We shall use the following two results in §7 below.

Lemma 5.9. There is an identification of Iwahori-Weyl groups W (G,A) = W (G′, A′) which is
compatible with the action on the apartments under the identification (5.10).

Proof. Over F̆ we obtain a σ-equivariant isomorphism according to [PZ13, 4.1.2]. The general case
follows by taking σ-fixed points from [Ri16b, §1.2] (cf. also (4.4) above and [PZ13, 4.1.3]). �

Now let G = Gf be a parahoric O-group scheme of G whose facet f is contained in A (G,A).
Then under (5.10) we obtain a unique facet f ′ ∈ A (G′, A′), and hence a parahoric k[[t]]-group
scheme G′ = Gf ′ of G′.

Lemma 5.10. There is a canonical identification Z(G(F ),G(OF )) = Z(G′(F ′),G′(OF ′)) of centers
of parahoric Hecke algebras, where the Haar measures are normalized to give G(OF ) (resp. G′(OF ′))
volume 1.

Proof. Let M (resp. M ′) be the centralizer of A (resp. A′) in G (resp. G′) which is a minimal Levi.
Applying Lemma 5.9 for M , we obtain an identification of abelian groups

ΛM := M(F )/M1 = M ′(k((t)))/M ′1 =: ΛM ′ ,

where M1 (resp. M ′1) is the unique parahoric group scheme of M(F ) (resp. M ′(k((t)))). The result
follows via the Bernstein isomorphisms [Hai14, Thm 11.10.1]

Q̄`[ΛM ]W0(G,A) ∼= Z(G(F ),G(OF )),

noting that the finite relative Weyl groups of (G,A) and (G′, A′) are isomorphic (compatible with
the action on ΛM = ΛM ′). �
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Let us now return to the construction of torus actions. We cite the following theorem [PZ13,
Thm 4.1; Cor 4.2].

Theorem 5.11. There is a unique (up to unique isomorphism) smooth affine A1
O-group scheme G

of finite type with connected fibers and with the following properties:

i) The group scheme G|O[t,t−1] is the group scheme G.

ii) The base change of G under Spec(O)→ A1
O given by t 7→ $ is the parahoric group G = Gf .

iii) The base change of G under OF [t]→ κ[[t]], t 7→ t for both κ = F, k is the parahoric group scheme
for Gκ((t)) attached to f under (5.11).

Let X = A1
O, and defined the BD-Grassmannian GrG,X as the functor on the category of O-

algebras R given by the set isomorphism classes of triples (x,F , α) with

(5.12)


x ∈ X(R) is a point;

F a GXR -torsor on XR;

α : F|XR\Γx ' F0|XR\Γx a trivialization,

where F0 denotes the trivial torsor, and Γx ⊂ XR is the graph of x. Note that the definition of
GrG,X makes sense for any smooth affine group scheme. We cite the following result [PZ13, Prop
6.5].

Lemma 5.12. Let G be a smooth affine group scheme with connected fibers. The BD-Grassmannian
GrG,X → X is representable by a separated ind-scheme of ind-finite type. If G is as in Theorem
5.11, then GrG,X → X is ind-projective.

Proof. The first statement follows as in the proof of [PZ13, Prop 6.5] from the existence of a closed
embedding G ↪→ Gln,X such that Gln,X /G is quasi-affine, cf. [PZ13, Cor 11.7]. Then the map
GrG,X → GrGln,X is representable by a locally closed immersion. As GrGln,X is ind-projective the
ind-scheme GrG,X is separated of finite type. The rest is [PZ13, Prop 6.5]. �

For any O-algebra, let R[[Γx]] ' R[[t− x]] be the ring of regular functions on the formal affine
R-scheme given by the completion of XR = A1

R along Γx. Then Γx ⊂ Spec(R[[Γx]]) defines a Cartier
divisor (in particular locally principal), and hence its complement is an affine scheme with ring of
regular functions denoted by R((Γx)) ' R[[t− x]][(t− x)−1]. The global loop group is the functor on
the category of O-algebras given by

(5.13) LXG : R 7→ {(x, g) | x ∈ X(R) and g ∈ G(R((Γx)))},
which is representable by an ind-affine ind-group scheme over X (cf. [PZ13, 6.2.4]). By replacing
R((Γx)) with R[[Γx]] in (5.3), one defines the global positive loop group L+

XG which is a flat affine
X-group scheme. Again by the Beauville-Laszlo gluing lemma [BL95] (cf. also [PZ13, Lem 6.1])
there is a natural isomorphism GrG,X ' LXG/L+

XG, and we obtain a transitive action morphism

(5.14) LXG ×GrG,X −→ GrG,X ,

cf. [PZ13, 6.2.4].

Definition 5.13. The (Pappas-Zhu) BD-Grassmannian3 GrG together with the action map

(5.15) LG ×GrG −→ GrG

is the base change of (5.14) along the map O[t]→ O, t 7→ $.

Remark 5.14. Fix the spreading G of G in (5.9), and a uniformizer $ ∈ O. Then the ind-scheme
GrG together with the action map (5.15) depends up to unique isomorphism on the data (G,G, $),
cf. Theorem 5.11. We refer the reader to [PZ13, Rmk 3.2] for a discussion of the uniqueness of the
spreading G. It is likely that (5.15) is independent of the choice of $, but we will not address this

3In[PZ13, 6.2.6] the ind-scheme GrG is denoted GrG,O.
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question here. Let us point out that in [SW, Conj. 21.4.1], Scholze predicts the existence of local
models which canonically depend only on the data (G,G, {µ}).

By [PZ13, Cor 6.6], the generic fiber of (5.15) is identified with the usual affine Grassmannian
(3.1) over F (formed using an additional formal parameter), and the special fiber is identified with
the twisted affine flag variety (4.1) for the k[[t]]-group G′.

Note that the construction of G is compatible with the chain of O[t±1]-tori A ⊂ S ⊂ T , and we
obtain a chain of commutative smooth closed A1

O-subgroup schemes

A ⊂ S ⊂ T
of G where A is a split A1

O-torus, S a split A1
Ŏ-torus defined over A1

O, and T is a smooth commutative

group scheme whose base change T ⊗O[t]O along t 7→ $ is the connected lft Nerón model of T . The
base change O[t]→ O, t 7→ $ gives the chain of group schemes A ⊂ S ⊂ T as above.

5.2.2. Torus actions. Let χ : Gm,O → G be any cocharacter whose generic fiber χF factors through
A. Then χ factors through A because it is a maximal split torus in G. As the curve X is connected,
the cocharacter χ spreads uniquely to a cocharacter χ : Gm,X → A. The cocharacter χ acts via

conjugation on G, and we denote byM the fixed points, and by P+ (resp. P−) the attractor (resp.
repeller) subgroup scheme. If M denotes the centralizer of χF (which is a Levi subgroup), then the
group scheme M|O[t±1] is a spreading M associated with M .

Lemma 5.15. i) The group schemes M and P± are smooth closed subgroup schemes of G with
geometrically connected fibers.

ii) The centralizer M is a parahoric group scheme for M in the sense of Theorem 5.11.

iii) There is a semidirect product decomposition P± =MnN± where N± is a smooth affine group
scheme with geometrically connected fibers.

Proof. The groups M, P± and the map P± → M are smooth by [Mar15, Rmk 1.2, Thm 1.1 &
Rmk 3.3]. For part ii), (in view of the uniqueness statement in Theorem 5.11) it suffices to check
thatM|O (resp. M|k[[t]]) is a parahoric group for M (resp. M ′). AsM|O (resp. M|k[[t]]) is smooth,
it agrees with the flat closure of M (resp. M ′) inside G (resp. G′), and henceM|O (resp. M|k[[t]]) is
parahoric by [Ri16a, Lem A.1]. In particular, M has geometrically connected fibers which implies
P± having geometrically connected fibers by [Ri19, Cor 1.12]. Part i) and ii) follow. The scheme
N± is the kernel of P± →M, and hence smooth with geometrically connected fibers. The lemma
follows. �

Using the functoriality of the loop group construction, we obtain via the composition

(5.16) Gm,O ⊂ L+Gm,O
L+χ−→ L+A ⊂ L+G ⊂ LG

a fiberwise Gm-action on GrG → Spec(O).

Lemma 5.16. The Gm-action on GrG is Zariski locally linearizable.

Proof. We follow the proof of Lemma 5.3: First, we reduce to the case of G = Gln,X as in the proof
of Lemma 5.12. Since X is affine and Pic(X) = 0, we may by [Co14, Prop 6.2.11] reduce to the case
that the image of χ : Gm,X → Gln,X lies in the diagonal matrices. Then the Gm-action on GrGln,X

is constant, i.e. comes from a Gm-action on GrGln,Z over the integers. Now the result follows from
Lemma 3.3 noting that the argument for Gln given there works over any ring. �

In light of Theorem 2.1, Lemma 5.3 implies that there are maps of separated O-ind-schemes of
ind-finite type

(5.17) (GrG)0 ← (GrG)± → GrG ,

where (GrG)0 are the fixed points and (GrG)+ (resp. (GrG)−) is the attractor (resp. repeller), cf.
§1. We denote by GrM (resp. GrP±) the BD-Grassmannians associated with the X-group schemes
M (resp. P±).
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Theorem 5.17. The maps (5.7) induce a commutative diagram of O-ind-schemes

GrM GrP± GrG

(GrG)0 (GrG)± GrG ,

ι0 ι± id

whose generic fiber (resp. special fiber) is the diagram constructed in Proposition 3.4 (resp. Proposition
4.7 for G′/k[[t]]). Further, the maps ι0 and ι± are closed immersions which are open immersions on
reduced loci.

Proof. As in Theorem 5.5, the map GrM → GrG is representable by a closed immersion (because
G/M is quasi-affine by [Co14, Thm 2.4.1] and GrM is ind-proper). The Gm-action on GrM is trivial,
and hence we obtain the closed immersion ι0 : GrM → (GrG)0. The quasi-compact immersion ι± is
constructed on the spreadings GrP±,X → (GrG,X)± analogous to the construction below Theorem

5.5: choose G ↪→ Gln,X such that Gln,X /G is quasi-affine, cf. [PZ13, Cor 11.7]. Let P+
X ⊂ Gln,X

(resp. P−X ⊂ Gln,X) be the attractor (resp. repeller) subgroup defined by the cocharacter Gm,X
χ
'

G ↪→ Gln,X . Then P± = G ×Gln,X P
±
X . Further, P±X (resp. P±) is smooth affine with geometrically

connected fibers by the proof of Lemma 5.15 iii). Hence the fppf-quotient P±X /P
± is a quasi-

projective scheme by [PZ13, Cor 11.5], and again by Zariski’s main theorem applied to the map
P±X /P

± → Gln,X/G is quasi-affine. We have the same diagram (5.8) as above. The isomorphism
GrP±X

' (GrGln,X )± follows from Lemma 3.6 using that Gm,X → Gln,X is defined over Zp after

conjugation, cf. the proof of Lemma 5.16. The rest of the construction of ι± is literally the same.
We do not repeat the full construction here, but instead refer the reader to Theorem 5.5. The
assertion on the fibers is [PZ13, Cor 6.6]. The rest of the proof is the same as in Theorem 5.5 using
Lemma 5.18 and Proposition 5.19 below. �

We have the following lemma which is proven analogously to Lemmas 4.4 and 4.6.

Lemma 5.18. i) The map (GrG)± → GrG is schematic.

ii) The map (GrG)± → (GrG)0 is ind-affine with geometrically connected fibers, and induces an
isomorphism on the group of connected components π0((GrG)±) ' π0((GrG)0).

iii) The map GrP± → GrM has geometrically connected fibers.

The following proposition is the analogue of Proposition 5.6.

Proposition 5.19. Let either N = N+ ⊗ F or N = N− ⊗ F with N± as in Lemma 5.15 iii).
There exists an open and closed O-ind-subscheme (GrG)0,c (resp. (GrG)±,c) of (GrG)0 (resp. (GrG)±)
together with a disjoint decomposition, depending up to sign on the choice of N , as O-ind-schemes

(GrG)0,c =
∐
m∈Z

(GrG)0
m (resp. (GrG)±,c =

∐
m∈Z

(GrG)±m),

which has the following properties.

i) The map ι0 : GrM → (GrG)0 (resp. ι± : GrP± → (GrG)±) factors through (GrG)0,c (resp.
(GrG)±,c) inducing a closed immersion ι0,c : GrM → (GrG)0,c (resp. ι±,c : GrP± → (GrG)±,c) which
is an isomorphism on reduced loci.

ii) The decomposition gives in the generic fiber decomposition (3.20) and in the special fiber decom-
position (4.22).

iii) The complement (GrG)0\(GrG)0,c (resp. (GrG)±\(GrG)±,c ) has empty generic fiber, i.e., is
concentrated in the special fiber.

Proof. Let π1(M) = X∗(T )/X∗(TMsc
) be the algebraic fundamental group of M , cf. (3.17). For

ν ∈ π1(M), denote by ν̇ ∈ X∗(T ) a representative which gives rise to a map

ν̇ : Spec(F̄ ) → GrM = GrM,F ↪→ GrM.
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By the ind-properness of GrM → Spec(O), which follows from Lemma 5.15 ii) together with Lemma
5.12, the map ν̇ extends uniquely to a map (still denoted)

ν̇ : Spec(Ō) → GrM.

Here Ō ⊂ F̄ is the valuation subring of integral elements. Now by Lemma [PZ13, Lem 9.8], the
special fiber ν̄ of ν̇ is the image under the canonical projection X∗(T ) → X∗(T )I . Arguing as in
Proposition 5.6, we obtain, for the choice of P, a decomposition into open and closed O-sub-ind-
schemes

(GrG)0,c def
=

∐
m∈Z

(GrG)0
m (resp. (GrG)±,c

def
=

∐
m∈Z

(GrG)±m ),

with the desired properties. The proof of i)-iii) is the same as in Proposition 5.6. �

6. Constant terms on affine flag varieties

6.0.1. Nearby cycles. Let us briefly recall some general facts about nearby cycles. Let (S, s, η) be a
Henselian trait, i.e.,S is the spectrum of a Henselian discrete valuation ring, s ∈ S (resp. η ∈ S)
the closed (resp. open) point. Let η̄ → η be a geometric point, and denote by Γ = Gal(η̄/η) the
Galois group. Let S̄ be the normalization of S in η̄, and let s̄ ∈ S̄ be the closed point. We obtain
the seven-tuple (S, s, η, S̄, s̄, η̄,Γ).

In the following all schemes are assumed to be separated and of finite type. As coefficients for
the derived categories, we take Q̄` for a fixed prime ` which is invertible on S. For a scheme X over
s, we denote by Db

c(X×s η) as in [SGA7, Exp. XIII] the bounded derived category of Q̄`-sheaves on
Xs̄ with constructible cohomologies, and with a continuous action of Γ compatible with the action
on Xs̄. If X ↪→ Y is a closed immersion of k-schemes which is an isomorphism on reduced loci,
then by the topological invariance of étale cohomology [StaPro, Tag 03SI] there is an equivalence of
categories Db

c(X ×s η) ' Db
c(Y ×s η).

Recall from [SGA7, Exp. XIII] (cf. also [Il94, Appendix]) that for a S-scheme X, there is the
functor of nearby cycles

(6.1) ΨX : Dc
b(Xη) −→ Dc

b(Xs ×s η).

If f : X → Y is a map of S-schemes, then there is a natural transformation of functors Dc
b(Xη) →

Dc
b(Ys ×s η) (resp. Dc

b(Yη)→ Dc
b(Xs ×s η)) as

(6.2) fs,! ◦ΨX −→ ΨY ◦ fη,! (resp. f∗s ◦ΨY −→ ΨX ◦ f∗η ),

which is an isomorphism if f is proper (resp. if f is smooth). Furthermore, by [Il94, Thm 4.2, Thm
4.7] nearby cycles commute with Verdier duality and box products

(6.3) Ds̄ ◦ΨX ' ΨX ◦Dη and ΨX×SY ' ΨX � ΨY .

By [BBD82], nearby cycles preserve perversity, and restrict to a functor on perverse complexes

ΨX : Perv(Xη, Q̄`) −→ Perv(Xs ×s η).

The construction of nearby cycles extends to separated S-ind-schemes of ind-finite type; see the
discussion in [PZ13, 10.1] for more details.

6.0.2. Hyperbolic Localization. Let R be a ring. Let X be an R-ind-scheme locally of finite presen-
tation with an étale locally linearizable Gm-action, cf. §2. The fixed points X0 and the attractor
X+ (resp. repeller X−) are as in (2.2) related by the maps of R-ind-schemes

X0 q±← X±
p±→ X,

cf. Theorem 2.1 for the representability properties of X0 and X±. As in [Br03, DG15] (cf. also
[Ri19, Cons 2.2]), there is a natural transformation of functors D+(X, Q̄`)→ D(X0, Q̄`),

(6.4) (q−)∗ ◦ (p−)! −→ (q+)! ◦ (p+)∗,

where D+(-) (resp. D(-)) is the category of bounded below complexes (resp. full derived category).
We say that a complex A ∈ D+(X, Q̄`) is (naively) Gm-equivariant if there exists an isomorphism
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p∗A ' a∗A in Db
c(Gm,S ×S X, Q̄`), where p (resp. a) denotes the projection (resp. action) Gm,S ×S

X → X. Following the method in [Br03] for normal varieties over algebraically closed fields, it is
shown in [Ri19, Thm 2.6] that the transformation (6.4) is an isomorphism when restricted to the
full subcategory of Gm-equivariant complexes (the extension to ind-schemes is immediate).

Now specialize to the case whereR is a Henselian trait, and set S = Spec(R). Let (S, s, η, S̄, s̄, η̄,Γ)
be as in §6.0.1. The following theorem is the analogue of [Ri19, Thm 3.3] for ind-schemes.

Theorem 6.1. Let X be a separated S-ind-scheme of ind-finite type with an étale locally linearizable
Gm-action. Then, for A ∈ Db

c(Xη, Q̄`), there is a commutative diagram of arrows in Db
c(X

0
s×Sη, Q̄`)

(6.5)

(q−s̄ )∗ ◦ (p−s̄ )! ◦ΨX(A) ΨX0 ◦ (q−η )∗ ◦ (p−η )!(A)

(q+
s̄ )! ◦ (p+

s̄ )∗ ◦ΨX(A) ΨX0 ◦ (q+
η )! ◦ (p+

η )∗(A),

and all arrows are isomorphisms if A is (naively) Gm-equivariant.

Remark 6.2. More generally, the theorem holds when “Gm-equivariant” is replaced by “Gm-
monodromic”, cf. [Ri19]. We do not need this more general statement in the paper.

Proof of Theorem 6.1. The horizontal maps in (6.5) are constructed from the usual functorialities
of nearby cycles (6.2). The vertical maps in (6.5) are given by (6.4) in the generic (resp. special)
fiber. When X is a scheme, the theorem is [Ri19, Thm 3.3]. The case of ind-schemes is deduced
as follows. Write X = colimiXi where Xi are separated S-schemes of finite type with an étale
locally linearizable Gm-action. By definition of Db

c(Xη, Q̄`), there is an Xi such that the support
Supp(A) is contained in Xi,η, and all maps in (6.5) are defined when using Xi instead of X. Since
nearby cycles (cf. (6.2)) and the map (6.4) (cf. [Ri19, Lem 2.22]) commute with push forward along
closed immersions, the isomorphism is independent of the choice of Xi with i >> 0. The theorem
for ind-schemes follows. �

6.0.3. The data. Let us specialize to our set-up. Let F be a non-archimedean local field, i.e.,
either F/Qp a finite extension or F ' Fq((t)). Take S = Spec(OF ), and the rest of the data
(S, s, η, S̄, s̄, η̄,ΓF ) with the obvious meaning.

We fix a triple (G,G, χ) where G is a connected reductive F -group, G is a parahoric OF -group
scheme with generic fiber G, and χ : Gm,OF → G is a cocharacter defined over OF . If F/Qp, we
assume G to split over a tamely ramified extension of F , fix a uniformizer $ and a spreading G as
in Theorem 5.11. If F ' Fq((t)), we fix a spreading G over a pointed curve (X,x0) as in Proposition
5.1. Let M and P± denote the smooth closed OF -subgroup schemes of G associated with χ by
Lemma 4.5, 5.15.

In the following, we treat the case of F/Qp and the case of F ' Fq((t)) in complete analogy. If
F/Qp, the notation F`G , LG, L+G, F`M... means F`G′ , LG′, L+G′, F`M′ ... in the notation of §5.2.1.

6.1. Geometric constant terms for affine flag varieties. The affine flag variety F`G is equipped
with a left action of the pro-smooth affine k-group L+G. As in [PZ13, 10.1.3], we make the following
definition.

Definition 6.3. The category PervL+G(F`G ×s η) is the category of pairs (A, θA) with A ∈
Perv(F`G ×s η) together with an isomorphism θA : m∗(A) ' p∗(A) in Perv(F`G ×s η) satisfying
a cocycle condition. Here m, p : L+G × F`G → F`G is the action, resp. the projection.

Recall from (5.1), resp. Definition 5.13 that the Beilinson-Drinfeld Grassmannian GrG is an ind-
proper OF -ind-scheme with generic fiber GrG,η = GrG and special fiber GrG,s = F`G . Consider
the The global positive loop group L+G is a flat affine OF -group scheme which acts on GrG . Its
generic fiber is the F -group L+G, and its special fiber is the k-group L+G. Furthermore, L+G '
limn≥0 L+

nG is an inverse limit of smooth affine O-group schemes L+
nG. Here for R/O one has

L+
nG(R) = G

(
R[t]/(t−$)n+1

)
if F/Qp and L+

nG(R) = G
(
R[z]/(z − t)n+1

)
if F ' k((t)).
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For each finite dimensional L+G-invariant closed subscheme in GrG , the L+G-action factors over
the smooth OF -group scheme L+

nG for n >> 0.
As any object in PervL+G(GrG) has by definition a finite dimensional support, smooth base

change (cf. (6.2)) shows that the nearby cycles

(6.6) ΨGrG : PervL+G(GrG) −→ PervL+G(F`G ×s η).

take values in L+G-equivariant objects.
In Theorem 5.5, Proposition 5.6 (for F ' Fq((t))), and Theorem 5.17, Proposition 5.19 (for F/Qp

finite), we constructed a commutative diagram of separated OF -ind-schemes

(6.7)
GrM GrP± GrG

(GrG)0,c (GrG)±,c GrG ,

q± p±

ι0,c ι±,c id

whose generic fiber is the diagram in Proposition 3.4, and whose special fiber is diagram (4.23) for
G (resp. for G′ if F/Qp). The maps ι0,c and ι±,c are nilpotent thickenings by Proposition 5.6, 5.19
i), and we may and do identify their derived categories of `-adic complexes in what follows. Then
there is a natural isomorphism of functors Db

c(GrM , Q̄`)→ Db
c(F`M ×s η, Q̄`),

(6.8) ΨGrM ' Ψ(GrG)0,c .

We write ΨG = ΨGrG (resp. ΨM = ΨGrM) in the following.
Since ι0,c and ι±,c are nilpotent thickenings, Proposition 5.6, 5.19 gives a decomposition

q± =
∐
m∈Z

q±m : GrP± =
∐
m∈Z

GrP±,m −→
∐
m∈Z

GrM,m = GrM,

according to the choice of the unipotent group N := N± ⊗ F . We use the special fiber of diagram
(6.7) to define the geometric constant term functors on affine flag varieties as follows.

Definition 6.4. The (normalized) geometric constant term is the functor CT+
χ : Db

c(F`G ×s η) →
Db
c(F`M×s η) (resp. CT−χ : Db

c(F`G×s η)→ Db
c(F`M×s η)) defined as the shifted pull-push functor

CT+
χ

def
=
⊕
m∈Z

(q+
m,s)!(p

+
s )∗〈m〉 (resp. CT−χ

def
=
⊕
m∈Z

(q−m,s)∗(p
−
s )!〈m〉).

As in (3.26), there is a natural transformation of functors

(6.9) CT−χ −→ CT+
χ ,

which is an isomorphism for Gm-equivariant complexes by Braden’s theorem, cf. §6.0.2. In partic-
ular, if we restrict both functors to the category PervL+G(F`G ×s η) of L+G-equivariant perverse
sheaves (the Gm-action factors through the L+G-action), then (6.9) is an isomorphism of functors.
The functor PervL+G(F`G ×s η)→ Dc

b(F`M ×s η) is defined as

(6.10) CTM
def
= CT+

χ |PervL+G(F`G×sη).

As in Theorem 6.1, the usual functorialities of nearby cycles (6.2) give a natural transformation of
functors SatG → Db

c(F`M ×s η) as

(6.11) CTM ◦ΨG −→ ΨM ◦ CTM ,

where we use that the decomposition q+ = qm∈Zq+
m is compatible with the decomposition q+

η =

qm∈Zq+
η,m (resp. q+

s = qm∈Zq+
s,m) in (3.20) (resp. (4.22)).

Theorem 6.5. The transformation (6.11) is an isomorphism of functors SatG → Db
c(F`M ×s η).

In particular, for every A ∈ SatG, the complex CTM ◦ΨG(A) is naturally in PervL+M(F`M ×s η).
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Remark 6.6. It is possible to define the full subcategory Db
c(F`G ×s η)Gm -mon of Gm-monodromic

complexes in Db
c(F`G ×s η). If we restrict in (6.10) the functor CT+

χ to this subcategory, then the
transformation (6.11) is still an isomorphism (by the same proof). We do not need this more general
statement in the paper.

Proof. In light of (6.6) combined with Theorem 3.16 i), we have

ΨM ◦ CTM (A) ∈ PervL+M(F`M ×s η),

and it is enough to show that (6.11) is an isomorphism.
Let ′q+ : (GrG)+ → (GrG)0 (resp. ′p+ : (GrG)+ → GrG) which agrees with q+ (resp. p+) in

the generic fiber. As each object in SatG is Gm-equivariant, there is by Theorem 6.1 a natural
isomorphism of functors SatG → Db

c((GrG)0 ×s η) as

(6.12) (′q+)s,! ◦ (′p+)∗s ◦ΨG
'−→ Ψ(GrG)0 ◦ (′q+)η,! ◦ (′p+)∗η.

The map (GrG)0,c ⊂ (GrG)0 is an open and closed immersion which is which is an isomorphism on
generic fibers, and we denote by C0 its complement. Then C0 has empty generic fiber by Proposition
5.6, 5.19 iii), and we obtain

Ψ(GrG)0 |C0 = 0,

by smooth base change (6.2). Together with (6.12), we obtain (′q+)s,! ◦ (′p+)∗s ◦ ΨG |C0 = 0. The
theorem follows using diagram (6.7). �

In §6.2.1, we explain what Theorem 6.5 means in a special case in terms of cohomology groups.
Let us point out two applications: the construction of geometric constant terms for the Satake
equivalence §6.2, and applications to local models §6.3.

6.2. Geometric constant terms for ramified groups. We proceed with the data and notation
as in §6.0.3. Let G = Gf , and assume that the facet fM ∈ B(M,F ) in the Bruhat-Tits building

associated with M =MfM is very special, i.e. the image under B(M,F ) ↪→ B(M, F̆ ) is special.
Building upon the work [Zhu15], the second named author defined in [Ri16a, Def 5.10] a semi-

simple full subcategory SatM of PL+M(F`M×s η) which is stable under the convolution of perverse
sheaves. It is shown that SatM is neutral Tannakian, and that the global cohomology functor

(6.13)

ωM : SatM −→ RepQ̄`(ΓF )

A 7−→
⊕
i∈Z

Hi(F`M,k̄,Ak̄)(i/2).

defines a Tannakian equivalence SatM ' RepQ̄`(
LMr), cf. [Ri16a, Thm 5.11]. Here LMr is the

algebraic Q̄`-group LMr = M̂ IF o ΓF where the inertia group IF acts on M̂ by pinning preserving
automorphisms, cf. the discussion around Theorem 3.10. Note that the group M̂ IF is reductive,
but in general not connected.

For any A ∈ SatM , the nearby cycles ΨM(A) belong to SatM, and the functor ΨM : SatM →
SatM admits a unique structure of a tensor functor together with an isomorphism ωM ◦ΨM ' ωM .
By [Zhu14], [Ri16a, Thm 5.11 iii)] (if F ' Fq((t))) and [PZ13, Thm 10.18] (if F/Qp), there is a
commutative diagram of neutral Tannakian categories

(6.14)
SatM SatM

RepQ̄`(
LM) RepQ̄`(

LMr),

ΨM

res
ωM ωM

where res : V 7→ V |LMr
denotes the restriction of representations along the inclusion LMr ⊂ LM .

The diagram is compatible with pullback SatM → SatM,F̄ in the obvious sense. The following
theorem generalizes [AB09, Thm 4] from the case of split reductive group to general reductive
groups.
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Theorem 6.7. Assume M is a very special parahoric group scheme.

i) For every A ∈ SatG, one has CTM ◦ΨG(A) ∈ SatM.

ii) The functor CTM ◦ΨG : SatG → SatM admits a unique structure of a tensor functor together
with an isomorphism ωM ◦CTM ◦ΨG ' ωG. Under the geometric Satake equivalence, it corresponds
to the restriction of representations res : RepQ̄`(

LG)→ RepQ̄`(
LMr) along the inclusion LMr ⊂ LG.

Proof. The theorem follows from the canonical isomorphism CTM ◦ΨG ' ΨM ◦ CTM given by
Theorem 6.5, and the corresponding statement for the latter functor, cf. Theorem 3.16 and (6.14).

�

The following corollary was announced in [Ri14b].

Corollary 6.8. Let G be very special, and consequently M is very special as well.

i) For every A ∈ SatG, one has CTM(A) ∈ SatM.

ii) The functor CTM : SatG → SatM admits a unique structure of a tensor functor together with
an isomorphism ωM ◦CTM ' ωG. Under the geometric Satake equivalence (6.14), it corresponds to
the restriction of representations res : RepQ̄`(

LGr)→ RepQ̄`(
LMr) along the inclusion LMr ⊂ LGr.

Proof. As the nearby cycles ΨG : SatG → SatG are a tensor functor between semi-simple Tannakian
categories inducing the closed immersion LGr ⊂ LG on Tannakian groups, every object A ∈ SatG
is a direct summand of some object of the form ΨG(B) with B ∈ SatG, cf. [DM82, Prop 2.21 (b)].
The corollary is an immediate consequence of Theorem 6.7. �

In [HR10], the Satake isomorphism for special parahoric Hecke algebras is constructed. If M =
T is the connected lft Néron model of a torus, Corollary 6.8 is a geometrization of the Satake
isomorphism for a very special parahoric subgroup, cf. Lemma 7.2 below.

6.2.1. The case of an Iwahori. Let us make explicit what Theorem 6.7 means in a special case: let
k = k̄ be algebraically closed, i.e. F = F̆ , and assume that G is an Iwahori group scheme and
that the cocharacter χ : Gm,O → G is regular, i.e. M = T is a maximal torus. Then the parahoric
T =M is the lft Néron model of T which is very special. The parabolic subgroups B± = P± are
F -rational Borel subgroups, and we denote B± = P±. The Iwahori-Weyl group W = W (G,A) (cf.
Definition 4.1) sits in a short exact sequence

1→ ΛT →W →W0 → 1,

where ΛT = F`T (k) = T (F )/T (OF ) is the subgroup of translation elements in W . Note that

X∗(T )I ' ΛT , λ̄ 7→ tλ̄ under the Kottwitz isomorphism. The fixed point scheme is on reduced loci

(F`G)0
red = W,

whereW denotes the constant k-scheme. Hence, there is a decomposition into connected components

(F`G)± =
∐
w∈W

(F`G)±w ,

and the image of the map F`B± ↪→ (F`G)± identifies (on reduced loci) with the sum of the connected
components (F`G)±

tλ̄
for λ̄ ∈ X∗(T )I . Let 2ρ ∈ X∗(T ) denote the sum of the B+-positive roots. For

λ̄ ∈ X∗(T )I , let λ ∈ X∗(T ) be any lift and define the integer

〈2ρ, λ̄〉 def
= 〈2ρ, λ〉 ∈ Z,

which is well-defined since B+ is F -rational, and hence γ · 2ρ = 2ρ for all γ ∈ I.

Corollary 6.9. Let V ∈ RepQ̄`(Ĝ), and denote by AV ∈ SatG,F̄ the object with ωF̄ (AV ) = V . For

the compact cohomology group as Q̄`-vector spaces

Hic((F`G)+
w ,ΨG(AV )) =

{
V (λ̄) if w = tλ̄ and i = 〈2ρ, λ̄〉;
0 else,

where V (λ̄) is the λ̄-weight space in V |T̂ I .
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2
The following lemma is used in the proof of Theorem 6.12 below.

Lemma 6.10. For w ∈W , there is an inclusion of non-empty sets

(F`≤wG )±w(k) = (F`≤wG )(k) ∩ (F`G)±w(k) ⊂ F`wG (k).

Proof. As the class of w is contained in all sets, these are non-empty. The first equality follows from
the equality (F`≤wG )± = F`≤wG ×F`G (F`G)± which holds since F`≤wG ↪→ F`G is a closed immersion.
The case of repellers follows by inverting the Gm-action from the case of attractors. We proceed by
induction on the length l(w). If l(w) = 1, then w is a simple reflection and F`≤wG ' P1

k. In this case,

either (F`≤wG )+
w = {w} or (F`≤wG )+

w = F`wG because χ is regular (hence the Gm-action is non-trivial).
Now let l(w) ≥ 2, and write w = w′ · s with l(w) = l(w′) + 1, and s a simple reflection. The

partial Demazure resolution embeds as a closed Gm-invariant4 subscheme

(p,m) : F`≤w
′

G ×̃F`≤sG ↪→ F`≤w
′

G ×F`≤wG ,

where p : (x, y) 7→ x denotes the projection on the first factor, and m : (x, y) 7→ y the “multiplication”
map, is given by projection onto the second factor. This implies the following description on fixed
points

(F`≤w
′

G ×̃F`≤sG )0(k) = {(v1, v2) ∈W 2 ; v1 ≤ w′, v−1
1 · v2 ≤ s} =: S .

Hence, the connected components of (F`≤w
′

G ×̃F`≤sG )+ are enumerated by the set S by general

properties of attractors, cf. [Ri19, Prop 1.17 ii)]. The map m is given on fixed points by m0 : S →
W, (v1, v2) 7→ v2, and since s is a simple reflection we must have m0,−1(w) = {(w′, w)}. This implies
for the preimage

(6.15) m−1((F`≤wG )+
w) = (F`≤w

′

G ×̃F`≤sG )+
(w′,w).

By the induction hypothesis, we have an inclusion (F`≤w
′

G )+
w′ ⊂ F`

w′

G which implies the inclusion

(F`≤w
′

G ×̃F`≤sG )+
(w′,w) ⊂ p

−1(F`w
′

G ) = F`w
′

G ×̃F`
≤s
G .

Hence, (F`≤w
′

G ×̃F`≤sG )+
(w′,w) identifies with a connected component of (F`w

′

G ×̃F`
≤s
G )+, and we claim

that (F`≤w
′

G ×̃F`≤sG )+
(w′,w) ⊂ F`

w′

G ×̃F`
s
G . Indeed, if (x, y) ∈ (F`w

′

G ×̃F`
≤s
G )+

(w′,w)(k), then x ∈ (F`w
′

G )+
w′(k)

(by the induction hypothesis), and either y ∈ F`wG (k) or y ∈ F`w
′

G (k) because s is simple. In the

second case, (x, y) ∈ (F`≤w
′

G ×̃F`≤sG )+
(w′,w′)(k), and hence we must have y ∈ F`wG (k) for (x, y) ∈

(F`≤w
′

G ×̃F`≤sG )+
(w′,w)(k). Together with (6.15) it follows that

(F`≤wG )+
w = m((F`≤w

′

G ×̃F`≤sG )+
(w′,w)) ⊂ m(F`w

′

G ×̃F`
s
G) = F`wG ,

which is what we wanted to show. �

6.3. Applications to local models. We continue with the data and notation as in §6.0.3. Let {µ}
be a G(F̄ )-conjugacy class of geometric cocharacters with reflex field E/F . The following definition
is [PZ13] when F/Qp and [Zhu14, Ri14a] when F ' Fq((t)).

Definition 6.11. The local model M{µ} = MG,G,{µ} is the scheme theoretic closure of the locally
closed subscheme

Gr
≤{µ}
G ↪→ (GrG ⊗F E)red ↪→ (GrG ⊗OF OE)red,

where Gr
≤{µ}
G is as in (3.4).

4For the diagonal Gm-action on the target.
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The local model M{µ} is a flat projective OE-subscheme of (GrG ⊗OF OE)red which is uniquely
determined up to unique isomorphism by the data (G,G, {µ}) and the choice of a uniformizer in
F ; for a further discussion see Theorem 5.11 and Remark 5.14 (if F/Qp), and Remark 5.2 i) (if

F ' k((t))). Its generic fiber M{µ} ⊗ E = Gr
≤{µ}
G,E is a (geometrically irreducible) variety, and the

special fiber M{µ} ⊗ kE is equidimensional, cf. [GW10, Thm 14.114]. There is a closed embedding
into the flag variety

M{µ} ⊗ kE ↪→ GrG ⊗OF kE = F`G,kE ,
which identifies the reduced locus (M{µ} ⊗ kE)red with a union of Schubert varieties in F`G,kE . We
show how Theorem 6.5 implies that these Schubert varieties are enumerated by the {µ}-admissible
set in the sense of Kottwitz-Rapoport.

6.3.1. The special fiber of Local Models. Let us recall the definition of the {µ}-admissible set. For

the rest of this section, we assume that k = kE is algebraically closed, i.e. F = F̆ . Let G = Gf , and
fix A = S ⊂ T with notations as in (4.3) above such that f is contained in the apartment A (G,A).
Let a ⊂ A (G,A) be an alcove containing f in its closure. Let W = W (G,A) be the Iwahori-Weyl
group (cf. Definition 4.1), W0 = W0(G,A) be the relative Weyl group, and let W abs

0 = W0(GF̄ , TF̄ )
be the absolute Weyl group. The class {µ} gives a well defined W abs

0 -orbit

W abs
0 · µ,

where µ ∈ X∗(T ) is any representative of {µ}. Denote by Λ̃{µ} the set of elements λ ∈ W abs
0 · µ

such that λ is dominant with respect to some F̆ -rational Borel subgroup of G containing T . Let
Λ{µ} be the image of Λ̃{µ} under the canonical projection X∗(T ) → X∗(T )I . The {µ}-admissible
set Adm{µ} (relative to a) is the partially ordered subset of the Iwahori-Weyl group

(6.16) Adm{µ}
def
=
{
w ∈W | ∃λ̄ ∈ Λ{µ} : w ≤ tλ̄

}
,

where ≤ is the Bruhat order of W . Let Wf ⊂ W be the subgroup associated with f , cf. (4.7). The

{µ}-admissible set Admf
{µ} relative to f is the partially ordered subset

(6.17) Admf
{µ}

def
= Wf\Adm{µ}/Wf ⊂Wf\W/Wf .

This does not depend on the choice of the alcove a ⊂ A (G,A) containing f in its closure.
If G splits over a tamely ramified extension and p - |π1(Gder)|, then the following theorem is a

weaker form of [PZ13, Thm 9.3] (if F/Qp) and [Zhu14, Thm 3.8] (if F ' Fq((t))). Hence, the result
is new when either p | |π1(Gder)| or F ' Fq((t)) and G splits over a wildly ramified extension.

Theorem 6.12. The smooth locus (M{µ})
sm is fiberwise dense in M{µ}, and on reduced subschemes

(M{µ},k)red =
⋃

w∈Admf
{µ}

F`≤wG .

In particular, the special fiber M{µ},k is generically reduced.

Proof. Once we have determined (M{µ},k)red, the method of [Ri16a, Cor 3.14] shows in both

cases (i.e. F/Q̆p or F = F̄p((t))) that the special fiber of (M{µ})
sm is dense in M{µ},k: each

λ ∈ Λ̃{µ} determines a point Spec(F̄ ) → GrG which extends uniquely (by ind-properness) to a

map λ̃ : Spec(OF̄ ) → GrG . The L+GOF̄ -orbit of λ̃ is then representable by an open and smooth

subscheme of M{µ} ⊗ OF̄ , and the union of the orbits for λ ∈ Λ̃{µ} is open, smooth and fiberwise
dense in M{µ}.

Now let IC{µ} be the normalized intersection complex on the generic fiber M{µ},E = Gr
≤{µ}
G,E .

The support of the nearby cycles ΨG(IC{µ}) is a L+G-equivariant reduced closed subscheme of F`G
and as such

(M{µ},k)red = Supp ΨG(IC{µ}) ⊂ F`G ,
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by [Zhu14, Lem 7.1]. In particular, the support is a union of Schubert varieties in F`G , and we let

Suppf
{µ} denote the subset of the classes in Wf\W/Wf belonging to these Schubert varieties. We

have to show

Admf
{µ}

!
= Suppf

{µ},

as subsets of Wf\W/Wf . By [Ri16a, Lem 3.12], we already know Admf
{µ} ⊂ Suppf

{µ}. We proceed
in two steps.

Reduction to the case f = a is an alcove. Let a ⊂ A (G,A) be an alcove containing f in its closure.
The map of group schemes Ga → Gf induces a proper map of OE-schemes

f : M(G,Ga,{µ}) →M(G,Gf ,{µ}).

The compatibility of nearby cycles with proper push forward implies that f∗ ◦ ΨGa(IC{µ}) =

ΨGf (IC{µ}), and hence the map Suppa
{µ} → Suppf

{µ} is surjective. We obtain a commutative diagram
of sets

Adma
{µ} Suppa

{µ}

Admf
{µ} Suppf

{µ},

with the vertical maps being surjective. Thus, the equality Adma
{µ} = Suppa

{µ} implies the equality

Admf
{µ} = Suppf

{µ}.

Proof in the case of an alcove. Let f = a be an alcove, and drop the superscript from the notation.
We show that the maximal elements of Supp{µ} are precisely the tλ̄ for λ̄ ∈ Λ{µ} (cf. (6.16) above)
which proves the theorem.

We choose a regular cocharacter χ : Gm,O → G as in §6.2.1, and use the notation introduced

there. Let µ̄ be the B+-dominant element in Λ{µ}. Now let w ∈ Supp{µ} be maximal, i.e. F`≤wG is

an irreducible component of (M{µ},k)red. By the equidimensionality, we have for the length

l(w) = dim(F`≤wG ) = dim(Gr
{µ}
G,E) = 〈2ρ, µ̄〉.

Further, as Q̄`-vector space
H∗c((F`G)+

w ,ΨG(IC{µ})) 6= 0,

because F`≤wG ∩ (F`G)+
w ⊂ F`

w
G is non-empty by Lemma 6.10, and ΨG(IC{µ})|F`wG = Q̄`〈l(w)〉m with

m > 0. Now Corollary 6.9 implies that w = tλ̄ for some λ̄ ∈ X∗(T )I which is also a weight in
V{µ}|ĜI . We conclude λ̄ ∈ Λ{µ} by citing [Hai, Thm 4.2 and (7.11-12)]. �

6.4. Central sheaves. We continue with the data and notation as in §6.0.3. As in Definition 6.3, let
PervL+G(F`G ×s η) the category of L+G-equivariant perverse sheaves compatible with a continuous
Galois action.

Recall that for objects in PervL+G(F`G ×s η) there is the convolution product defined by Lusztig
[Lu81]. Consider the convolution diagram

F`G ×F`G
q← LG × F`G

p→ LG ×L
+G F`G =: F`G×̃F`G

m→ F`G .
For A,B ∈ PervL+G(F`G ×s η), let A×̃B be the (unique up to canonical isomorphism) complex on
F`G×̃F`G such that q∗(A� B) ' p∗(A×̃B). By definition

(6.18) A ? B def
= m∗(A×̃B) ∈ Db

c(F`G ×s η, Q̄`).
In the following, we consider PL+G(F`G) as a full subcategory of PL+G(F`G ×s η).

Fix a chain of tori A ⊂ S ⊂ T as in (4.3), and let W = W (G,A) be the associated Iwahori-Weyl

group over F , cf. Definition 4.1 ii). For each w ∈ W , the associated Schubert variety F`≤wG ⊂ F`G
is defined over k. Let j : F`wG ↪→ F`

≤w
G , and and denote by ICw = j!∗(Q̄`[dim(F`wG )]) the intersection

complex. As in (6.6), we have the functor of nearby cycles

ΨG : PervL+G(GrG) −→ PervL+G(F`G ×s η).
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The next theorem follows from [PZ13, Thm 10.5] (if F/Qp) and [Zhu14, Thm 7.3] (if F ' Fq((t)))
which are both built upon ideas of [Ga01]:

Theorem 6.13 (Gaitsgory, Zhu, Pappas-Zhu). For each A ∈ PL+G(GrG), and w ∈ W , both
convolutions ΨG(A) ? ICw, ICw ? ΨG(A) are objects in PL+G(F`G ×s η), and as such there is a
canonical isomorphism

ΨG(A) ? ICw ' ICw ?ΨG(A).

Proof. Mixed Characteristic. Let F/Qp, and hence we assumed G to be tamely ramified. If A =
IC{µ} where {µ} is a class which is defined over F , then the theorem is a special case of [PZ13, Thm
10.5]. However, the proof given there works for general objects A ∈ PL+G(GrG), and only uses that
the support Supp(A) is finite dimensional and defined over F .

Equal Characteristic. Let F ' k((t)). If G is tamely ramified, and if A = IC{µ}, then the theorem
is a special case of [Zhu14, Thm 7.3]. However, the arguments given in [Zhu14, §7.2] suffice to treat
the case of a general (possibly wildly ramified) connected reductive group G. Here we use [Ri16a,
Thm 2.19] to justify the ind-properness of the Beilinson-Drinfeld and Convolution Grassmannians
which are used in the proof. We do not repeat the arguments here. �

7. Application to the test function conjecture

7.1. From sheaves to functions.

7.1.1. The semi-simple trace. Let us collect some facts about the sheaf function dictionary for semi-
simple traces. For further details, we refer to [HN02, 3.1] (cf. also [PZ13, 10.4]). The notion of
semi-simple trace is due to Rapoport.

For a separated k-scheme X of finite type, we have Db
c(X ×s η) as in §6 above. For a complex

A ∈ Db
c(X ×s η), we consider the semi-simple trace of geometric Frobenius function

τ ss
A : X(k)→ Q̄`, x 7→

∑
i∈Z

(−1)itrss(Φ |Hi(A)x̄),

where trss is the trace on the inertia-fixed vectors in the associated graded of a Galois stable filtration
on which the inertia group acts via a finite quotient. If f : X → Y is a map of separated k-schemes
of finite type, then there are the identities

(7.1) τ ss
f!A(y) =

∑
x∈f−1(y)

τ ss
A (x) and τ ss

f∗A(x) = τ ss
A (f(x)).

For shifts and twists one has

(7.2) τ ss
A[m] = (−1)mτ ss

A and τ ss
A(m/2) = q−

m/2τ ss
A .

The construction carries over to the case of separated k-ind-schemes of finite type, cf. [PZ13, 10.4]
for details.

7.1.2. The Hecke algebra. We proceed with the data and notation from §(6.0.3). Let A ⊂ S ⊂ T be
a chain of tori as in (4.3). Fix a Haar measure on G(F ) giving the compact open subgroup G(O)
volume 1. The parahoric Hecke algebra is the Q̄`-algebra

H(G(F ),G(OF ))
def
= Cc(G(O)\G(F )/G(O); Q̄`)

of bi-G(OF )-invariant compactly supported, locally constant functions on G(F ). The algebra struc-
ture is given by convolution of functions, and is for f1, f2 ∈ H(G(F ),G(OF )) given by the formula

(7.3) (f1 ? f2)(x) =

∫
G(F )

f1(g)f2(g−1x)dg.

We write Z(G(F ),G(OF )) for the center of H(G(F ),G(OF )).
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Remark 7.1. If F/Qp is of mixed characteristic, then we fix a spreading G of G as in (5.9). With
the notation of Lemma 5.10 we can identify Z(G(F ),G(OF )) = Z(G′(k((t))),G′(k[[t]])) as algebras
in a way compatible with an identification on Iwahori-Weyl groups W (G,A) = W (G′, A′). We will
use this identification freely in what follows.

7.1.3. Constant terms. In [Hai14, §11.11], the first named author constructed the constant term
map cGM : Z(G(F ),G(OF )) → Z(M(F ),M(OF )) abstractly using the Bernstein center, and then
showed it is given by the formula

(7.4) cGM (f)(m) = δ
1/2
P+ (m) ·

∫
N+(F )

f(mn)dn,

where dn is normalized such that N+(OF ) gets volume 1, and in Z(M(F ),M(OF )) we give
M(OF ) = G(OF ) ∩M(F ) volume 1.

It will be convenient to work with another normalization which matches better with the geometric
constant term. Denote by ν̄m the image of m ∈M(F ) under the Kottwitz homomorphism M(F )→
π1(M)Φ

I , and let ν̇m ∈ X∗(T ) be any lift of ν̄m. The integer 〈2ρN+ , ν̄m〉 := 〈2ρN+ , ν̇m〉 does not
depend on the choice of ν̇m, cf. §4.2.4. For f ∈ Z(G,G), define pcGM (f) ∈ Z(M,M) by the formula

(7.5) pcGM (f)(m) = (−1)〈2ρN+ ,ν̄m〉 δ
1/2
P+ (m) ·

∫
N+(F )

f(mn)dn.

Lemma 7.2. Let A ∈ PervL+G(F`G ×s η) be an equivariant perverse sheaf, cf. Definition 6.3.

i) The function τ ss
A is an element in the Hecke algebra H(G,G).

ii) If τ ss
A ∈ Z(G(F ),G(OF )), then as functions in Z(M(F ),M(OF )) there is an equality

pcGM (τ ss
A ) = τ ss

CTM(A).

Proof. As an element of H(G(F ),G(OF )) is the same as a finitely supported function on the double
coset G(O)\G(F )/G(O), part i) follows from Lemma 4.2 together with (7.1) (to check that equiv-
ariance as a sheaf translates to equivariance as a function). For part ii), we use Corollary 4.11 and

the functorialities (7.1), (7.2). It remains to explain, why δ
1/2
P+ agrees with the normalization in

Definition 6.4. For m ∈M(F ), by definition

δP+(m) = |det
(

Ad(m) | Lie(N+(F ))
)
|F

where |x|F = q− valF (x) with valF (t) = 1 and Ad(m)(n) = m · n · m−1 for n ∈ Lie(N+(F )). The
Kottwitz map gives an isomorphism

(7.6) M(F )/M(F )◦ ' π1(M)Φ
I

where M(F )◦ = (LM)◦(F ) is the neutral component. Note that the classes in π1(M)I where Φ acts
non-trivially do not contribute. Consider the character

χ∨ : M
Ad−→ Aut(Lie(N+))

det−→ Gm.

This gives the formula

δP+(m) = |χ∨(m)|F = q−〈χ
∨|T ,ν̄〉,

where the class [m] ∈ M(F )/M(F )◦ corresponds to ν̄m ∈ π1(M)I under (7.6). On the other hand
χ∨|T = 2ρN+ , and we obtain

δ
1/2
P+ (m) = q−〈ρN+ ,ν̄m〉.

Hence, the normalizations match, and the lemma follows. �
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7.1.4. Central functions. As in (6.6), we have the functor of nearby cycles

ΨG : PervL+G(GrG) −→ PervL+G(F`G ×s η).

The following theorem is an immediate consequence of Theorem 6.13.

Theorem 7.3. For each A ∈ PL+G(GrG), the function τ ss
ΨG(A) naturally is an element in the center

Z(G(F ),G(OF )) in the following sense:

i) If F ' k((t)), then the function τ ss
ΨG(A) depends canonically only on the data (G,G,A).

ii) Let F/Qp, and recall that we fixed a spreading G in Remark 7.1. Then the function τ ss
ΨG(A)

depends canonically only on the data (G,G,A).

Proof. If F/Qp, then we use Remark 7.1 to identify Z(G(F ),G(OF )) = Z(G′(k((t))),G′(k[[t]])). Part
i) (resp. ii)) follows from Remark 5.2 i) (resp. Remark 5.14). Note that different choices of
uniformizers in OF differ by elements in O×F which induced the identity automorphism on Hecke
algebras. Let us show that τ ss

ΨG(A) defines a central function. Using the sheaf function dictionary,

especially (7.1), and the definition of the convolution product (7.3), resp. (6.18), we obtain that

τ ss
ΨG(A)?B = τ ss

ΨG(A) ? τ
ss
B ,

for every B ∈ PervL+G(F`G)5. In particular, by Theorem 6.13, the function τ ss
ΨG(A) commutes with

all the functions τw := τ ss
ICw

for w ∈W = W (G,A) in the Iwahori-Weyl group. But it is easy to see
from Lemma 4.2 that the algebra H(G(F ),G(OF )) is generated by the functions τw for w ∈ W : if
G is an Iwahori for example, we can write

τw = (−1)l(w)

(
1w +

∑
v<w

cv,w · 1v

)
,

where, for v ∈W , the function 1v is the characteristic function on the double coset G(OF )· v̇ ·G(OF ),
and l : W → Z≥0 denotes the length function. The fact that 1w appears with multiplicity 1, follows
from the identity ICw = j!∗(Q̄`[dim(F`wG )])|F`wG = Q̄`[dim(F`wG )]. Thus, by induction on l(w), we

get that all functions 1w are contained in the Q̄`-vector subspace generated by the τw’s, which is of
course the full Hecke algebra H(G(F ),G(OF )). The general parahoric case is similar using Lemma
4.2. �

7.2. Review of Satake parameters and definition of zss
G,I(V ). We review the construction of

the Satake parameter of a representation with parahoric fixed vectors [Hai15, Hai17].
Let E/F be a finite extension field, and let E0/F be the maximal unramified subextension. Let

G be a connected reductive group over E0, with usual data A,S, T,M as in (4.3). Let G∗ denote
the E0-quasisplit inner form of G, with corresponding data A∗, S∗, T ∗ = M∗. Let W ∗0 (resp.W ∗0,E)

denote the relative Weyl group of G∗ (resp.G∗E). Then W ∗0 = (W ∗0,E)Gal(E/E0). The geometric

Frobenius is insensitive to the extension E/E0: ΦE = ΦE0
; abbreviate it by Φ. We have GĒ0

= G∗
Ē0

but the Galois actions differ by a 1-cocycle in G∗
ad,Ĕ0

. Thus we use Φ∗ and Φ to distinguish the

actions of Φ related to G∗ and G (although on dual groups there is no difference, and LGE = LG∗E).
There is a canonical finite morphism of algebraic varieties over Q̄`

(7.7) s : (Z(M̂)IE0 )Φ/W0 −→ (T̂ ∗
IE0

)Φ∗/W
∗
0 −→ (T̂ ∗

IE
)Φ∗/W

∗
0,E
∼= [Ĝ∗

IE o Φ∗]ss/Ĝ∗
IE

(see [Hai15, (9.1), Prop 6.1] and [Hai17, Lem 8.2’]).
By [Hai14, Thm 11.10.1], the central algebra Z(G(E0),G(OE0)) is the ring of regular functions

on the variety (Z(M̂)IE0 )Φ/W0, which is the component of the Bernstein variety corresponding to
representations of G(E0) with parahoric-fixed vectors.

5More generally, the formula holds when the inertia action on B is unipotent. We will not need this fact.
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Let V ∈ Rep( LGE) be an algebraic representation. Let I(V ) = Ind
LGE
LGE0

(V ). For t∗ ∈ T̂ ∗
IE

, the

map t∗ 7→ tr(t∗ o Φ∗ |V 1oIE ) gives a regular function on (T̂ ∗
IE

)Φ∗/W
∗
0,E . Pulling back along s, we

obtain the regular function χ 7→ tr(s(χ) |V 1oIE ). This is precisely the definition of zss
G,I(V ). In other

words, zss
G,I(V ) is the element of Z(G(E0),G(OE0

)) which, for any irreducible smooth representation

π of G(E0) with supercuspidal support (M(E0), χ)G, acts on πG(OE0
) by the scalar

tr(s(χ) |V 1oIE ) = tr(s(χ) | I(V )1oIE0 ).

(See [Hai, Lem 8.1].) The Satake parameter of π is by definition s(π) := s(χ).

Remark 7.4. One can construct unconditionally an element ZI(V ) of the stable Bernstein center
of G(E0) as in [Hai14, 5.7]. If one accepts the enhanced local Langlands conjecture LLC+, then
there is a map from the stable Bernstein center to the usual Bernstein center of G(E0) (cf. [Hai14,
Cor 5.5.2]). Denote also by ZI(V ) the resulting G(E0)-invariant distribution on G(E0). We obtain
a function ZI(V ) ? 1J ∈ Z(G(E0), J) for any compact open subgroup J ⊂ G(E0). If J = G(OE0) is
parahoric, then zss

G,I(V ) is an unconditional version of ZI(V ) ? 1J .

7.3. Statement of the test function conjecture for local models.

7.3.1. The data. We consider the fields E,E0, F as before (we discuss equal and mixed characteristic
settings uniformly), and the data (G,G, {µ},GrG). Instead of requiring E to be the field of definition
of {µ}, it is enough for us to assume that E is a finite unramified extension thereof. Let kE = kE0

be the common residue field of E and E0, and let ΦE = ΦE0
= Φ

[E0:F ]
F be the common geometric

Frobenius element in ΓE ⊂ ΓE0
. Let IE ⊂ ΓE (resp. IE0

⊂ ΓE0
) be the inertia subgroup.

7.3.2. The representation side. Let (V{µ}, r{µ}) be the representation of LGE = ĜoΓE constructed
as in [Hai14, §6.1]. We write (I(V{µ}), i{µ}) for the induced representation

I(V{µ}) = Ind
ĜoΓE0

ĜoΓE
(V{µ}).

Then we define zss
G,{µ} (written zss

{µ} when G is understood) to be the function zss
G,I(V{µ}).

7.3.3. Nearby cycles side. The conjugacy class {µ} gives rise as usual to a Schubert variety in
GrG,F̄ ; it is a finite dimensional projective scheme to which we give the reduced structure. It is
stable under the action of ΓE , hence is defined over E. Let M{µ},E denote the resulting E-variety
in GrG,E . We let M{µ} denote the flat closure of M{µ},E in GrG,OE , with reduced structure. Let dµ
be the dimension of the generic fiber M{µ},E over E.

Therefore we have a closed embedding

M{µ} ↪→
(

GrG ⊗O OE
)

red
=
(

GrG,OE0
⊗OE0

OE
)

red
.

Write the base change projection as

f : GrG,OE0
⊗OE0

OE −→ GrG,OE0
.

Recall IC{µ} denotes the intersection complex on M{µ},E , normalized as in (3.21) so that it is
perverse and weight zero. Then we have

IC{µ} ∈ PervL+GE (GrG,E ,Q`).

Our goal is to understand the function

(7.8) trss(ΦE |ΨGrG,OE
(IC{µ})) : M{µ}(kE) −→ Q̄`.

The operation fs̄,∗ corresponds to induction of Galois representations, cf. [SGA7, Exp XIII 1.2.7
b)]. Therefore by the analogue of [Hai, Lem 8.1] and the equality ΦE0 = ΦE , we can rewrite (7.8)
as

trss(ΦE |ΨGrG,OE
(IC{µ})) = trss

(
ΦE0
| fs̄,∗ΨGrG,OE

(IC{µ})).
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On the generic fiber we have the sheaf fη,∗IC{µ} ∈ PervL+
z GE0

(GrG,E0
,Q`). Since f is proper and

defined over E0, there is an isomorphism

fs̄,∗ΨGrG,OE
(IC{µ}) = ΨGrG,OE0

(fη,∗IC{µ})

in the category PervL+GkE0
(GrG,OE0

×sE0
ηE0

, Q`). This yields

(7.9) trss(ΦE |ΨGrG,OE
(IC{µ})) = trss(ΦE0

|ΨGrG,OE0
(fη,∗IC{µ})).

Let Sat(V{µ}) denote the perverse sheaf corresponding to V{µ} under the geometric Satake equiv-
alence given by Theorem 3.10. Recall Sat(V{µ}) = IC{µ} by Corollary 3.12. Also, fη,∗Sat(V{µ}) '
Sat(I(V{µ})) by Proposition 3.14. Therefore as functions on M{µ}(kE),

(7.10) trss(ΦE |ΨGrG,OE
(IC{µ})) = trss(ΦE0

|ΨGrG,OE0
(Sat(I(V{µ}))).

By Theorem 7.3, the right hand side belongs to Z(G(E0),G(OE0)). This explains how we view
the left hand side also as an element of that algebra. We remark that we really needed to pass to
GrG,OE0

and not just to GrG,OE , since GOE0
is a parahoric group scheme, whereas GOE might not

be.

7.3.4. The conjecture. By the above discussion, the Test Function Conjecture announced in [Hai14]
(more precisely, the local model version) can be rephrased in the case of parahoric level as follows.

Conjecture 7.5. Recall dµ = dimM{µ},E. As elements of Z(G(E0),G(OE0
)),

trss
(
ΦE |RΨM{µ}(IC{µ})

)
= (−1)dµ · zss

{µ}.

Because of the nature of the proof which goes via a reduction to minimal Levi subgroups, we also
need a more flexible version of this statement as follows.

Now suppose V is any irreducible algebraic representation of LG = Ĝ o ΓF . Let V0 be an
irreducible constituent of V |Ĝ. Then as LG-representations V =

∑
γ∈ΓF

γ(V0). This means that

the B̂-highest T̂ -weights λ appearing in V |Ĝ are all ΓF -conjugate. We will use the weights λ to
define a sign attached to V ; but it will be convenient to phrase the definition in terms of λ viewed
as cocharacters of G. To this end, we choose an F -rational maximal torus T ⊂ G which is the
centralizer of an F -rational maximal F̆ -split torus S ⊂ G as in (4.3). We have abstractly an

identification X∗(T ) = X∗(T̂ ), which in general does not respect ΓF -actions. However, because of
the careful choice of T , the two natural actions of γ ∈ ΓF differ from each other by the action of
an element wγ ∈W (G,S)(F̆ ) (this follows from the discussion around [HR10, (11.2.2)]). Therefore,

transporting the ΓF -action on T̂ yields a twisted ΓF -action on X∗(T ) which still permutes the sets
of simple roots corresponding to the various Borel subgroups B ⊃ T . Now we may view λ ∈ X∗(T ),
and if ρB denotes the half-sum of the B-positive T -roots, we define the parity

(7.11) dV
def
= 〈2ρB , λ〉 mod 2.

This is well-defined independent of the choice of λ and B (if B′ is another Borel subgroup containing
T , then ρB − ρB′ ∈ X∗(T ) (a sum of roots), hence 〈ρB − ρB′ , λ〉 ∈ Z; if γ ∈ ΓF , then 〈2ρB , γλ〉 =
〈2ργ−1B , λ〉), where ρB 7→ ργ−1B refers to the twisted action of γ ∈ ΓF mentioned above.

If V is any algebraic (hence semi-simple) representation of LG , then we can write V = V +⊕V −,
where all irreducible constituents of V + (resp. V −) have even (resp. odd) parity. Let Sat(V ) =
Sat(V +)⊕Sat(V −) be the object in PervL+G(GrG, Q̄`) which corresponds to V under the geometric
Satake equivalence of Theorem 3.10. We define as a function on F`G(kF ),

(7.12) τ ss
G,V

def
= trss(ΦF |ΨGrG (Sat(V +)))− trss(ΦF |ΨGrG (Sat(V −))).

Note that if V is irreducible, then

(7.13) (−1)dV τ ss
G,V = trss(Φ |ΨGrG (Sat(V ))).

We define zss
G,V to be the unique function in Z(G(F ),G(OF )) such that, if πG(OF ) 6= 0, then zss

G,V
acts on πG(OF ) by the scalar trss(s(π) |V 1oIF ). Note that this is consistent with our earlier notation:
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if V ∈ LGE , then the above sense of zss
GOE0

,I(V ) ∈ Z(G(E0),G(OE0
)) coincides with what we defined

in section 7.2.
We have the following theorem.

Theorem 7.6. Let V be an algebraic representation of LG. Then as elements of Z(G(F ),G(OF )),

τ ss
G,V = zss

G,V .

Theorem 7.6 implies Conjecture 7.5 as follows. The statement of Conjecture 7.5 depends only
on the data GE0

,GOE0
and V{µ} ∈ Rep( LGE). Therefore, we may replace E0 with F , i.e., we may

assume E0 = F . By (7.10) and the very definition of zss
G,V , the conjecture for V{µ} ∈ Rep( LGE)

follows from Theorem 7.6 for the induced representation I(V{µ}) ∈ Rep( LG). It remains to discuss
the sign given by the parity. Note that all irreducible constituents of I(V{µ}) have the same parity

as V{µ}. Now if V = V{µ}, then dV ≡ dµ. To prove this note that Sat(V{µ}) is supported on Gr
≤{µ}
GF̄

,

whose dimension is 〈2ρB , µ〉 by [Ri16a, Prop 2.2, Cor 3.10]. Hence, Conjecture 7.5 follows from
Theorem 7.6.

Let us note that if V ⊕W is a direct sum of algebraic representations of LG, then τ ss
G,V⊕W =

τ ss
G,V + τ ss

G,W and likewise, zss
G,V⊕W = zss

G,V + zss
G,W . So the theorem for general V follows from the

theorem for irreducible V which we will prove in the next sections.

7.3.5. Notation. As the formulation of Theorem 7.6 only makes reference to the field F , we will drop
the subscript F from the notation. In particular, O = OF is the ring of integers with residue field
k = kF . The Galois group is denoted Γ = ΓF with inertia subgroup I = IF , and fixed geometric
Frobenius Φ = ΦF etc.

7.3.6. More on irreducible representations of LG. The following lemma will be useful.

Lemma 7.7. Suppose V is an irreducible algebraic representation of LG. Suppose that V |ĜoI is
not irreducible. Then τ ss

G,V = zss
G,V = 0.

Proof. Suppose V0 ( V |ĜoI is an irreducible constituent. Let r be the order of Φ acting as an

automorphism of V . By the irreducibility of V ,
∑
i∈Z ΦiV0 = V . Let d ≥ 1 be minimal such that

ΦdV0 = V0. Then d > 1 and V = ⊕d−1
i=0 ΦiV0 as LG-modules. Moreover V I = ⊕d−1

i=0 Φi(V I0 ). Since

Φ permutes these direct summands without fixed points, the trace of any s(π) ∈ ĜI o Φ on V I is
zero. This proves that zss

G,V = 0. Similar reasoning applied to Sat(V ) proves τ ss
G,V = 0. �

7.4. Reduction to minimal F -Levi subgroups. Let M be a minimal6 F -Levi subgroup of G.

There is a choice of embedding M̂ ↪→ Ĝ such that the canonical Γ-action on M̂ is inherited from the

Γ-action on Ĝ ([Hai17, Lem 2.1]). Fix this choice from now on. The embedding extends canonically

to an L-embedding LM = M̂ o Γ ↪→ LG = Ĝo Γ.
The group M(F ) ∩ G(O) is a parahoric subgroup of M(F ) (cf. [HR10, Lem 4.1.1]); let M be the

associated parahoric group scheme over O, which is endowed with a closed immersion of O-group
schemes M ↪→ G.

Fix an irreducible algebraic representation V of LG, and let VM := V |LM denote its restriction to
LM . Write VM = ⊕WW⊕mW where W ranges over the irreducible representations of LM appearing
in VM , with multiplicity mW ∈ Z>0.

Lemma 7.8. Recall the constant term homomorphism

cGM : Z(G(F ),G(O)) → Z(M(F ),M(O))

defined in [Hai14, 11.11], cf. (7.4). Then cGM (zss
G,V ) = zss

M,VM
=
∑
W mW zss

M,W .

6Everything is valid for general F -Levi subgroups, but we do not need it in the manuscript.
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Proof. Let χ be any weakly unramified character ofM(F ). By definition, z := zss
G,V acts on iGP (χ)G(O)

by the scalar tr(s(χ) |V 1oI), where s(χ) ∈ [ĜI o Φ]ss/Ĝ
I is the Satake parameter associated to an

irreducible representation of G(F ) with supercuspidal support (M(F ), χ)G(F ); cf. [Hai15]. By a

property of the Bernstein isomorphism S : Z(G(F ),G(O))
∼→ Q̄`[ΛM ]W0 , z acts by S(z)(χ), where

S(z) is viewed as a regular function on the quotient variety Z(M̂)IΦ/W0 (cf. [Hai14, §11.8]). By the
definition of cGM (cf. [Hai14, (11.11.1]), S(z)(χ) = S(cGM (z))(χ). As above, this is also the scalar by
which cGM (z) acts on the 1-dimensional representation χ, this time by a property of the Bernstein
isomorphism S for M applied to cGM (z).

On the other hand, by definition zss
M,VM

acts by the same scalar on χ, namely by

tr(sM (χ) |V 1oI
M ) = tr(s(χ) |V 1oI).

Here sM (χ) denotes the Satake parameter for the group M instead of G, but clearly by the con-
struction of Satake parameters in [Hai15, (9.1)], sM (χ) = s(χ). This justifies the equality displayed
above, and thus the fact that cGM (z) and zss

M,VM
act by the same scalar on χ. These remarks imply

the lemma. �

Lemma 7.9. Recall the normalized variant pcGM of the constant term homomorphism cGM , defined
in (7.5). Then

(7.14) pcGM ((−1)dV τ ss
G,V ) =

∑
W

mW · (−1)dW · τ ss
M,W .

Proof. By definition (7.12), we have

(−1)dV · τ ss
G,V = trss(Φ |ΨGrG (Sat(V ))).

The lemma follows immediately from Lemma 7.2 ii), Theorem 6.5 and Theorem 3.16. �

Next we must unwind what (7.14) means. By Lemma 7.7, we may assume W ranges only over

the W such that W |
M̂oI is irreducible. Suppose for such a W that W |

M̂
has B̂-highest T̂ -weights

λ1, . . . , λn; view λi ∈ X∗(T̂ ) and give the latter the Γ-action coming from that on (Ĝ, B̂, T̂ ). Because
W |

M̂oI is irreducible, the λi are I-conjugate.

Now we view λi ∈ X∗(T ), for an F -rational maximal torus T ⊂ M chosen carefully as above
(7.11). We will consider the images λ̄i ∈ π1(M)I . The natural I-action on X∗(T ) is not compatible

with that on X∗(T̂ ); rather, the latter is compatible with the Galois action on X∗(T
∗), for an F -

rational maximal torus T ∗ ⊂M∗ in a quasi-split F -inner form M∗ of M . However, π1(M) = π1(M∗)
as Galois modules, so there is no ambiguity and we can conclude that the λ̄i ∈ π1(M)I are I-
conjugate. Therefore they all coincide. Since Φ permutes the set {λi}, this common image belongs
to (π1(M)I)

Φ.
Using the surjectivity of the Kottwitz homomorphism κM (F ) : M(F ) � π1(M)Φ

I , we may choose
m ∈ M(F ) mapping to the element λ̄i. In previous notation, we let v̄m ∈ π1(M)Φ

I denote that
image and we let v̇m ∈ X∗(T ) be an arbitrary lift of v̄m.

As M̂ -representations, W |
M̂

= ⊕iW⊕miλi
for certain multiplicities mi ∈ N. Therefore the sheaf

Sat(W ) is supported on the union of the generic fibers of the local models M{λi},F̄ . Since nearby
cycles are supported on the closure of the generic fiber, the function τ ss

M,W is supported on the

fiber of the Kottwitz homomorphism M(F ) → π1(M)Φ
I over the common image of the elements

λ̄i ∈ π1(M)Φ
I , in other words, on the fiber containing m ∈M(F ) above.

Finally we can relate dV , dW , and v̇m as follows. Let B be any F̄ -rational Borel subgroup in
P+ = MN+ containing N+ and T , and let BM = B ∩M .

Lemma 7.10. Assume W |
M̂oI is irreducible and let λi and m be constructed as above. We have

for each i,

〈2ρN+ , v̇m〉 ≡ 〈2ρN+ , λi〉 ≡ dV + dW mod 2.
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Proof. By construction, each λi ∈ X∗(T ) is a lift of v̄m ∈ π1(M)Φ
I so can be taken to be v̇m. But

then we also have

〈2ρN+ , λi〉 = 〈2ρB , λi〉 − 〈2ρBM , λi〉
≡ 〈2ρB , µ〉+ 〈2ρBM , λi〉
≡ dV + dW mod 2.

Here µ denotes one of the highest weights appearing in V |Ĝ, and we can assume that λi lies in the

weight space for the corresponding representation of Ĝ. We have used that µ−λi is a sum of coroots
for G, hence 〈ρB , µ− λi〉 ∈ Z. �

For each W such that W |
M̂oI is irreducible (which we may assume by Lemma 7.7), let m ∈M(F )

be chosen as above. Using Lemma 7.10, we deduce from (7.14) that

cGM ((−1)dV τ ss
G,V ) =

∑
W

mW τ ss
M,W · (−1)dW · (−1)〈2ρN+ ,v̇m〉

=
∑
W

mW τ ss
M,W · (−1)dW · (−1)dV +dW .(7.15)

We have used for the first equality that τ ss
M,W is supported on the fiber containing m.

Now suppose Theorem 7.6 holds for every W . Then using Lemma 7.8 and (7.15), we see

cGM
(
τ ss
G,V
)

=
∑
W

mW τ ss
M,W =

∑
W

mW zss
M,W = cGM

(
zss
G,V
)
.

Since cGM is injective, we conclude τ ss
G,V = zss

G,V . Therefore to prove Theorem 7.6 for G it is enough
to prove it for a minimal F -Levi subgroup of G.

We close this section with a definition made possible by the above arguments. Note that when
V |ĜoI is irreducible, then the B̂-highest T̂ -weights appearing in V |Ĝ are I-conjugate.

Definition 7.11. For V ∈ Rep( LG) such that V |ĜoI is irreducible, let ωV ∈ Ωa
∼= π1(G)Φ

I be the

common image of the λi ∈ X∗(T ) appearing as B̂-highest T̂ -weights in V |Ĝ.

7.5. Reduction from anisotropic mod center groups to quasi-split groups. By section 7.4,
Theorem 7.6 holds for (G, V ) if it holds for (M, VM ). Therefore, it is enough to prove Theorem 7.6
when G is F -anisotropic mod center. Assume this. Let G be the unique parahoric OF -group scheme
with generic fiber G.

Let G∗ be a quasi-split inner form of G over F . Let G∗ be any parahoric OF -group scheme for
G∗. We fix once and for all an inner twisting G → G∗ as in [Hai14] which is needed to define the
normalized transfer homomorphism [Hai14, 11.12]

t̃ : Z(G∗(F ),G∗(O))→ Z(G(F ),G(O)).

This special choice of twist induces an isomorphism GF̆
∼→ G∗

F̆
; hence we may assume G and G∗

are the same group over F̆ , endowed with different actions Φ and Φ∗ of the geometric Frobenius
element. Similar comments apply to GrG and GrG∗ .

Lemma 7.12. For any representation V of LG = LG∗, we have

trss(Φ |H∗(GrG,F̄ ,Sat(V ))) = trss(Φ∗ |H∗(GrG∗,F̄ ,Sat(V ))).

Proof. This follows from Lemma 3.13 as in the proof of Corollary 3.12. Note that Sat(V )F̄ is a
direct sum of intersection complexes. �

Fix an irreducible LG-representation V such that V |ĜoI is irreducible, and define ωV as in
Definition 7.11. Let MV be the closed O-subscheme of GrG which is given by the scheme theoretic
closure of the support of Sat(V ) considered as a sheaf on GrG. Likewise, denote by M∗V the closed
O-subscheme of GrG∗ given by Sat(V ) considered as a sheaf on GrG∗ . Since V |ĜoI is irreducible,

the special fiber MV,k (resp. M∗V,k) is geometrically connected. To check this we use the fact
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that Sat(V |ĜoI) = (⊕γ∈I/I{λ}ICγ·{λ}) ⊗ L for some λ ∈ X∗(T ) and an irreducible local system

L on Spec(F̆ ) (cf. (3.22)). This reflects the fact that the highest T̂ -weights appearing in V |Ĝ are
I-conjugate. Then we have on reduced loci MV,k̄ = Supp(Ψ(Sat(V |ĜoI))) = Mγ·{λ},k̄, for any γ ∈ I.

Lemma 7.13. If k denotes the residue field, then MV (k) = {xV }, i.e., the O-scheme MV has a
single k-rational point.

Proof. For convenience, in the mixed characteristic case, write (G,G) in place of the function field

analogues (G′,G′) of section 5.2.1, and assume F = k((t)). Suppose y ∈ F`G(k̄) = G(F̆ )/G(Ŏ) is a
Φ-fixed point in MV (k̄). Then it belongs to an L+G(k̄)-orbit fixed by Φ, which by Lemma 4.2 is

indexed by an element of the set Wf\W/Wf . But W = W̆Φ = [W̆scoΩ̆ă]Φ = Ωa, by e.g. [HR10, Lem
3.0.1 (III)]. On the other hand since MV,k is geometrically connected, it meets only the connected
component containing the image xV ∈ F`G(k) of the element ωV ∈ Ωa. Therefore y = xV is that
image. Conversely, since {xV } is the unique closed Iwahori orbit in this connected component, it
must be contained in MV,k. This shows MV (k) = MV (k̄)Φ = {xV }. �

From the Grothendieck-Lefschetz fixed point formula combined with Lemmas 7.12, 7.13, we
obtain the following equalities

τ ss
G,V (xV ) := (−1)dV trss (Φ |ΨGrG (Sat(V ))x̄V )

= (−1)dV trss
(
Φ |H∗(F`G,k̄,ΨGrG (Sat(V )))

)
= (−1)dV trss

(
Φ |H∗(GrG,F̄ ,Sat(V ))

)
= (−1)dV trss

(
Φ∗ |H∗(GrG∗,F̄ ,Sat(V ))

)
,

Now we turn to the function zss
G,V . By construction of the functions and of t̃, we have the identity

(7.16) t̃(zss
G∗,V ) = zss

G,V .

Since G is anisotropic mod center, a basic property of t̃ is that t̃(z∗)(ω) for ω ∈ Ωa is calculated
by summing the values of z∗ over the preimage of ω under the Kottwitz homomorphism for G∗

(see [Hai14, Prop 11.12.6]). We are assuming that zss
G∗,V = τ ss

G∗,V , and we know that this function is

supported on the connected component indexed by ωV (as above Lemma 7.13, M∗V,k is geometrically

connected). Thus as G is anisotropic mod center

zss
G,V = C · 1ωV ,

a function supported on the single (double) coset indexed by ωV . Therefore, assuming Theorem 7.6
holds for (G∗, V ), we obtain

C =
∑

x∈M∗V (k)

zss
G∗,V (x) = (−1)dV

∑
x∈M∗V (k)

trss(Φ∗ |ΨGrG∗ (Sat(V ))x̄).

Again by the Grothendieck-Lefschetz fixed point formula, we see

C = (−1)dV trss(Φ∗ |H∗(GrG∗,F̄ ,Sat(V ))) = τ ss
G,V (xV )

Of course xV is the point corresponding to ωV . This yields Theorem 7.6 for (G, V ).

Example 7.14. Let G = D× where D is a central division algebra over F as in the proof of Lemma
7.13. Let V = V{µ} with µ = (1, 0, . . . , 0). Then M∗{µ},F = Pn−1

F , and M{µ},F is the Severi-Brauer

form associated with D. Then

τ ss
{µ}(xV ) = (−1)n−1 tr(Φ | H∗(Pn−1

F̄
, Q̄`〈n− 1〉)) = q−

(n−1)/2(1 + q + . . .+ qn−1),

which is the trace of the Satake parameter of the trivial representation π = 1D× on V .



60 T. J. HAINES AND T. RICHARZ

7.6. Proof in the quasi-split case. Now we assume G is quasi-split over F , so that its minimal
F -Levi subgroup is an F -torus T . We may run our reduction steps again. By section 7.4, to
prove Theorem 7.6 for (G,G) (and any irreducible representation V of LG), it is enough to prove
it for (T, T ), where T is the unique parahoric O-group scheme with generic fiber T . Let V be a
representation of LT such that V |T̂oI is irreducible. Tori are anisotropic modulo center, and by the
reasoning of §7.5, it remains to show that

(7.17) zss
T ,V (ωV ) = trss(Φ |H∗(GrT,F̄ ,Sat(V ))),

where we use dV = 0 because dim(GrT,F̄ ) = 0. We have H∗(GrT,F̄ ,Sat(V )) = H0(GrT,F̄ ,Sat(V )) =

V as LT -representations under the geometric Satake isomorphism. This gives

trss(Φ |H∗(GrT,F̄ ,Sat(V ))) = tr(Φ |V 1oI),

which is zss
T ,V (ωV ) by the definition of zss

T ,V . Explicitly, the representation V 1oI has a single T̂ I -

weight λ̄, which identifies with ωV ∈ X∗(T̂ I)Φ = X∗(T )Φ
I
∼= T (F )/T (F )1. The function zss

T ,V acts

on a weakly unramified character χ : T (F )/T (F )1 → Q̄×` (i.e.,χ ∈ T̂ ) by the scalar

tr(s(χ) |V 1oI) = tr(χo Φ |V 1oI) = χ(ωV ) tr(Φ |V 1oI),

hence zss
T ,V = tr(Φ |V 1oI)1ωV .

This implies the Main Theorem from the introduction in the case of quasi-split groups, and by
the preceding reductions in full generality.

7.7. On values of the test functions. Recall q = pm is the cardinality of the residue field of F and
qE0 = q[E0:F ]. Recall the quasi-split inner form G∗ with its usual data A∗, S∗ = T ∗,M∗, B∗,W ∗0 ,G∗
parallel to the data A,S, T,M,P,W0,G for G. We may assume G∗ is an Iwahori group scheme.

The objects Ĝ and V{µ}|Ĝ can be defined over Q. In addition, the Γ-action on Ĝ can be defined

over Q, as can the full representation V{µ} of LG.

Theorem 7.15. The function q
dµ/2
E0

zss
G,{µ} takes values in Z, and it is independent of the choice of

` 6= p and q1/2 ∈ Q̄`.

Proof. We may reduce to E0 = F , so E/F is a totally ramified extension. It is enough to consider G
an Iwahori group scheme. In the following we will use freely the notation of [Hai]. Write Vµ = V{µ}
for a representative µ ∈ X∗(T ∗).

Lemma 7.16. The function zss
G∗,{µ} ∈ Z(G∗(F ),G∗(O)) is a Z-linear combination of Bernstein

elements zν̄∗ where ν̄∗ ∈ Wt(µ̄)+,Φ∗ ,

(7.18) zss
G∗,{µ} =

∑
ν̄∗

a∗ν̄∗,{µ} zν̄∗ .

Proof. First consider the case where E = F , so that I(V{µ}) = V{µ}. By [Hai, Thm 7.5, 7.11], we
may write

(7.19) zss
G∗,{µ} = zss

G∗,V{µ} =
∑

λ̄∈Wt(µ̄)+,Φ∗

tr(Φ |Hµ(λ̄))
∑

ν̄∈Wt(λ̄)+,Φ∗

Pwν̄ ,wλ̄(1) zν̄ ,

where Hµ(λ̄) is the space of “vectors with highest weight λ̄” in V 1oI
µ |ĜI . By construction Pwν̄ ,wλ̄(1) ∈

Z. Since Φ has finite order n in Ĝo ΓF ′/F (if F ′/F is a finite extension splitting G) and stabilizes

Hµ(λ̄), we see tr(Φ |Hµ(λ̄)) ∈ Z[ζn], for a primitive n-th root of unity ζn ∈ Q̄`. On the other hand
this trace belongs to Q because V 1oI

µ is defined over Q; hence tr(Φ |Hµ(λ̄)) ∈ Z.
Now consider the general case where E ⊇ F is totally ramified. Now zss

G∗,{µ} is the function in

Z(G∗(F ),G∗(OF )) which is the regular function on the variety (T̂ ∗
IF

)Φ∗/W
∗
F sending the weakly

unramified character χ ∈ (T̂ ∗
IF

)Φ∗ to

tr(χo Φ∗ | I(V{µ})
1oIF ) = tr(χo Φ∗ |V 1oIE

{µ} ).
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The same argument which produced (7.19) shows that this function takes the form of (7.19), except
that Hµ(λ̄), Wt(λ̄) and Wt(µ̄) are replaced by their analogues Hµ,E(λ̄), Wt(λ̄)E and Wt(µ̄)E for
the group GE , and zν̄ is replaced with the sum∑

ν̄′

zν̄∗ .

Here ν̄′ ranges over a set of representatives for the W ∗F -orbits contained in W ∗E · ν̄ ⊂ X∗(T̂ ∗
IE

), and

ν̄∗ denotes the image of ν̄′ in X∗(T̂ IF ). Also, note that the restriction map X∗(T̂ ∗
IE

)→ X∗(T̂ ∗
IF

)
sends the échelonnage coroots for GĔ to those for GF̆ , by [Hai, Thm 6.1]. Therefore restriction

sends Wt(λ̄)E to Wt(λ̄). This concludes the proof of the lemma. �

To pass to general groups G, we use the normalized transfer homomorphism t̃. Recall [Hai14,
§11.12] that t̃ is canonical but its construction uses a choice of a triple (B∗, P, ψ) where ψ : G→ G∗

is an inner twisting compatible with B∗ and P in a certain sense.
We know that t̃(zss

G∗,{µ}) = zss
G,{µ}. We need to express t̃(zν̄∗) in an explicit way. To this end,

recall following [Hai14, (11.12.1)] that our choice of inner twisting G→ G∗ induces an inner twisting
M →M∗ and a surjective homomorphism tA∗,A:

T ∗(F )/T ∗(F )1
// M∗(F )/M∗(F )1

∼ // M(F )/M(F )1

X∗(T̂ ∗)Φ∗

I
// X∗(Z(M̂∗))Φ∗

I
∼ // X∗(Z(M̂))Φ

I

We also have the normalized version on the level of group algebras defined in [Hai14, Lem 11.12.4]

t̃A∗,A : Q̄`[ΛT∗ ]W
∗
0 −→ Q̄`[ΛM ]W0 ,

which induces t̃ : Z(G∗(F ),G∗(O))→ Z(G(F ),G(O)) via the Bernstein isomorphisms.

We fix ν̄∗ ∈ X∗(T ∗)+,Φ∗

I = T ∗(F )/T ∗(F )1 = ΛT∗ . We form the “monomial” sum

monν̄∗ =
∑

t∗∈W∗0 (ν̄∗)

1t∗ ∈ Q̄`[ΛT∗ ]W
∗
0 .

We need to compute t̃A∗,A(monν̄∗) ∈ Q̄`[ΛM ]W0 . By definition,

t̃A∗,A(monν̄∗) =
∑
m

( ∑
t∗ 7→m

δ
−1/2
B∗ (t∗) δ

1/2
P (m)

)
1m

where m ∈M(F )/M(F )1 = ΛM , and t∗ 7→ m means t∗ ∈W ∗0 (ν̄∗) and tA∗,A(t∗) = m. The proof of
[Hai14, Lem 11.12.4] shows the set of m in the support of t̃A∗,A(monν̄∗) is W0-stable, and also the
terms

cm =
∑
t∗ 7→m

δ
−1/2
B∗ (t∗) δ

1/2
P (m) (∈ Z[q1/2, q−1/2])

are independent of m ∈W0(m0) for m0 fixed, and are even independent of the choice of compatible
triple (B∗, P, ψ). Let m0 range over a set of representatives for the W0-action on the set of m
appearing above. We obtain:

(7.20) t̃A∗,A(monν̄∗) =
∑
m0

cm0

∑
m∈W0(m0)

1m =:
∑
m0

cm0
monm0

.

Let θP : Q̄`[ΛM ]W0
∼→ Z(G(F ),G(O)) be the Bernstein isomorphism described in [Hai14, Thm

11.10.1]. By definition, zν̄∗ := θB∗(monν̄∗) and zm0
:= θP (monm0

). Therefore as t̃ is induced by
t̃A∗,A via θP and θB∗ , we have an explicit understanding of how t̃ behaves:

Lemma 7.17. In the notation above, t̃(zν̄∗) =
∑
m0

cm0
zm0

.

Therefore, applying t̃ to (7.18), we need only to prove the following lemma.
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Lemma 7.18. For each m0 as above, the element qdµ/2cm0
zm0

takes values in Z, independent of `
and the choice of q1/2 ∈ Q̄`.

Proof. We fix P,B∗ used to define the inner twisting G→ G∗, in such a way that B∗- and P -positive
roots in X∗(T ∗) take negative values on the alcove ă which determines G (recall our conventions for
the Bruhat order in section 4.1). The explicit formula for θP (cf. [Hai14, 11.8+refs therein]) is the
following:

(7.21) θP (monm0) =
∑

m∈W0(m0)

θP (1m) =
∑

m∈W0(m0)

δ
1/2
P (m)Tm1T

−1
m2
,

where m = m1m
−1
2 for any choice of P -dominant elements mi ∈M(F ). Here, we say m ∈M(F ) is

P -dominant if this property holds for the corresponding element vm ∈ ΛM ⊂W = ΛM oW0.
By the multiplication in the Hecke algebra H(G(F ),G(O)), the function Tm1

T−1
m2

takes values

in Z[q, q−1] and is independent of `. Hence it suffices to show that negative powers of q1/2 do not
appear when qdµ/2cm0

times (7.21) is expressed as a linear combination of the basis elements Tw.

Claim 1: Recall H(G(F ),G(O)) is the specialization at v = q1/2 of an affine Hecke algebra with
parameter system L, coming from the based root data (ΛM ,Σ0,Π0), where Σ0 is the échelonnage
root system for G (cf. e.g. [Ro15]). For a simple affine reflection s ∈Waff , write qs := qL(s). If v ∈W
has reduced expession v = s1 · · · slωv (ωv ∈ Ωa), then define lL(v) by the equality

lL(v) =

l∑
i=1

L(si).

(This is well-defined by the fact that one can get from a reduced expression for v to any other by

a sequence of braid relations, cf. [Ti69].) Then for v ∈ W , lL(v) = l̆(v), where l̆ : W̆ → Z≥0 is the

length function on W̆ .

Proof of Claim 1: In light of the equality qL(s) = #IṡI/I (cf. e.g. [Ro15]), Claim 1 is [Ri16b, Prop
1.11; Rmk 1.13 ii)].

Claim 2: Then for m = v̇m ∈M(F ) corresponding to vm ∈ ΛM which is P -dominant, we have

δP (m) = q−lL(vm).

Proof of Claim 2: The element vm is straight: we have

(Iv̇mI)c = Iv̇cmI,

and consequently lL(vcm) = c · lL(vm), for all c ∈ Z≥0. This can be proved by the same method as in
[GHKR10, Prop 13.1.3(ii)]. Therefore, letting c be divisible enough so that vcm = tλ is a translation
element in ΛT (which is automatically central with respect to the roots in Lie(M)), it enough to
prove the result for m = t ∈ T (F ) with κT (t) = λ ∈ X∗(T )Φ

I . But then

δP (t) = q−〈2ρN ,λ〉 = q−〈2ρB ,λ〉 = q−l̆(tλ) = q−lL(tλ)

by Claim 1. This proves Claim 2.

Claim 3: If t∗ ∈ T ∗(F ) and m ∈M(F ) are related by tA∗,A(t∗) = m, then lL(vm) = |〈2ρN∗ , vt∗〉|.
Proof of Claim 3: By a suitable W0-conjugation we easily reduce to the case where m is P -

dominant and then use the same argument as in Claim 2. �

From the claims it follows that lL(vmi) = 〈2ρN , vmi〉, and therefore

δ
1/2
P (m) = q−〈ρN ,vm〉 = q−lL(vm1

)/2 + lL(vm2
)/2.

It follows that θP (1m) coincides with the definition of θvm as given, e.g., in [HR08, §14]. Thus by
[HR08, 14.2] or [Goe07] we have a minimal expression of the form

θP (1m) = T̃ ε1s1 · · · T̃
εl
sl
Tωvm
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where T̃s = q
−1/2
s Ts and εs ∈ {±1} for each s. We deduce that

qlL(vm)/2θP (1m) takes values in Z.
Now we recall that for m ∈W0(m0),∑

t∗ 7→m
δ
−1/2
B∗ (t∗) δ

1/2
P (m) =

∑
t∗ 7→m

q〈ρB∗ ,vt∗ 〉− 〈ρN ,vm〉 =
∑
t∗ 7→m

q
〈ρB∗

M∗
,vt∗ 〉.

To prove the lemma, it is therefore enough to show the following inequality:

〈ρB∗ , µ〉+ 〈ρB∗
M∗
, vt∗〉 − lL(vm)/2 ≥ 0,

or equivalently

(7.22) 〈ρB∗ , µ〉+ 〈ρB∗
M∗
, vt∗〉 − |〈ρN∗ , vt∗〉| ≥ 0

But it is easy to see that

〈ρB∗ , µ〉+ 〈ρB∗
M∗
, vt∗〉 − |〈ρN∗ , vt∗〉| ≥ 〈ρB∗ , µ〉 − |〈ρB∗ , vt∗〉| ≥ 0.

The final inequality follows because vt∗ = ν̄, the image of an element ν ∈ Wt(µ) under X∗(T
∗) →

X∗(T
∗)I ; cf. [Hai, (7.12)]. �

This completes the proof of Lemma 7.18, and thus Theorem 7.15. �

Appendix A. Spreading of connected reductive groups

Let F ′ be a discretely valued Henselian field with perfect residue field kF ′ . The completion F is
a complete discretely valued field, and we fix a separable closure F̄ . Let F̄ ′ ⊂ F̄ be the separable
closure of F . By the equivalence of Galois theories for F ′ and F , their Galois groups are naturally
isomorphic. Denote by F̆ ′ the maximal unramified subextension of F̄ ′/F ′, and denote by F̆ its

completion. Let σ ∈ Gal(F̆ /F ) = Gal(F̆ ′/F ) denote the Frobenius.

Let G be a connected reductive F -group, and fix a maximal F -split torus A, a maximal F̆ -split
torus S containing A and defined over F . Let M = ZG(A) denote the centralizer of A which is a
minimal Levi, and let T = ZG(S) be the centralizer of S. Then T is a maximal torus because GF̆
is quasi-split by Steinberg’s theorem. Further fix a parabolic F -subgroup P containing M .

Proposition A.1. i) There exists a connected reductive F ′-group G together with a tuple of closed
F ′-subgroups (A,S, T ,M,P ) and an isomorphism of F -groups

(G,A, S, T ,M,P )⊗F ′ F ' (G,A, S, T,M,P ),

where A is a maximal F ′-split torus, S a maximal F̆ ′-split torus defined over F ′, T its centralizer
(a maximal F ′-torus), M the centralizer of A (a minimal Levi), and P a parabolic F ′-subgroup with
Levi M .

ii) The group G is uniquely determined up to isomorphism, and the base change GF̆ ′ is quasi-split.

iii) The isomorphism in i) is compatible with the following constructions: the quasi-split outer form,
restriction of scalars, passing to the adjoint (resp. derived; resp. simply connected) group.

Let F̃ /F be a finite Galois extension which splits G, and denote the corresponding extension by

F̃ ′/F ′. Let Γ = Gal(F̃ /F ) = Gal(F̃ ′/F ′) be the Galois group. Choose a Chevalley group scheme

G0/F
′ with G0 ⊗F ′ F̃ ' G⊗F F̃ . The Galois (or étale7) cohomology set

H1(F̃ /F,Aut(G0)) (resp. H1(F̃ ′/F ′,Aut(G0)))

classifies isomorphism classes of F -groups (resp. F ′-groups) which become over F̃ (resp. F̃ ′) iso-
morphic to G0,F̃ (resp. G0,F̃ ′). In [Ri16a, App 2] it is shown that the canonical map of pointed
sets

H1(F̃ ′/F ′,Aut(G0))→ H1(F̃ /F,Aut(G0)).

7There are two equivalent points of view on these cohomology groups: Γ cochains with values in the abstract

group Aut(G0,F̃ ); étale torsors for the sheaf of groups Aut(G0) which have an F̃ -section.
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is a bijection for general Henselian valued fields. This already implies the existence of G. Let us
denote by [c] ∈ H1(F̃ /F,Aut(G0)) (resp. [c] ∈ H1(F̃ ′/F ′,Aut(G0))) the class corresponding to the
isomorphism class of G (resp. G). The aim of this appendix is to show the extra compatibilities
claimed in Proposition A.1.

By [Co14, 7.1.9], the group functor Aut(G0) is representable by a smooth separated F ′-group,
and there is a short exact sequence of F ′-groups

(A.1) 1→ G0,ad → Aut(G0)→ Out(G0)→ 1.

The proof of Proposition A.1 follows [PZ13, §2] using the results from [Ri16a, App 2] and proceeds
in two steps corresponding to the outer terms of (A.1). We construct the quasi-split F ′-form G∗

first, and then define G by inner twisting from G∗.

A.1. Outer twisting. We choose a pinning (T0, B0, X0) of G0, and hence the map of F ′-groups

(A.2) Aut(G0, T0, B0, X0)→ Aut(G0)→ Out(G0)

is an isomorphism. The isomorphism (A.2) splits the extension (A.1), and there is a semi-direct
product decomposition

(A.3) Aut(G0) = G0,ad o Out(G0).

Let [c∗] ∈ H1(F̃ /F,Out(G0)) denote the image of the class [c]. Under the semi-direct product

decomposition we may view [c∗] as a class in H1(F̃ /F,Aut(G0)), and the (unique up to isomorphism)
associated group G∗ is the quasi-split F -form of G. Let us construct a representative c∗ of the class
[c∗].

Let (R0,∆) denote the based root datum of G0. Then we have an isomorphism of F ′-groups

Aut(G0, T0, B0, X0) ' Aut(R0,∆),

where the latter denotes the constant F ′-group associated with the automorphisms of the based
root datum. This gives via (A.2) an identification

H1(F̃ /F,Out(G0)) ' H1(F̃ /F,Aut(R0,∆)) = Hom(Γ,Aut(R0,∆)),

and we denote the image of [c∗] by

(A.4) c∗ : Γ→ Aut(R0,∆).

But now as Aut(R0,∆) is an abstract group and as Γ = Gal(F̃ /F ) = Gal(F̃ ′/F ′), the natural map
of pointed sets

H1(F̃ ′/F ′,Aut(R0,∆))→ H1(F̃ /F,Aut(R0,∆))

is a bijection. Hence, we may view the class [c∗] via (A.3) as a class [c∗] in H1(F̃ ′/F ′,Aut(G0)). We
obtain a (unique up to isomorphism) quasi-split connected reductive F ′-group scheme G∗ extending

G∗ such that as F̃ -groups G∗
F̃
' G0,F̃ . Concretely, Galois descent8 shows that the F ′-group scheme

G∗ (resp. G∗) is given by

(A.5) G∗ = ResF̃ ′/F ′(G0 ⊗F ′ F̃ ′)Γ (resp. G∗ = ResF̃ /F (G0 ⊗F ′ F̃ )Γ),

where Γ acts diagonally via c∗(γ)⊗γ. After modifying the isomorphism ϕ : G0,F̃ ' GF̃ if necessary,

we may assume that ϕ(T0,F̃ ) = TF̃ and ϕ(B0,F̃ ) ⊂ PF̃ . Then the pair T ∗ ⊂ B∗ (resp. T ∗ ⊂ B∗)

is constructed from the pair T0 ⊂ B0 by the same formula (A.5), and defines a maximal torus and
a Borel subgroup. The minimal Levi M defines a Γ-invariant subset of simple roots in ∆, and we
denote by M0 the Levi in G0. Let P0 = M0 ·B0 be the corresponding standard parabolic. By altering
the inner twisting G → G∗ if necessary, we may arrange that c∗(γ) ⊗ γ preserves A0,F̃ ,M0,F̃ , P0,F̃

(cf. [Hai14, 11.12.1]). Again we construct the pair M∗ ⊂ P ∗ (resp. M∗ ⊂ P ∗) from the pair M0 ⊂ P0

by (A.5). Further, the chain of F -tori A ⊂ S ⊂ T in G gives rise to a chain of F ′-tori A0 ⊂ S0 ⊂ T0

8Whenever we have a Γ-torsor π : X̃ → X, sheaves on X are the same as Γ-equivariant sheaves on X̃: a sheaf

F/X maps to the Γ-equivariant sheaf π∗F ; a Γ-equivariant sheaf F̃ /X̃ maps to (π∗F̃ )Γ. Note that it does not matter

whether the order of Γ is divisible by the characteristic or not.
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in G0 together with Γ-actions on their scalar extensions to F̃ ′ (resp. F̃ ). Again this defines a chain
of F ′-tori A∗ ⊂ S∗ ⊂ T ∗ (resp. F -tori A∗ ⊂ S∗ ⊂ T ∗) with the following properties: the torus

S∗ (resp. S∗) is a maximal F̆ ′-split (resp. F̆ -split), and the torus A∗ (resp. A∗) is F ′-split (resp.
F -split). Note that the latter torus is not maximal split in general. All in all, we obtain tuples such
that as F -groups

(A.6) (G∗, A∗, S∗, T ∗,M∗, P ∗)⊗F ′ F ' (G∗, A∗, S∗, T ∗,M∗, P ∗),

where G∗ is the quasi-split F -form of G. Because Galois descent is compatible with taking central-
izers (resp. normalizers), we have the relations ZG∗(S

∗) = T ∗, and ZG∗(A
∗) = M∗.

Remark A.2. Note that the spreading construction for tori is completely solved by (A.5) (because
there are no inner twists). However, the spreading A ⊂ S ⊂ T differs from A∗ ⊂ S∗ ⊂ T ∗ in general:
the first chain is constructed from Aut(T ) = Out(T ); the second chain is constructed from Out(G).

The compatibilities claimed in Proposition A.1 are evident from the construction (A.5).

A.2. Inner twisting. Let us explain how to reconstruct the tuple (G,A, S, T,M,P ) from (A.6) via

inner twisting. By construction, there is an isomorphism of F̃ -groups

(A.7) ψ : GF̃
ϕ−1

' G0,F̃ ' G
∗
F̃
,

where the last isomorphism comes from descent (the Galois action on G0,F̃ is the outer action via

c∗). If, for γ ∈ Γ, we denote γ(ψ) = γ ◦ψ ◦ γ−1, then the image of ψ ◦ γ(ψ)−1 in Out(G∗) is trivial.

Hence, for every γ ∈ Γ there is an element gγ ∈ G∗ad(F̃ ) with

ψ ◦ γ(ψ)−1 = Int(gγ) ∈ Aut(G∗
F̃

),

where Int(gγ) denotes the automorphism given by conjugation. The function crig : γ 7→ ψ ◦ γ(ψ)−1

is a 1-cocycle, and its class defines an element [crig] ∈ H1(F̃ /F,G∗ad). Conversely, the class [crig]

corresponds to a Γ-stable G∗ad(F̃ )-orbit of isomorphisms of F̃ -groups GF̃ ' G∗F̃ .

Remark A.3. Note that we can also consider crig as a 1-cocycle with values in G0,ad. If we do so,
then under the semi-direct product decomposition (A.3) the class of the cocycle crig o c∗ is the class
[c] we started with.

By construction, we have

(A.8) ψ((A,S, T,M,P )) = (A∗, S∗, T ∗,M∗, P ∗).

Let us denote by S∗′ (resp. M∗′) the image of S∗ (resp. M∗) in the adjoint group G∗ad.

Lemma A.4. The element gσ is contained in the F̃ -points of the subgroup

N∗′
def
= NormM∗′(S

∗′).

Proof. By (A.8), the element gσ normalizes P ∗, and hence is contained in the parabolic P ∗′ (the
image of P ∗ in G∗ad). As gσ also normalizes M∗, it must be contained in M∗′. Finally, as gσ also
normalizes S∗ the lemma follows. �

Let us further denote the F ′-group by

N∗
′

= NormM∗′(S
∗′),

where M∗
′

(resp. S∗
′
) is the image of M∗ (resp. S∗) in G∗ad. Then N∗

′
is a smooth affine group

scheme, and we have N∗
′ ⊗F ′ F = N∗′. Hence, by the result of [GGM14, Prop 3.5.3 (2)] (see also

[Ri16a, Thm A.3]) the natural map

H1(F̃ ′/F ′, N∗
′
)→ H1(F̃ /F,N∗′)

is a bijection. In particular, the cocycle [crig] corresponds to a unique cocycle [crig] ∈ H1(F̃ ′/F ′, N∗
′
)

which defines via inner twisting of (A.6) the desired tuple

(G,A, S, T ,M,P ).
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Concretely, if for γ ∈ Γ the element grig
γ ∈ N∗′(F̃ ′) is the value of crig at γ, then we have for an

F ′-algebra R the inner twisting

G(R) = G∗(F̃ ′ ⊗F ′ R)Γ,

where Γ acts via γ 7→ Int(grig
γ )·γ. The same formulas hold for (A,S, T ,M,P ) as every element in N∗

′

preserves each of these groups. The compatibilities claimed in Proposition A.1 iii) are immediate
from the descent construction.
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[MV07] I. Mirković, K. Vilonen: Geometric Langlands duality and representations of algebraic groups over com-

mutative rings, Ann. of Math. (2) 166 (2007), no. 1, 95-143. 3, 6, 13, 20, 21, 22, 23, 24, 25
[Na16] H. Nakajima: Lectures on perverse sheaves on instanton moduli spaces, in Geometry of Moduli Spaces

and Representation Theory. IAS/Park City Mathematics Series, vol. 24, 381-436. 6
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2

[RZ96] M. Rapoport, T. Zink: Period spaces for p-divisible groups, Ann. of Math. Studies 141, Princeton Uni-
versity Press (1996). 2

[Ri14a] T. Richarz: A new approach to the geometric Satake equivalence, Documenta Mathematica 19 (2014)

209-246. 3, 19, 20, 23, 48
[Ri14b] T. Richarz: Affine Grassmannians and Geometric Satake Equivalences, Langlands correspondence and

constructive Galois theory, Oberwolfach Reports 11, Issue 1 (2014) 287-334. 47

[RZ15] T. Richarz and X. Zhu: Appendix to The Geometrical Satake Correspondence for Ramified Groups, Ann.
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