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Tensor products of representations

G - complex linear algebraic group, 7' a maxi-
mal torus. X*(T) = weights.

Theory of highest weight: Any dominant weight
A — Vy an irreducible representation of GG, with
"highest weight” .

Example: GL,(C) D diag. torus; dominant weights
~ non-increasing n-tuples (a1,ao,...,an) € Z".

(17,07 ") — AT(C"), and (k,0"~1) & Symk(Cn).

Question: How to describe

R% L= {(a7677) S X*(T)gom | (Va ® Vﬁ ® VV)G # O}
={-- | triv. rep. T€Va® V3R Vy}

Here ~* is the dominant weight indexing the
(irred.) dual of V.



3 Many Methods to answer question (or more

precisely, compute the multiplicity ngﬁ, the

number of times V; occurs in Vo ® Vg):
— (GLy) Littlewood-Richardson rule

— Berenstein-Zelevinsky polytopes (— hony-
comb model for GL,, (Knutson-Tao))

— Littelmann path model
— Kashiwara's crystal bases/graphs

Also: New algorithm due to [KLM], in terms
of multiplication in Hecke rings



R%,_n is the set of integral points in the follow-
ing (identical) polyhedral cones in (R™)3:

Eigenvalues of a sum T he set of triples («, 3,7)
of dominant vectors in R"™ (entries in non-increasing
order) such that there exist Hermitian matri-
ces A, B,C such that the set of eigenvalues of

A resp. B resp. C'is «, resp. 3, resp. ~, and

A+ B+ C=0.

Generalized triangle inequalities The triples
as above which satisfy a system of inequalities
defined using Schubert calculus:

Let A C R®" = X*(T) ® R denote the cone of
dominant (real) weights. Fundamental coweight
(1,0 %) = X\ € X«(T) = a linear functional on
A.

A — parabolic Py — Schubert variety GL/Pj.
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GTI's: for each A and each triple wi,wo, w3 €
WA C X«(T), impose the inequality

w1 (o) +wa(B) +w3(y) <0

whenever

[Xuwy] - [Xus) - [Xus] = [pt] in Hi(G/P).

GTI's for general G defined similarly. In that
context get

Theorem 1 (Leeb-Miillson) («, 3,~) satisfy GTI's
if and only if there is a triangle in the symmet-

ric space G(C)/K having " geodesic side lengths”

o, 3,~v. (Here G is such that G = G, and K =

a maximal cpt. subgroup.)

Rank 1 symm. space = disc, A = Ry g = usual
notion of "side length”. [Picture].

In general, by Cartan decomposition G(C) =
Kexp(A)K: directed geodesic T175 € K-0exp(d),
for unique 6 € A.




General features of R,

e R} isa semi-group: (a1,B1,71), (a2, B2,72) €
R% = (a1 + ap, 81 + 82,71 + 72) € R%.

e (Knutson-Tao) If G = GLy, then R}, is sat-
urated. For N > 1,

(Na,NB,Nv) € R = (a, 8,7) € R¢:

(Used in proof of above description of R%Ln in
terms of GTI's.)

For general G, Rg is usually NO'T saturated.
Questions: When exactly does the saturation

property hold for other groups? Is there a " uni-
form’” geometric approach to this?



Saturation Problems for Hecke algebras

New notation: G - linear alg. group over finite
field IFg, T" max. torus. Old G,T are now the
Langlands dual (over C) G,T of the new G, T.
X*(T) = X«(T), Xo(T) = X*(T).

G(Fqy((t))) := "loop group LG of G D max’l
compact K = G(Fq4[[t]]). Then have Hecke
algebra H = C.(K\G(Fy((t)))/K) with convo-
lution x.

a € X«(T)gom Provides a basis element for H:

foa i=char(Ka(t)K).

[By Cartan decomposition: K\LG/K < X«(T)d4om-
(GLy:" elem. divisors”).]

Definition fo * fg* f, = Y\ cg‘éﬁﬁj}\.

Question: Describe
H?;’ .= {(04757’)’) S X*(T)gom | Cg,ﬁ,'y 7+_ O}
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Hecke saturation

Theorem 2 (KLM) For each group G, 3 k =
k(G) € N such that for N > 1, (Na, N3, N~) €
HZ = (ko, kB, ky) € HE.

Corollary 1 For HZ| s saturated (k(GLp) =
1),

Idea of proof: The GTI's also characterize side
lengths of triangles in Bruhat-Tits building for
LG. The GTI's are homogeneous, hence solu-
tion set in A3 saturated (in strong sense). But
want triangles in building with special points as
vertices. This is where k(G) comes in. [Pic-
ture]



How the sets are related
New notation: R% written instead of
R3 = {(a,8,7) € (X*(T)dom)® | (VaxV5@V;)C # 0}.
Combinatorial methods give:
Theorem 3 (KLM) For general G, R3, C HZ..
Theorem 4 (P. Hall) H3, C R, .
Corollary 2 R2, is saturated (!).

[KLM] result uses Lusztig's g-analogue of weight-
multiplicity formula (tricky, but valid for every

group.)

[P. Hall] result uses combinatorics of Hall alge-
bras — special to GL,,.

In general HZ is strictly bigger than R? (e.g.
Go, SO(5)).
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Affine Grassmannians

Let's define the Affine Grassmannian (for GL,,).
Let k =TF,, F=k((t)), O =EK[[t]].

Define

O(k) = {O—lattices in F"} = G(k((1)))/G(k[[t]]),

an ind-scheme defined over Fy.

Finite-dimensional pieces: inv gives " distance”
between two lattices:

inV(L,L/) = )\ E X*(T)dom» if L = g(’)n' L =
gdO" and ¢~ 1¢ € K(diag(it',... t"))K.

Affine Schubert variety: 9, ={L € Q |inv(O™ L) <
pn}. (< the standard partial order on dominant
coweights...) These are fin.-dim’'l projective
varieties, over [Fy.
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e K-orbits are the Schubert cells 9,

e Q=1I[,Qu and the boundary of 9, is the
union of the 9,’'s, where A < pu.

Can do all this for general G (G-bundles on
curves, with trivialization outside a fixed point).

Consider Pi(Q), the K-equivariant perverse
sheaves on Q. (Geometric analogue of Hecke

ring).

Pr(Q) is a semi-simple, abelian category. Sim-
ple objects: the intersection complexes 1C(Q,,).

(IC complexes compute intersection cohomol-
ogy...)

There is a convolution x : Pr(Q) X Pr(Q) —
Pr(Q), making Pr(Q) a Tannakian category.
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By Drinfeld, Ginzburg, Mirkovic-Vilonen, Ngo-
Polo... , we have the famous geometric ver-
sion of the usual Satake isomorphism from the
Hecke algebra of LG to the rep. ring of G.

Theorem 5 (Geometric Satake Isomorphism)

There is an isomorphism (Rep(G), ®) £ (Pk(Q), %),
such that V,, corresponds to IC(Q,,).

Corollary 3 in Pr(Q),

ICuy -+ *IC,, = >_dim(V;) ICy.
A
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Geometric reformulation

A€ Xu(T)dom + pe = (H1,-- -, pr) € Xu(T)Gom:
Write [ue| 1= 32 ps-

Rep(pe, A): VA # 0, where Vy; @ -+ @ Vp, =
@A§|M.|V;‘.®V>\.

Hecke(pue, \): cpy, 7 O, where fy; * -« x fu, =
SA<|pe| Chefrs Where fy, = char(Kt,K).

Define the twisted product 9,, to be

{L‘ — (L17 . '7L7“) c Q" | inV(Li—].)Li) < Wi, VZ}

Definition

Me + Qpta = Q|

given by Le — L.
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This is the geometric analogue of convolution
in Hecke algebra. (Used to define convolu-
tion in category Pr(Q) due to Drinfeld, V.
Ginzburg, and studied in geometric Langlands
program...)

Key fact used in this definition:

Theorem 6 (Mirkovic-Vilonen, Ng6-Polo)
The birational morphism my, is locally triv-
ial and semi-small, in the sense of Goresky-
MacPherson.

The semi-smallness means that the fibers are
not too large: if y € Q) C Q“M, then

dim(m;:}(5) N Q) < (dim(Q,,) — dim(2,));

where RHS is also (p, |ue| — A), where p = half-
sum of positive roots.



Can now reformulate Rep (e, A) and Hecke(jie, A)
in terms of fibers of my,:

Theorem 7 (H) 1)V, # 0 iffdim(m;1(y)) =
(p,|ne|—A). Any irreducible component of such
max’l dimension meets the open stratum Q,,.

2) Ify is Fq-rational, then c), # 0 iff m;}(y) N
Qe 7= 0.

Get: geometric proof of Theorem 3. To prove
above result, use

and basic properties of IC, to show that VM)‘.
has a basis in canonical correspondence with
the irreducible components of max’l possible
dimension in the fiber m}(y).
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Also get

e proof of Theorem 4: need

Lemma 1 (H) For GL,, if pu; all minus-
cule, then all fibers of m,, are equidimen-
sional. [use Spaltenstein-Springer varieties]

e For general G, Weil conjectures give [KLM]
formula:

cl)).(q) = dim(Vﬁﬁ)q<p’|“°|_/\>—|—{lower deg terms}.

This gives a new (not very fast) algorithm
to compute dim(V,)!
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Generalizations?

Above methods work well for arbitrary groups
provided A, u; are sums of minuscule coweights.

I have "almost proved’ the following natural

Conjecture 1 Suppose A\, p; are sums of mi-
nuscule coweights. Then for N > 1,

dim(Vyn) # 0 = dim(V};,) # 0.

Groups with minuscule coweights: PGL(n+1)
(n); SO(2n+1) (1); GSp(2n) (1); SO(2n)
(3); BEe (2); BE7 (1).

THE END.
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