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Tensor products of representations

G - complex linear algebraic group, T a maxi-

mal torus. X∗(T ) = weights.

Theory of highest weight: Any dominant weight

λ 7→ Vλ an irreducible representation of G, with

”highest weight” λ.

Example: GLn(C) ⊃ diag. torus; dominant weights

↔ non-increasing n-tuples (a1, a2, . . . , an) ∈ Zn.

(1r,0n−r) ↔ Λr(Cn), and (k,0n−1) ↔ Symk(Cn).

Question: How to describe

R3
G := {(α, β, γ) ∈ X∗(T )3dom | (Vα ⊗ Vβ ⊗ Vγ)

G 6= 0}

= {· · · | triv. rep. I ∈ Vα ⊗ Vβ ⊗ Vγ}

= {· · · | Vγ∗ ∈ Vα ⊗ Vβ}.

Here γ∗ is the dominant weight indexing the

(irred.) dual of Vγ.
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∃ Many Methods to answer question (or more

precisely, compute the multiplicity nλ
α,β, the

number of times Vγ occurs in Vα ⊗ Vβ):

– (GLn) Littlewood-Richardson rule

– Berenstein-Zelevinsky polytopes (→ hony-

comb model for GLn (Knutson-Tao))

– Littelmann path model

– Kashiwara’s crystal bases/graphs

Also: New algorithm due to [KLM], in terms

of multiplication in Hecke rings
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R3
GLn

is the set of integral points in the follow-

ing (identical) polyhedral cones in (Rn)3:

Eigenvalues of a sum The set of triples (α, β, γ)

of dominant vectors in Rn (entries in non-increasing

order) such that there exist Hermitian matri-

ces A, B, C such that the set of eigenvalues of

A resp. B resp. C is α, resp. β, resp. γ, and

A + B + C = 0.

Generalized triangle inequalities The triples

as above which satisfy a system of inequalities

defined using Schubert calculus:

Let ∆ ⊂ Rn ∼= X∗(T ) ⊗ R denote the cone of

dominant (real) weights. Fundamental coweight

(1i,0n−i) = λ ∈ X∗(T ) = a linear functional on

∆.

λ 7→ parabolic Pλ 7→ Schubert variety GLn/Pλ.
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GTI’s: for each λ and each triple w1, w2, w3 ∈

Wλ ⊂ X∗(T ), impose the inequality

w1(α) + w2(β) + w3(γ) ≤ 0

whenever

[Xw1] · [Xw2] · [Xw3] = [pt] in H∗(G/P ).

GTI’s for general G defined similarly. In that

context get

Theorem 1 (Leeb-Millson) (α, β, γ) satisfy GTI’s

if and only if there is a triangle in the symmet-

ric space G(C)/K having ”geodesic side lengths”

α, β, γ. (Here G is such that G = Ĝ, and K =

a maximal cpt. subgroup.)

Rank 1 symm. space = disc, ∆ = R>0 = usual

notion of ”side length”. [Picture].

In general, by Cartan decomposition G(C) =

Kexp(∆)K: directed geodesic x1x2 ∈ K·0exp(δ),

for unique δ ∈ ∆.
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General features of R3
G

• R3
G is a semi-group: (α1, β1, γ1), (α2, β2, γ2) ∈

R3
G ⇒ (α1 + α2, β1 + β2, γ1 + γ2) ∈ R3

G.

• (Knutson-Tao) If G = GLn, then R3
G is sat-

urated: For N > 1,

(Nα, Nβ, Nγ) ∈ R3
G ⇒ (α, β, γ) ∈ R3

G.

(Used in proof of above description of R3
GLn

in

terms of GTI’s.)

For general G, R3
G is usually NOT saturated.

Questions: When exactly does the saturation

property hold for other groups? Is there a ”uni-

form” geometric approach to this?

7



Saturation Problems for Hecke algebras

New notation: G - linear alg. group over finite

field Fq, T max. torus. Old G, T are now the

Langlands dual (over C) Ĝ, T̂ of the new G, T .

X∗(T ) = X∗(T̂ ), X∗(T ) = X∗(T̂ ).

G(Fq((t))) := ”loop group LG of G” ⊃ max’l

compact K := G(Fq[[t]]). Then have Hecke

algebra H = Cc(K\G(Fq((t)))/K) with convo-

lution ∗.

α ∈ X∗(T )dom provides a basis element for H:

fα := char(Kα(t)K).

[By Cartan decomposition: K\LG/K ↔ X∗(T )dom.

(GLn:”elem. divisors”).]

Definition fα ∗ fβ ∗ fγ =
∑

λ cλ
α,β,γfλ.

Question: Describe

H3
G := {(α, β, γ) ∈ X∗(T )3dom | c0α,β,γ 6= 0}.
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Hecke saturation

Theorem 2 (KLM) For each group G, ∃ k =

k(G) ∈ N such that for N > 1, (Nα, Nβ, Nγ) ∈

H3
G ⇒ (kα, kβ, kγ) ∈ H3

G.

Corollary 1 For H3
GLn

is saturated (k(GLn) =

1).

Idea of proof: The GTI’s also characterize side

lengths of triangles in Bruhat-Tits building for

LG. The GTI’s are homogeneous, hence solu-

tion set in ∆3 saturated (in strong sense). But

want triangles in building with special points as

vertices. This is where k(G) comes in. [Pic-

ture]
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How the sets are related

New notation: R3
G written instead of

R3
Ĝ

= {(α, β, γ) ∈ (X∗(T̂ )dom)3 | (Vα×Vβ⊗Vγ)
Ĝ 6= 0}.

Combinatorial methods give:

Theorem 3 (KLM) For general G, R3
G ⊂ H3

G.

Theorem 4 (P. Hall) H3
GLn

⊂ R3
GLn

.

Corollary 2 R3
GLn

is saturated (!).

[KLM] result uses Lusztig’s q-analogue of weight-

multiplicity formula (tricky, but valid for every

group.)

[P. Hall] result uses combinatorics of Hall alge-

bras – special to GLn.

In general H3
G is strictly bigger than R3

G (e.g.

G2, SO(5)).

10



Affine Grassmannians

Let’s define the Affine Grassmannian (for GLn).

Let k = F̄q, F = k((t)), O = k[[t]].

Define

Q(k) = {O−lattices in F n} = G(k((t)))/G(k[[t]]),

an ind-scheme defined over Fq.

Finite-dimensional pieces: inv gives ”distance”

between two lattices:

inv(L, L′) := λ ∈ X∗(T )dom, if L = gOn, L′ =

g′On, and g−1g′ ∈ K(diag(tλ1, . . . , tλn))K.

Affine Schubert variety: Q̄µ = {L ∈ Q | inv(On, L) ≤

µ}. (≤ the standard partial order on dominant

coweights...) These are fin.-dim’l projective

varieties, over Fq.
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• K-orbits are the Schubert cells Qµ

• Q =
∐

µ Qµ, and the boundary of Q̄µ is the

union of the Qλ’s, where λ < µ.

Can do all this for general G (G-bundles on

curves, with trivialization outside a fixed point).

Consider PK(Q), the K-equivariant perverse

sheaves on Q. (Geometric analogue of Hecke

ring).

PK(Q) is a semi-simple, abelian category. Sim-

ple objects: the intersection complexes IC(Q̄µ).

(IC complexes compute intersection cohomol-

ogy...)

There is a convolution ∗ : PK(Q) × PK(Q) →

PK(Q), making PK(Q) a Tannakian category.
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By Drinfeld, Ginzburg, Mirkovic-Vilonen, Ngô-

Polo... , we have the famous geometric ver-

sion of the usual Satake isomorphism from the

Hecke algebra of LG to the rep. ring of Ĝ.

Theorem 5 (Geometric Satake Isomorphism)

There is an isomorphism (Rep(Ĝ),⊗) ∼= (PK(Q), ∗),

such that Vµ corresponds to IC(Q̄µ).

Corollary 3 in PK(Q),

ICµ1 ∗ · · · ∗ ICµr =
∑

λ

dim(V λ
µ•

) ICλ.
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Geometric reformulation

λ ∈ X∗(T )dom , µ• = (µ1, . . . , µr) ∈ X∗(T )r
dom.

Write |µ•| :=
∑

i µi.

Rep(µ•, λ): V λ
µ•

6= 0, where Vµ1 ⊗ · · · ⊗ Vµr =

⊕λ≤|µ•|V
λ
µ• ⊗ Vλ.

Hecke(µ•, λ): cλ
µ•

6= 0, where fµ1 ∗ · · · ∗ fµr =
∑

λ≤|µ•| c
λ
µ•fλ, where fµ = char(KtµK).

Define the twisted product Q̃µ• to be

{L• = (L1, . . . , Lr) ∈ Qr | inv(Li−1, Li) ≤ µi, ∀i}.

Definition

mµ• : Q̃µ• → Q̄|µ•|

given by L• 7→ Lr.
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This is the geometric analogue of convolution

in Hecke algebra. (Used to define convolu-

tion in category PK(Q) due to Drinfeld, V.

Ginzburg, and studied in geometric Langlands

program...)

Key fact used in this definition:

Theorem 6 (Mirkovic-Vilonen, Ngô-Polo)

The birational morphism mµ• is locally triv-

ial and semi-small, in the sense of Goresky-

MacPherson.

The semi-smallness means that the fibers are

not too large: if y ∈ Qλ ⊂ Q̄|µ•|, then

dim(m−1
µ• (y) ∩Qµ′) ≤

1

2
(dim(Qµ′

•
) − dim(Qλ));

where RHS is also 〈ρ, |µ′
•| − λ〉, where ρ = half-

sum of positive roots.



Can now reformulate Rep(µ•, λ) and Hecke(µ•, λ)

in terms of fibers of mµ•:

Theorem 7 (H) 1) V λ
µ•

6= 0 iff dim(m−1
µ•

(y)) =

〈ρ, |µ•|−λ〉. Any irreducible component of such

max’l dimension meets the open stratum Qµ•.

2) If y is Fq-rational, then cλ
µ• 6= 0 iff m−1

µ• (y) ∩

Qµ• 6= ∅.

Get: geometric proof of Theorem 3. To prove

above result, use

Rmµ•,∗(IC(Q̃µ•)) = ICµ1 ∗ · · · ∗ ICµr

and basic properties of IC, to show that V λ
µ•

has a basis in canonical correspondence with

the irreducible components of max’l possible

dimension in the fiber m−1
µ• (y).
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Also get

• proof of Theorem 4: need

Lemma 1 (H) For GLn, if µi all minus-

cule, then all fibers of mµ• are equidimen-

sional. [use Spaltenstein-Springer varieties]

• For general G, Weil conjectures give [KLM]

formula:

cλ
µ•(q) = dim(V λ

µ•)q
〈ρ,|µ•|−λ〉+{lower deg terms}.

This gives a new (not very fast) algorithm

to compute dim(V λ
µ•)!
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Generalizations?

Above methods work well for arbitrary groups

provided λ, µi are sums of minuscule coweights.

I have ”almost proved” the following natural

Conjecture 1 Suppose λ, µi are sums of mi-

nuscule coweights. Then for N > 1,

dim(V Nλ
Nµ•

) 6= 0 ⇒ dim(V λ
µ•) 6= 0.

Groups with minuscule coweights: PGL(n+1)

(n); SO(2n+1) (1); GSp(2n) (1); SO(2n)

(3); E6 (2); E7 (1).

THE END.
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