UCLA

Colloquium

Saturation problems via affine Grassmannians

and triangles in buildings

Thomas Haines University of Maryland

April 24, 2003

On www.arxiv.org:

[KLM] M. Kapovich, B. Leeb, J. Millson, *The* generalized triangle inequalities in symmetric spaces and buildings with applications to algebra, math.RT/0210256.

[H] T. Haines, *Structure constants for Hecke and representation rings*, math.RT/0304176.

Related Preprint (not yet on server):

M. Kapovich, B. Leeb, J. Millson, *Polygons in symmetric spaces and buildings*.

Tensor products of representations

G - complex linear algebraic group, T a maximal torus. $X^*(T) =$ weights.

Theory of highest weight: Any dominant weight $\lambda \mapsto V_{\lambda}$ an irreducible representation of G, with "highest weight" λ .

Example: $GL_n(\mathbb{C}) \supset diag$. torus; dominant weights \leftrightarrow non-increasing *n*-tuples $(a_1, a_2, \ldots, a_n) \in \mathbb{Z}^n$.

 $(1^r, 0^{n-r}) \leftrightarrow \Lambda^r(\mathbb{C}^n)$, and $(k, 0^{n-1}) \leftrightarrow \operatorname{Sym}^k(\mathbb{C}^n)$.

Question: How to describe

 $R_G^3 := \{ (\alpha, \beta, \gamma) \in X^*(T)_{\text{dom}}^3 \mid (V_\alpha \otimes V_\beta \otimes V_\gamma)^G \neq 0 \}$ = {\dots \dots \dots \text{triv. rep. } \mathbb{I} \in V_\alpha \oxed V_\beta \oxed V_\beta} \oxed V_\beta \oxed

Here γ^* is the dominant weight indexing the (irred.) dual of V_{γ} .

 \exists Many Methods to answer question (or more precisely, compute the multiplicity $n_{\alpha,\beta}^{\lambda}$, the number of times V_{γ} occurs in $V_{\alpha} \otimes V_{\beta}$):

- (GL_n) Littlewood-Richardson rule

- Berenstein-Zelevinsky polytopes (\rightarrow honycomb model for GL_n (Knutson-Tao))

Littelmann path model

- Kashiwara's crystal bases/graphs

Also: New algorithm due to [KLM], in terms of multiplication in Hecke rings

 $R_{GL_n}^3$ is the set of *integral points* in the following (identical) polyhedral cones in $(\mathbb{R}^n)^3$:

Eigenvalues of a sum The set of triples (α, β, γ) of dominant vectors in \mathbb{R}^n (entries in non-increasing order) such that there exist Hermitian matrices A, B, C such that the set of eigenvalues of A resp. B resp. C is α , resp. β , resp. γ , and

A + B + C = 0.

Generalized triangle inequalities The triples as above which satisfy a system of inequalities defined using Schubert calculus:

Let $\Delta \subset \mathbb{R}^n \cong X^*(T) \otimes \mathbb{R}$ denote the cone of dominant (real) weights. Fundamental coweight $(1^i, 0^{n-i}) = \lambda \in X_*(T) =$ a linear functional on Δ .

 $\lambda \mapsto \text{parabolic } P_{\lambda} \mapsto \text{Schubert variety } \mathrm{GL}_n/P_{\lambda}.$

GTI's: for each λ and each triple $w_1, w_2, w_3 \in W\lambda \subset X_*(T)$, impose the inequality

$$w_1(\alpha) + w_2(\beta) + w_3(\gamma) \le 0$$

whenever

 $[X_{w_1}] \cdot [X_{w_2}] \cdot [X_{w_3}] = [pt]$ in $H_*(G/P)$.

GTI's for general G defined similarly. In that context get

Theorem 1 (Leeb-Millson) (α, β, γ) satisfy GTI's if and only if there is a triangle in the symmetric space $\mathcal{G}(\mathbb{C})/K$ having "geodesic side lengths" α, β, γ . (Here \mathcal{G} is such that $G = \hat{\mathcal{G}}$, and K = a maximal cpt. subgroup.)

Rank 1 symm. space = disc, $\Delta = \mathbb{R}_{>0}$ = usual notion of "side length". [Picture].

In general, by Cartan decomposition $\mathcal{G}(\mathbb{C}) = K \exp(\Delta) K$: directed geodesic $\overline{x_1 x_2} \in K \cdot \overline{0} \exp(\delta)$, for unique $\delta \in \Delta$.

General features of R_G^3

- R_G^3 is a semi-group: $(\alpha_1, \beta_1, \gamma_1), (\alpha_2, \beta_2, \gamma_2) \in R_G^3 \Rightarrow (\alpha_1 + \alpha_2, \beta_1 + \beta_2, \gamma_1 + \gamma_2) \in R_G^3.$
- (Knutson-Tao) If $G = GL_n$, then R_G^3 is saturated: For N > 1,

$$(N\alpha, N\beta, N\gamma) \in R_G^3 \Rightarrow (\alpha, \beta, \gamma) \in R_G^3.$$

(Used in proof of above description of $R_{GL_n}^3$ in terms of GTI's.)

For general G, R_G^3 is usually NOT saturated.

Questions: When exactly does the saturation property hold for other groups? Is there a "uniform" geometric approach to this?

Saturation Problems for Hecke algebras

New notation: G - linear alg. group over finite field \mathbb{F}_q , T max. torus. Old G, T are now the Langlands dual (over \mathbb{C}) \hat{G}, \hat{T} of the new G, T. $X^*(T) = X_*(\hat{T}), X_*(T) = X^*(\hat{T}).$

 $G(\mathbb{F}_q((t))) :=$ "loop group LG of G" \supset max'l compact $K := G(\mathbb{F}_q[[t]])$. Then have Hecke algebra $H = C_c(K \setminus G(\mathbb{F}_q((t)))/K)$ with convolution *.

 $\alpha \in X_*(T)_{\text{dom}}$ provides a *basis element* for *H*:

$$f_{\alpha} := \operatorname{char}(K\alpha(t)K).$$

[By Cartan decomposition: $K \setminus LG/K \leftrightarrow X_*(T)_{dom}$. (GL_n:"elem. divisors").]

Definition $f_{\alpha} * f_{\beta} * f_{\gamma} = \sum_{\lambda} c_{\alpha,\beta,\gamma}^{\lambda} f_{\lambda}.$

Question: Describe

$$H_G^3 := \{ (\alpha, \beta, \gamma) \in X_*(T)^3_{\text{dom}} \mid c^0_{\alpha, \beta, \gamma} \neq 0 \}.$$

Hecke saturation

Theorem 2 (KLM) For each group G, $\exists k = k(G) \in \mathbb{N}$ such that for N > 1, $(N\alpha, N\beta, N\gamma) \in H^3_G \Rightarrow (k\alpha, k\beta, k\gamma) \in H^3_G$.

Corollary 1 For $H^3_{GL_n}$ is saturated $(k(GL_n) = 1)$.

Idea of proof: The GTI's also characterize side lengths of triangles in Bruhat-Tits building for LG. The GTI's are *homogeneous*, hence solution set in Δ^3 saturated (in strong sense). But want triangles in building with special points as vertices. This is where k(G) comes in. [Picture]

How the sets are related

New notation: R_G^3 written instead of $R_{\hat{G}}^3 = \{(\alpha, \beta, \gamma) \in (X^*(\hat{T})_{\text{dom}})^3 \mid (V_\alpha \times V_\beta \otimes V_\gamma)^{\hat{G}} \neq 0\}.$

Combinatorial methods give:

Theorem 3 (KLM) For general G, $R_G^3 \subset H_G^3$.

Theorem 4 (P. Hall) $H^3_{GL_n} \subset R^3_{GL_n}$.

Corollary 2 $R_{GL_n}^3$ is saturated (!).

[KLM] result uses Lusztig's *q*-analogue of weightmultiplicity formula (tricky, but valid for every group.)

[P. Hall] result uses combinatorics of Hall algebras – special to GL_n .

In general H_G^3 is strictly bigger than R_G^3 (e.g. G₂, SO(5)).

Affine Grassmannians

Let's define the Affine Grassmannian (for GL_n). Let $k = \overline{\mathbb{F}}_q$, F = k((t)), $\mathcal{O} = k[[t]]$.

Define

 $Q(k) = \{\mathcal{O}-\text{lattices in } F^n\} = G(k((t)))/G(k[[t]]),$ an ind-scheme defined over \mathbb{F}_q .

Finite-dimensional pieces: inv gives "distance" between two lattices:

inv $(L, L') := \lambda \in X_*(T)_{\text{dom}}$, if $L = g\mathcal{O}^n$, $L' = g'\mathcal{O}^n$, and $g^{-1}g' \in K(\text{diag}(t^{\lambda_1}, \ldots, t^{\lambda_n}))K$.

Affine Schubert variety: $\bar{Q}_{\mu} = \{L \in Q \mid \text{inv}(\mathcal{O}^n, L) \leq \mu\}$. (\leq the standard partial order on dominant coweights...) These are fin.-dim'l projective varieties, over \mathbb{F}_q .

- K-orbits are the Schubert cells Q_{μ}
- $Q = \coprod_{\mu} Q_{\mu}$, and the boundary of \overline{Q}_{μ} is the union of the Q_{λ} 's, where $\lambda < \mu$.

Can do all this for general G (G-bundles on curves, with trivialization outside a fixed point).

Consider $P_K(Q)$, the *K*-equivariant perverse sheaves on Q. (Geometric analogue of Hecke ring).

 $P_K(Q)$ is a semi-simple, abelian category. Simple objects: the *intersection complexes* $IC(\bar{Q}_{\mu})$.

(IC complexes compute intersection cohomology...)

There is a convolution *: $P_K(\mathcal{Q}) \times P_K(\mathcal{Q}) \rightarrow P_K(\mathcal{Q})$, making $P_K(\mathcal{Q})$ a *Tannakian* category.

By Drinfeld, Ginzburg, Mirkovic-Vilonen, Ngô-Polo..., we have the famous geometric version of the usual Satake isomorphism from the Hecke algebra of LG to the rep. ring of \hat{G} .

Theorem 5 (Geometric Satake Isomorphism) There is an isomorphism $(\operatorname{Rep}(\hat{G}), \otimes) \cong (\mathsf{P}_{\mathsf{K}}(\mathcal{Q}), *),$ such that V_{μ} corresponds to $\operatorname{IC}(\bar{\mathcal{Q}}_{\mu}).$

Corollary 3 in $P_K(Q)$,

$$\operatorname{IC}_{\mu_1} * \cdots * \operatorname{IC}_{\mu_r} = \sum_{\lambda} \dim(V_{\mu_{\bullet}}^{\lambda}) \operatorname{IC}_{\lambda}.$$

Geometric reformulation

 $\lambda \in X_*(T)_{\text{dom}}$, $\mu_{\bullet} = (\mu_1, \dots, \mu_r) \in X_*(T)^r_{\text{dom}}$. Write $|\mu_{\bullet}| := \sum_i \mu_i$.

 $\operatorname{Rep}(\mu_{\bullet},\lambda): V_{\mu_{\bullet}}^{\lambda} \neq 0, \text{ where } V_{\mu_{1}} \otimes \cdots \otimes V_{\mu_{r}} = \bigoplus_{\lambda \leq |\mu_{\bullet}|} V_{\mu_{\bullet}}^{\lambda} \otimes V_{\lambda}.$

Hecke (μ_{\bullet}, λ) : $c_{\mu_{\bullet}}^{\lambda} \neq 0$, where $f_{\mu_{1}} * \cdots * f_{\mu_{r}} = \sum_{\lambda \leq |\mu_{\bullet}|} c_{\mu_{\bullet}}^{\lambda} f_{\lambda}$, where $f_{\mu} = \text{char}(Kt_{\mu}K)$.

Define the twisted product $\tilde{\mathcal{Q}}_{\mu_{\bullet}}$ to be $\{L_{\bullet} = (L_1, \dots, L_r) \in \mathcal{Q}^r \mid \text{inv}(L_{i-1}, L_i) \leq \mu_i, \forall i\}.$

Definition

$$m_{\mu_{ullet}}: \tilde{\mathcal{Q}}_{\mu_{ullet}} o \bar{\mathcal{Q}}_{|\mu_{ullet}|}$$

given by $L_{\bullet} \mapsto L_r$.

This is the geometric analogue of convolution in Hecke algebra. (Used to define convolution in category $P_K(Q)$ due to Drinfeld, V. Ginzburg, and studied in geometric Langlands program...)

Key fact used in this definition:

Theorem 6 (Mirkovic-Vilonen, Ngô-Polo) The birational morphism $m_{\mu_{\bullet}}$ is locally trivial and semi-small, in the sense of Goresky-MacPherson.

The semi-smallness means that the fibers are not too large: if $y \in Q_{\lambda} \subset \overline{Q}_{|\mu_{\bullet}|}$, then

 $\dim(m_{\mu\bullet}^{-1}(y) \cap \mathcal{Q}_{\mu'}) \leq \frac{1}{2} (\dim(\mathcal{Q}_{\mu'_{\bullet}}) - \dim(\mathcal{Q}_{\lambda}));$ where RHS is also $\langle \rho, |\mu'_{\bullet}| - \lambda \rangle$, where ρ = halfsum of positive roots. Can now reformulate $\operatorname{Rep}(\mu_{\bullet}, \lambda)$ and $\operatorname{Hecke}(\mu_{\bullet}, \lambda)$ in terms of *fibers of* $m_{\mu_{\bullet}}$:

Theorem 7 (H) 1) $V_{\mu_{\bullet}}^{\lambda} \neq 0$ iff dim $(m_{\mu_{\bullet}}^{-1}(y)) = \langle \rho, |\mu_{\bullet}| - \lambda \rangle$. Any irreducible component of such max'l dimension meets the open stratum $Q_{\mu_{\bullet}}$.

2) If y is \mathbb{F}_q -rational, then $c_{\mu_{\bullet}}^{\lambda} \neq 0$ iff $m_{\mu_{\bullet}}^{-1}(y) \cap \mathcal{Q}_{\mu_{\bullet}} \neq \emptyset$.

Get: geometric proof of Theorem 3. To prove above result, use

$$Rm_{\mu_{\bullet},*}(IC(\tilde{\mathcal{Q}}_{\mu_{\bullet}})) = IC_{\mu_{1}} * \cdots * IC_{\mu_{r}}$$

and basic properties of IC, to show that $V_{\mu_{\bullet}}^{\lambda}$ has a basis in canonical correspondence with the irreducible components of max'l possible dimension in the fiber $m_{\mu_{\bullet}}^{-1}(y)$.

Also get

• proof of Theorem 4: need

Lemma 1 (H) For GL_n , if μ_i all minuscule, then all fibers of $m_{\mu_{\bullet}}$ are equidimensional. [use Spaltenstein-Springer varieties]

• For general *G*, Weil conjectures give [KLM] formula:

 $c_{\mu_{\bullet}}^{\lambda}(q) = \dim(V_{\mu_{\bullet}}^{\lambda})q^{\langle \rho, |\mu_{\bullet}| - \lambda \rangle} + \{\text{lower deg terms}\}.$

This gives a new (not very fast) algorithm to compute dim $(V_{\mu_{\bullet}}^{\lambda})!$

Generalizations?

Above methods work well for arbitrary groups provided λ, μ_i are sums of minuscule coweights.

I have "almost proved" the following natural

Conjecture 1 Suppose λ , μ_i are sums of minuscule coweights. Then for N > 1,

$$\dim(V_{N\mu_{\bullet}}^{N\lambda}) \neq 0 \Rightarrow \dim(V_{\mu_{\bullet}}^{\lambda}) \neq 0.$$

Groups with minuscule coweights: PGL(n+1)(*n*); SO(2n+1) (1); GSp(2n) (1); SO(2n)(3); E_6 (2); E_7 (1).

THE END.