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Local zeta functions

Consider E/Qp, and a smooth d-dimensional

variety X/E, with model over OE. Let p =

prime ideal of OE.

Definition We define Zp(s, X) to be

2d∏

i=0

det(1−Np
−sΦp;Hi

c(X ×E Q̄p, Q̄`)
Γ0

p)(−1)i+1
,

where

• ` 6= p,

• Φp = geom. Frobenius,

• inertia subgroup = Γ0
p ⊂ Γp := Gal(Q̄p/E)

Good reduction implies: can forget (·)Γ
0

and

pass to counting rational points over fields Fq...
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For varieties defined over number fields, take

product of above over all finite places (and

take something at infinite places...). We want

to understand analytic properties, e.g. analytic

continuation, functional equation, and special

values. For latter two, must consider finite

number of places with bad reduction.

Definition above is likely “correct”: e.g., ∃

heuristic argument indicating (·)Γ
0
ensures func-

tional equation...(later).

Basic problem in Langlands program: for Shimura

varieties, express Zp(s, X) in terms of local fac-

tors of automorphic L-functions.
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Local L-functions

πp = irred. admissible rep. of G(Qp), having lo-

cal Langlands parameter φπp : WQp
×SL2(C) →

LG := WQp
n Ĝ. Let r = (r, V ) be an algebraic

rep. of LG.

Definition We define Lp(s, πp, r) to be

det(1−p−srφπp(Φ×

[
p−1/2 0

0 p1/2

]
); (kerN)Γ

0
)−1,

• Φ ∈ WQp
a geom. Frobenius,

• N := rφπp(1 ×

[
0 1
0 0

]
), nilpotent operator on

V ,

• Γ0-action on ker(N) ⊂ V is via rφπp restricted

to Γ0 × id ⊂ WQp
× SL2(C).
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Note πp spherical implies: (kerN)Γ
0

= V , and

can express in terms of Satake parameter of

πp:

det(1 − p−sr(Sat.(πp));V )−1,

(“automorphic analogue of good reduction”).

Tame bad reduction

Take X over number field E. We say X has

tame bad reduction at p provided that Γ0
p acts

unipotently on cohomology of X ×Ep
Q̄p (ac-

tion by functoriality). This will happen for

Shimura varieties with Iwahori (more generally

parahoric) level structure at p (later...).

The automorphic analogue is: πf = ⊗vπv satis-

fies φπp(Γ
0
p) = id. (Thus, for any (r, V ) we have

(kerN)Γ
0
= kerN .) Conjecturally, this happens

at least when πp has Iwahori fixed vectors.
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Shimura varieties

SK(C) = G(Q)\[G(Af) × X∞]/K, a variety de-

fined over reflex field E. SK = Sh(G, h, K),

where h : C× → GR and X∞ = the G(R)-conj.

class of h.

h 7→ µ, a minuscule cocharacter of GĒ.

Iwahori level structure at p: K = KpKp, Kp ⊂

G(Qp) an Iwahori subgroup.

Consider PEL Shimura varieties SK (moduli

spaces of abelian varieties with add. struc-

ture...). For p ∈ E dividing p, and E := Ep,

get a model over OE by posing suitable mod-

uli problem over OE. We can do this in case

of Iwahori level structure at p (but not deeper

level structure).
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Prototype: Y0(p), attached to Iwahori

(
∗ ∗
p∗ ∗

)
⊂

GL2(Zp). Moduli space: (E1 → E2), degree

p isogenies of elliptic curves. Special fiber is

union of two smooth curves, intersecting transver-

sally at the supersingular points.

In general, the moduli space parametrizes chains

(A1, λ1, ι1, η) → (A2, λ2, ι2, η) → · · · of p-isogenies

between polarized abelian varieties with addi-

tional structure (still makes sense over OE; sin-

gularities in special fiber now much more com-

plicated...)

Goal: understand something about Z(s, SK) in

case of Iwahori level structure.

First, we summarize Langlands’ strategy in case

Y (N), where p - N (good reduction). (Adding

cusps gives X(N)...)
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Langlands’ strategy, for Y (N), p - N

Here G = GL2, and Kp = GL2(Zp).

1) Write Tr(Φj;H•
c (SK ×E Q̄p, Q̄`)) in form

∑

γ0

∑

γ,δ

(vol)Oγ(f
p)TOδσ(φj)

2) Fundamental lemma: TOδσ(φj) = ONδ(bφj)

3) use Arthur-Selberg trace formula

∑

γ0

(vol)Oγ0(f) + · · · =
∑

π
m(π)Tr π(f) + · · · .

Explanations: 1) (γ0, γ, δ) ∈ G(Q) × G(Ap
f) ×

G(Qpj), such that γ (resp. Nδ) is locally stably

conjugate to γ0. σ = can. gen. of Gal(Qpj/Qp),

and

TOδσ(φ) =
∫

Gδσ\G(Q
pj)

φ(x−1δσ(x))
dx

dxδσ
.
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Use Lefschetz trace formula, and count points

over Fq using Honda-Tate theory: s.s. con-

jugacy classes γ0 ↔ isogeny classes of ellip-

tic curves. Then count points (E, η) where E

ranges over a given isogeny class (η is a full

level-N structure on E).

φj = char(GL2(Zpj)

(
p 0
0 1

)
GL2(Zpj)) ∈ H(GL2(Qpj)),

2) b : H(GL2(Qpj)) → H(GL2(Qp)) is “base

change” homomorphism for spherical Hecke al-

gebras.

Even with good reduction, get complications in

higher dimensions from non-compactness and

endoscopy. However, these problems don’t arise

for Kottwitz simple Shimura varieties (defined

later...). Still, even for these varieties, new

complications emerge when there is tame bad

reduction.

9



Problems in bad reduction case

(A) non-trival inertia action on H i(SK×EQ̄p, Q̄`).

(B) Assume SK/OE proper. Then Hi(SK ×E

Q̄p, Q̄`) = Hi(SK×OE
F̄p,RΨ(Q̄`)), where RΨ(Q̄`) ∈

D(SK×F̄p) is the sheaf of nearby cycles, a com-

plex of sheaves whose complexity measures the

singularities in the special fiber.

To (temporarily) circumvent (A), we work with

semi-simple trace: If V is an `-adic rep. of

Γ := Gal(Q̄p/Qp), ∃ finite Γ-stable filtration

· · ·Vk−1 ⊂ Vk ⊂ · · · ⊂ V such that inertia Γ0

acts through finite quotient on ⊕kgrkV•. Then

set

Trss(Φ, V ) :=
∑

k

Tr(Φ, (grkV•)
Γ0

).

Semi-simple trace extends to give function-

sheaf correspondence à la Grothendieck. In

particular, there is a Leftschetz trace formula

for it.
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We can define Zss(s, X) and Lss(s, πp, r) using
Trss in place of Tr. To express Zss in terms
of various Lss(s, πp, r), for simple Shimura va-
rieties, we can imitate Langlands.

1) Via LTF, write Trss(Φj, H•(SK × F̄p,RΨ))
as

∑

x∈Fix(Φj,SK(F̄p))

Trss(Φj,RΨx).

Via Honda-Tate theory, write latter in form
∑

γ0

∑

γ,δ

(±vol)Oγ(f
p)TOδσ(φj),

where φj is a suitable function in H(G(Qpj)//Ij).

2) Fundamental lemma: STOδσ(φj) = SONδ(bφj),
where bφj is “base-change” of φj,

3) Use Arthur-Selberg trace formula (simple
since G/AG anisotropic...)

The main difficulties are 1) and 2) (the stabi-
lization leading to 3) being just like Kottwitz’s
work in good reduction case).
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Theorem 1 (H., B.C. Ngô) Let SK = Sh(G, µ, K)
be a simple Shimura variety with Iwahori (more
generally, parahoric) level structure at p. Let
rµ : LG → Aut(Vµ) be the irreducible repre-
sentation of LG with highest weight µ. Let
d = dim(SK). Then

Zss
p (s, SK) =

∏

πf

Lss
p (s −

d

2
, πf , rµ)

a(πf)dim(πK
f )

,

where πf ranges over irred. adm. reps. of
G(Af), the integer number a(πf) is given by

a(πf) =
∑

π∞∈Π∞

m(πf ⊗ π∞)Tr π∞(f∞),

where m(πf × π∞) is the multiplicity in

L2(G(Q)AG(R)0\G(A)),

and where Π∞ is the set of adm. reps. of G(R)
having trivial central and infin. character.

[Aside: f∞ = (−1)d· pseudo. coeff. for some
π0
∞ ∈ Π∞.]

Taking Kp = hyperspec. max. cpt., we recover
Kottwitz’s theorem.
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Simple Shimura varieties

E/E0/Q CM field, (D, ∗) central div. alg./E
with positive invol. of second type, G the

group defined by

G(R) = {x ∈ D ⊗Q R | xx∗ ∈ R×}.

X∞ := G(R) · h: in case E0 = Q, fix isom.

D ⊗Q R =̃Mn(C), and 1 ≤ r ≤ n − 1; we can

take

h(z) = diag(zr, zn−r)

and µ(z) = hC(z,1) : C× → GC.

G(R)=̃GU(r, n − r)

Assume: • p inert in E0, p = pp̄ in E.

• K = KpIp, Ip ⊂ G(Qp) standard Iwahori.

• (temp.) GQp
split (=̃GLn×Gm) (and identify

µ = (1r,0n−r)).
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Remarks

Let E = Ep. Then SK is proper over OE,

smooth over E.

For r = 1, used by Harris-Taylor in their proof

of the local Langlands correspondence for GLn.

For general 1 ≤ r ≤ n − 1, studied by E. Man-

tovan and also L. Fargues (with arbitrary level

structure at p, but less precise results...).

[Aside: deeper level structure always occurs

at some prime (if SK generically smooth), but

it is interesting to note that after finite base

change, expect tame reduction at such a prime

(“potential semi-stable reduction”) – in this

sense Iwahori level structure is the most “geo-

metric” kind.]

No endoscopy problems (special feature of group

G observed by Rapoport-Zink and Kottwitz...)
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Key geometric step (part 1))

Identify test function φj by identifying the func-

tion

x 7→ Trss(Φj,RΨx))

on SK × F̄p. We relate to nearby cycles on

affine flag variety for G = GLn via Rapoport-

Zink local models.

Let k = Fpj. Assume Kp = Ip = Iwahori.

Theory of Rapoport-Zink: Étale locally, get

SK × k̄ ∼= M loc × k̄. Can embed

M loc × k̄ ↪→ GLn(k̄((t)))/Ik̄,t := FL × k̄,

the affine flag variety for GLn.

Any x ∈ SK(k̄) gives rise to x0 ∈ FL(k̄); not

unique, but in uniquely determined I-orbit.
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So Trss(Φj,RΨx) = Trss(Φj,RΨM loc

x0
). Latter

is function in Iwahori-Hecke algebra for G. In

fact we have the “Kottwitz conjecture”:

Theorem 2 (H. and B.C. Ngô; D. Gaitsgory)

Trss(Φj,RΨM loc
) = qd/2zµ,j,

where zµ,j ∈ Z(H(G(Qpj)//Ij)) is the Bernstein

function attached to the minuscule dominant

cocharacter µ of G.

Here zµj is unique central function such that

zµ,j∗IKj
= char(Kjµ(pj)Kj) ∈ Hsph(G(Qpj)). In

particular, we know how it acts on unramified

principle series...

We proved a more general theorem: for GL

of GSp, there is a deformation of affine Grass-

mannian GrQp
to FLFp

such that for S ∈ PK(Gr),

nearby cycles RΨ(S) are “central” in PI(FL).

Via sheaf-function dictionary, Trss(Φ,RΨ(S))

is central function in Iwahori-Hecke algebra.
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More about local models

There is a diagram with smooth surjective mor-

phisms

SK S̃K
p

oo
q

// M loc.

[Definitions: S̃K consists of points A• together

with a rigidification of their de Rham cohomol-

ogy. M loc consists of chains of OE lattices in

certain “µ-admissible” relative positions with

respect to the standard lattice chain. The

morphism q takes the image of the Hodge fil-

tration under the rigidification...]

Definition of M loc for GLn, µ = (1r,0n−r):

M loc(R) consists of diagrams

Λ0,R // Λ1,R · · · // // Λn−1,R
p

// Λ0,R

F0
//

OO

F1 · · ·

OO

//Fn−1 //

OO

F0;

OO

Λi,R := Zp〈p−1e1, . . . , p−1ei, ei+1, . . . , en〉 ⊗Zp
R,

and Fi is an R-submodule, locally a direct sum-

mand of rank r.
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[Aside (Warning): r, n not the same as before,

and really need partial flags version...].
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Fundamental lemma (part 2))

Base change homomorphism for central ele-

ments in Iwahori-Hecke algebras: Assume G

unramified over Qp; let Ij (resp. I) be the

Iwahori subgroups over Qpj (resp. Qp). Let

Kj (resp. K) denote corresponding hyperspec.

max. cpt. s.g.’s.

Have Bernstein isomorphism B:

− ∗ IK : Z(H(G//I)) // Hsph(G//K)

Definition Base change b for Z(H(G//I)) is

unique map making commute:

Z(H(Gj//Ij))
B //

b
��

H(Gj//Kj)

b
��

Z(H(G//I)) B // H(G//K),

where b on right is usual base change for spher-

ical Hecke algebras (defined via Satake isomor-

phism).
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Theorem 3 (H., Ngô) Let φj be central in

the Iwahori-Hecke algebra over Qpj. Let δ ∈

G(Qpj) be σ-semi-simple. Then

STOδσ(φj) = SONδ(bφj).

Also, SOγ(bφj) = 0 if γ not of form Nδ.

Remarks

In case of spherical Hecke algebras, proved by

Clozel and Labesse.

Also get “parahoric version”, which is much

harder than Iwahori case.

Strategy same as in Labesse. One neat new

thing: naive “constant term” f 7→ f (P ) actually

preserves central elements (!), and so can use

in descent step...
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Putting steps 1)-3) together, we proved

Theorem 4 (H.,Ngô) For SK simple as above,

Trss(Φj, H•(SK ×E Q̄p, Q̄`)) is equal to

Tr(b(zµ,j) ⊗ IKp ⊗ f∞; L2(G(Q)AG(R)0\G(A))).

This implies Theorem 1, since we know how

b(zµ,j) acts on π
Ip
p : by the scalar

Tr(rµφπp(Φ ×

[
p−1/2 0

0 p1/2

]
);Vµ).
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Towards true local factors

Rapoport: to recover Z from Zss, enough to

know monodromy-weight conjecture: The graded

grM
k of monodromy filtration on H i(SK×F̄p, RΨ)

(defined using inertia action) is pure of weight

i + k.

Nothing known in higher dimensions for sit-

uation at hand. However, I can prove cases

of local weight-monodromy conjecture for the

perverse sheaf RΨ.

Automorphic analogue: can recover L(s, πp, r)

from Lss(s, πp, r) provided πp is tempered, i.e.

local parameter

φπp : WQp
× SL2 → LG

satisfies: φπp(WQp
) is bounded.

We expect this for the πf which come into

H•(SK).∗
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∗Note: The tempered-ness of the parameter

φπp is sufficient for Lss(s, π, r) to determine

L(s, π, r). However, as pointed out by Don Bla-

sius, it is not necessary. Moreover, we actually

should not expect all πp which appear in the

cohomology to be tempered.

[In closing, if time: explain

1)heuristic that (·)Γ
0

necessary for functional

equation

2) action of Γ0 on cohomology of Shimura va-

riety with Iwahori level structure is unipotent

(from Gaitsgory’s result that action on nearby

cycles is unipotent)...]

THE END.
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