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Abstract

This paper studies affine Deligne-Lusztig varieties in the affine flag manifold of a split
group. Among other things, it proves emptiness for certain of these varieties, relates
some of them to those for Levi subgroups, and extends previous conjectures concerning
their dimensions. We generalize the superset method, an algorithmic approach to the
questions of non-emptiness and dimension. Our non-emptiness results apply equally
well to the p-adic context and therefore relate to moduli of p-divisible groups and
Shimura varieties with Iwahori level structure.

1. Introduction

1.1
This paper, a continuation of [GHKR], investigates affine Deligne-Lusztig varieties in the affine
flag variety of a split connected reductive group G over a finite field k = Fq. The Laurent series
field L = k((ε)), where k is an algebraic closure of k, is endowed with a Frobenius automorphism
σ, and we use the same symbol to denote the induced automorphism of G(L). By definition, the
affine Deligne-Lusztig variety associated with x in the extended affine Weyl group W̃ ∼= I\G(L)/I
and b ∈ G(L) is

Xx(b) = {g ∈ G(L)/I; g−1bσ(g) ∈ IxI}.
(See 1.2 below for the notation used here.) We are interested in determining the dimension
of Xx(b), and in finding a criterion for when Xx(b) 6= ∅. These questions are related to the
geometric structure of the reduction of certain Shimura varieties with Iwahori level structure:
on the special fiber of the Shimura variety we have, on one hand, the Newton stratification
whose strata are indexed by certain σ-conjugacy classes [b] ⊆ G(L), and on the other hand the
Kottwitz-Rapoport stratification whose strata are indexed by certain elements of W̃ . The affine
Deligne-Lusztig variety Xx(b) is related to the intersection of the Newton stratum associated
with [b] and the Kottwitz-Rapoport stratum associated with x. See [GHKR] 5.10 and the survey
papers of Rapoport [Ra] and the second named author [H].

To provide some context we begin by discussing affine Deligne-Lusztig varieties

Xµ(b) = {g ∈ G(L)/K; g−1bσ(g) ∈ KεµK}
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in the affine Grassmannian G(L)/K. It is known that Xµ(b) is non-empty if and only if Mazur’s
inequality is satisfied, that is to say, if and only if the σ-conjugacy class [b] of b is less than or
equal to [εµ] in the natural partial order on the set B(G) of σ-conjugacy classes in G(L). This
was proved in two steps: the problem was reduced [KR] to one on root systems, which was then
solved for classical split groups by C. Lucarelli [Lu] and recently for all quasi-split groups by
Q. Gashi [Ga].

A conjectural formula for dimXµ(b) was put forward by Rapoport [Ra], who pointed out its
similarity to a conjecture of Chai’s [Ch] on dimensions of Newton strata in Shimura varieties. In
[GHKR] Rapoport’s dimension conjecture was reduced to the superbasic case, which was then
solved by Viehmann [V1].

Now we return to affine Deligne-Lusztig varieties Xx(b) in the affine flag manifold. For some
years now a challenging problem has been to “explain” the emptiness pattern one sees in the
figures in section 14; see also [Re2] and [GHKR]. In other words, for a given b, one wants to
understand the set of x ∈ W̃ for which Xx(b) is empty. Let us begin by discussing the simplest
case, that in which b = 1 and x is shrunken, by which we mean that it lies in the union of
the shrunken Weyl chambers (see section 14 and [GHKR]). Then Reuman [Re2] observed that a
simple rule explained the emptiness pattern for Xx(1) in types A1, A2, and C2, and he conjectured
that the same might be true in general. Figure 3 in Section 14 illustrates how this simple rule
depends on the elements η2(x) resp. η1(x) in W labeling the “big” resp. “small” Weyl chambers
which contain the alcove xa. (See section 9.5 for the definitions of η1, η2 and Conjecture 1.1.3
below for the precise rule.) Computer calculations [GHKR] provided further evidence for the
truth of Reuman’s conjecture. However, although in the rank 2 cases there is a simple geometric
pattern in each strip between two adjacent Weyl chambers (see the figures in Section 14), we
do not have a closed formula in group-theoretic terms which is consistent with all higher rank
examples we have computed when xa lies outside the shrunken Weyl chambers, and the emptiness
there has remained mysterious.

In this paper, among other things, we give a precise conjecture describing the whole emptiness
pattern for any basic b. This is more general in two ways: we no longer require that b = 1 (though
we do require that b be basic), and we no longer restrict attention to shrunken x. To do this we
introduce the new notion of P -alcove for any semistandard parabolic subgroup P = MN (see
Definition 2.1.1, sections 2 and 3). Our Conjecture 9.4.2 is as follows:

Conjecture 1.1.1. Let [b] be a basic σ-conjugacy class. Then Xx(b) 6= ∅ if and only if, for every
semistandard P = MN for which xa is a P -alcove, b is σ-conjugate to an element b′ ∈ M(L)
and x and b′ have the same image under the Kottwitz homomorphism ηM : M(L)→ ΛM .

See section 7 for a review of ηM . If xa is a P -alcove, then in particular x ∈ W̃M , the extended
affine Weyl group of M , so that we can speak about ηM (x). The condition ηM (x) = ηM (b′)
means that x and b′ lie in the same connected component of the k-ind-scheme M(L). Computer
calculations support this conjecture, and for shrunken x we show (see Proposition 9.5.5) that the
new conjecture reduces to Reuman’s. We prove (see Corollary 9.4.1) one direction of this new
conjecture, namely:

Theorem 1.1.2. Let [b] be basic. Then Xx(b) is empty when Conjecture 1.1.1 predicts it to be.

It remains a challenging problem to prove that non-emptiness occurs when predicted.
In fact Proposition 9.3.1 proves the emptiness of certain Xx(b) even when b is not basic.

However, in the non-basic case, there is a second cause for emptiness, stemming from Mazur’s
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inequality. One might hope that these are the only two causes for emptiness. This is slightly
too naive. Mazur’s inequality works perfectly for G(o)-double cosets, but not for Iwahori double
cosets, and would have to be improved slightly (in the Iwahori case) before it could be applied
to give an optimal emptiness criterion. Although we do not yet know how to formulate Mazur’s
inequalities in the Iwahori case, in section 12 we are able to describe the information they should
carry, whatever they end up being.

We now turn to the dimensions of non-empty affine Deligne-Lusztig varieties in the affine flag
manifold. In [GHKR] we formulated two conjectures of this kind, and here we will extend both
of them (in a way that is supported by computer evidence). For basic b, we have

Conjecture 1.1.3. [Conjecture 9.5.1(a)] Let [b] be a basic σ-conjugacy class. Suppose x ∈ W̃
lies in the shrunken Weyl chambers. Then Xx(b) 6= ∅ if and only if

ηG(x) = ηG(b), and η2(x)−1η1(x)η2(x) ∈W \
⋃
T(S

WT ,

and in this case

dimXx(b) =
1
2
(
`(x) + `(η2(x)−1η1(x)η2(x))− defG(b)

)
.

Here defG(b) denotes the defect of b (see section 9.5). This extends Conjecture 7.2.2 of [GHKR]
from b = 1 to all basic b. For an illustration in the case of G = GSp4 (where the conjecture can
be checked as in [Re2]), see section 14.

Conjecture 9.5.1(b) extends Conjecture 7.5.1 of [GHKR] from translation elements b = εν

to all b. For this we need the following notation: bb will denote a representative of the unique
basic σ-conjugacy class whose image in ΛG is the same as that of b. (Equivalently, [bb] is at the
bottom of the connected component of [b] in the poset B(G).) In this second conjecture, it is the
difference of the dimensions of Xx(b) and Xx(bb) that is predicted. It is not required that x be
shrunken, but Xx(b) and Xx(bb) are required to be non-empty, and the length of x is required
to be big enough. In the conjecture we phrase this last condition rather crudely as `(x) > Nb for
some (unspecified) constant Nb that depends on b. However the evidence of computer calculations
suggests that for fixed b, having x such that Xx(b) and Xx(bb) are both non-empty is almost (but
not quite!) enough to make our prediction valid for x. It would be very interesting to understand
this phenomenon better, though some insight into it is already provided by Beazley’s work on
Newton strata for SL(3) [Be]. In addition, when `(x) > Nb, we conjecture that the non-emptiness
of Xx(b) is equivalent to that of Xx(bb).

The main theorem of this paper is a version of the Hodge-Newton decomposition which relates
certain affine Deligne-Lusztig varieties for the group G to affine Deligne-Lusztig varieties for a
Levi subgroup M :

Theorem 1.1.4 Theorem 2.1.4, Corollary 2.1.3. Suppose P = MN is semistandard and xa is a
P -alcove.

(a) The natural map B(M) → B(G) restricts to a bijection B(M)x → B(G)x, where B(G)x
is the subset of B(G) consisting of [b] for which XG

x (b) is non-empty. In particular, if
XG
x (b) 6= ∅, then [b] meets M(L).

(b) Suppose b ∈ M(L). Then the canonical closed immersion XM
x (b) ↪→ XG

x (b) induces a
bijection

JMb \XM
x (b) →̃ JGb \XG

x (b),
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where JGb denotes the σ-centralizer of b in G(L) (see section 2).

The second part of this theorem can be proved using the techniques of [K3], but it seems
unlikely that the same is true of the first part. In any case we use a different method, obtaining
both parts of the theorem as a consequence of the following key result (Theorem 2.1.2), whose
precise relation to the Hodge-Newton decomposition is clarified by the commutative diagram
(8.1.1).

Theorem 1.1.5. For any semistandard parabolic subgroup P = MN and any P -alcove xa, every
element of IxI is σ-conjugate under I to an element of IMxIM , where IM := M ∩ I.

It is striking that the notion of P -alcove, discovered in the attempt to understand the entire
emptiness pattern for the Xx(b) when b is basic, is also precisely the notion needed for our
Hodge-Newton decomposition.

In sections 10–13 we consider the questions of non-emptiness and dimensions of affine Deligne-
Lusztig varieties from an algorithmic point of view. The following summarizes Theorem 11.3.1
and Corollary 13.3.2:

Theorem 1.1.6. There are algorithms, expressed in terms of foldings in the Bruhat-Tits building
of G(L), for determining the non-emptiness and dimension of Xx(b).

These algorithms were used to produce the data that led to and supported our conjectures.
The results of these sections imply in particular that the non-emptiness is equivalent in the
function field and the p-adic case (Corollary 11.3.5). While this was certainly expected to hold, to
the best of our knowledge no proof was known before. This equivalence is used by Viehmann [V3]
to investigate closure relations for Ekedahl-Oort strata in certain Shimura varieties; our results
enable her to carry over results from the function field case, thus avoiding the heavy machinery
of Zink’s displays. It seems plausible that the algorithmic description of Theorem 11.3.1 can also
be used to show that the dimensions in the function field case and the p-adic case coincide, once
a good notion of dimension has been defined in the latter case.

In section 13 we extend Reuman’s superset method [Re2] from b = 1 to general b. To that
end we introduce (see Definition 13.1.1) the notion of fundamental alcove ya. We show that for
each σ-conjugacy class [b] there exists a fundamental alcove ya such that the whole double coset
IyI is contained in [b]. We then explain why this allows one to use a superset method to analyze
the emptiness of Xx(b) for any x.

In addition we introduce, in Chapter 11, a generalization of the superset method. The su-
perset method is based on I-orbits in the affine flag manifold X. It depends on the choice of
a suitable representative for b, whose existence is proved in Chapter 13, as mentioned above.
On the other hand, [GHKR] used orbits of U(L), where U is the unipotent radical of a Borel
subgroup containing our standard split maximal torus A. The generalized superset method in-
terpolates between these two extremes, being based on orbits of IMN(L) on X, where P = MN
is a standard parabolic subgroup of G. Theorem 11.3.1 and the discussion preceding it explain
how the generalized superset method can be used to study dimensions of affine Deligne-Lusztig
varieties.

For any standard parabolic subgroup P = MN and any basic b ∈ M(L) Proposition 12.1.1
gives a formula for the dimension of Xx(b) in terms of dimensions of affine Deligne-Lusztig vari-
eties for M as well as intersections of I-orbits and N ′(L)-orbits for certain Weyl group conjugates
N ′ of N . This generalizes Theorem 6.3.1 of [GHKR] and is also analogous to Proposition 5.6.1
of [GHKR], but with the affine Grassmannian replaced by the affine flag manifold.
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1.2 Notation

We follow the notation of [GHKR], for the most part. Let k be a finite field with q elements, and
let k be an algebraic closure of k. We consider the field L := k((ε)) and its subfield F := k((ε)).
We write σ : x 7→ xq for the Frobenius automorphism of k/k, and we also regard σ as an
automorphism of L/F in the usual way, so that σ(

∑
anε

n) =
∑
σ(an)εn. We write o for the

valuation ring k[[ε]] of L.

Let G be a split connected reductive group over k, and let A be a split maximal torus of G.
Write R for the set of roots of A in G. Put a := X∗(A)R. Write W for the Weyl group of A in
G. Fix a Borel subgroup B = AU containing A with unipotent radical U , and write R+ for the
corresponding set of positive roots, that is, those occurring in U . We denote by ρ the half-sum
of the positive roots. For λ ∈ X∗(A) we write ελ for the element of A(F ) obtained as the image
of ε ∈ Gm(F ) under the homomorphism λ : Gm → A.

Let C0 denote the dominant Weyl chamber, which by definition is the set of x ∈ a such that
〈α, x〉 > 0 for all α ∈ R+. We denote by a the unique alcove in the dominant Weyl chamber
whose closure contains the origin, and call it the base alcove. As Iwahori subgroup I we choose
the one fixing the base alcove a; I is then the inverse image of the opposite Borel group of B
under the projection K := G(o) −→ G(k). The opposite Borel arises here due to our convention
that ελ acts on the standard apartment a by translation by λ (rather than by translation by the
negative of λ), so that the stabilizer in G(L) of λ ∈ X∗(A) ⊂ a is ελKε−λ. With this convention
the Lie algebra of the Iwahori subgroup stabilizing an alcove b in the standard apartment is
made up of affine root spaces εjgα for all pairs (α, j) such that α− j 6 0 on b (with gα denoting
the root subspace corresponding to α).

We will often think of alcoves in a slightly different way. Let ΛG denote the quotient of X∗(A)
by the coroot lattice. The apartment A corresponding to our fixed maximal torus A can be
decomposed as a product A = Ader× VG, where VG := ΛG⊗R and where Ader is the apartment
corresponding to Ader := Gder ∩ A in the building for Gder. By an extended alcove we mean a
subset of the apartment A of the form b × c, where b is an alcove in Ader and c ∈ ΛG. Clearly
each extended alcove determines a unique alcove in the usual sense, but not conversely. However,
in the sequel we will often use the terms interchangeably, leaving context to determine what is
meant. In particular, we often write a in place of a× 0.

We denote by W̃ the extended affine Weyl group X∗(A) oW of G. Then W̃ acts transitively
on the set of all alcoves in a, and simply transitively on the set of all extended alcoves. Let
Ω = Ωa denote the stabilizer of a when it is viewed as an alcove in the usual (non-extended)
sense. We can write an extended (resp. non-extended) alcove in the form xa for a unique element
x ∈ W̃ (resp. x ∈ W̃/Ω). Of course, this is just another way of saying that we can think of
extended alcoves simply as elements of W̃ . Note that we can also describe W̃ as the quotient
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NGA(L)/A(o). For x ∈ W̃ , we write xI = ẋIẋ−1, were ẋ ∈ NGA(L) is a lift of x. It is clear that
the result is independent of the choice of lift.

As usual a standard parabolic subgroup is one containing B, and a semistandard parabolic
subgroup is one containing A. Similarly, a semistandard Levi subgroup is one containing A, and
a standard Levi subgroup is the unique semistandard Levi component of a standard parabolic
subgroup. Whenever we write P = MN for a semistandard parabolic subgroup, we take this to
mean that M is its semistandard Levi component, and that N is its unipotent radical. Given
a semistandard Levi subgroup M of G we write P(M) for the set of parabolic subgroups of G
admitting M as Levi component. For P ∈ P(M) we denote by P = MN ∈ P(M) the parabolic
subgroup opposite to P , i. e. N is the unipotent radical of P . We write RN for the set of roots
of A in N . We denote by IM , IN , IN the intersections of I with M , N , N respectively; one then
has the Iwahori decomposition I = INIMIN .

Recall that for x ∈ W̃ and b ∈ G(L) the affine Deligne-Lusztig variety Xx(b) is defined by

Xx(b) := {g ∈ G(L)/I : g−1bσ(g) ∈ IxI}.

In the sequel we often abuse notation and use the symbols G,P,M,N to denote the corre-
sponding objects over L.

Let b ∈ G(L). We denote by [b] the σ-conjugacy class of b inside G(L):

[b] = {g−1bσ(g); g ∈ G(L)},

and for a subgroup H ⊆ G(L) we write

[b]H := {h−1bσ(h); h ∈ H} ⊆ G(L)

for the σ-conjugacy class of b under H. Further notation relevant to B(G) such as ηG will be
explained in section 7.

Finally we note that xI will be used as an abbreviation for xIx−1. We use the symbols ⊂ and
⊆ interchangeably with the meaning “not necessarily strict inclusion”.

2. Statement of the main Theorem

2.1
Let α ∈ R. We identify the root group Uα with the additive group Ga over k, which then allows
us to identify Uα(L)∩K with o. The root α induces a partial order >α on the set of (extended)
alcoves in the standard apartment as follows: given an alcove b, write it as xa for x ∈ W̃ . Let
k(α,b) ∈ Z such that Uα(L)∩ xI = εk(α,b)o. In other words, k(α,b) is the unique integer k such
that b lies in the region between the affine root hyperplanes Hα,k = {x ∈ X∗(A)R; 〈α, x〉 = k}
and Hα,k−1. This description shows immediately that k(α,b) + k(−α,b) = 1. (For instance, we
have k(α,a) = 1 if α > 0 and k(α,a) = 0 if α < 0. This reflects the fact that the fixer I of a is
the inverse image of the opposite Borel B under the projection G(o)→ G(k).) We define

b1 >α b2 :⇐⇒ k(α,b1) > k(α,b2).

This is a partial order in the weak sense: b1 >α b2 and b2 >α b1 does not imply that b1 = b2.
We also define

b1 >α b2 :⇐⇒ k(α,b1) > k(α,b2).

Definition 2.1.1. Let P = MN be a semistandard parabolic subgroup. Let x ∈ W̃ . We say xa
is a P -alcove, if
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(1) x ∈ W̃M , and

(2) ∀α ∈ RN , xa >α a.

We say xa is a strict P -alcove if instead of (2) we have

(2′) ∀α ∈ RN , xa >α a.

Note that condition (2) depends only on the image of x in W̃/Ω; however, condition (1)
depends on x itself. It is important to work with extended alcoves here. One could argue that the
above definition is rather about elements of the extended affine Weyl group than about extended
alcoves, but the term P -alcove seemed most convenient anyway.

By the definition of the partial order >α, the condition (2) is equivalent to

∀α ∈ RN , Uα ∩ xI ⊆ Uα ∩ I, (2.1.1)

or, likewise, to

∀α ∈ RN , U−α ∩ xI ⊇ U−α ∩ I (2.1.2)

and under our assumption that x ∈ W̃M , these in turn are equivalent to the condition
x(N ∩ I) ⊆ N ∩ I or, equivalently to x(N ∩ I) ⊇ N ∩ I. (2.1.3)

(And condition (2′) is equivalent to (2.1.1) with the inclusions replaced by strict inclusions.)
Indeed, noting that conjugation by x = ελw permutes the subgroups Uα with α ∈ RN , it is easy
to see from the (Iwahori) factorization

N ∩ I =
∏
α∈RN

Uα ∩ I, (2.1.4)

that (2.1.1) is equivalent to (2.1.3). For a fixed semistandard parabolic subgroup P = MN , the
set of alcoves xa which satisfy (2.1.1) forms a union of “acute cones of alcoves” in the sense of
[HN]. We shall explain this in section 3 below.

Our key result concerns the map

φ : I × IMxIM → IxI

(i,m) 7→ imσ(i)−1.

There is a left action of IM on I×IMxIM given by iM (i,m) = (ii−1
M , iMmσ(iM )−1), for iM ∈ IM ,

i ∈ I and m ∈ IMxIM . Let us denote by I ×IM IMxIM the quotient of I × IMxIM by this
action of IM . Denote by [i,m] the equivalence class of (i,m) ∈ I× IMxIM . The map φ obviously
factors through I ×IM IMxIM . We can now state the key result which enables us to prove the
Hodge-Newton decomposition.

Theorem 2.1.2. Suppose P = MN is a semistandard parabolic subgroup, and xa is a P -alcove.
Then the map

φ : I ×IM IMxIM → IxI

induced by (i,m) 7→ imσ(i)−1, is surjective. If xa is a strict P -alcove, then φ is injective. In
general, φ is not injective, but if [i,m] and [i′,m′] belong to the same fiber of φ, the elements m
and m′ are σ-conjugate by an element of IM .

This theorem was partially inspired by Labesse’s study of the “elementary functions” he
introduced in [La].

7
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Let us mention a few consequences. First, consider the quotient IxI/σ I, where the action
of I on IxI is given by σ-conjugation. We also can form in a parallel manner the quotient
IMxIM/σ IM . Further, let B(G)x denote the set of σ-conjugacy classes [b] in G(L) which meet
IxI. We note that for G = SL3 all of the sets B(G)x have been determined explicitly by Beazley
[Be].

Corollary 2.1.3. Suppose P = MN is semistandard, and xa is a P -alcove. Then the following
statements hold.

(a) The inclusion IMxIM ↪→ IxI induces a bijection

IMxIM/σ IM →̃ IxI/σ I.

(b) The canonical map ι : B(M)x → B(G)x is bijective.

Part (a) follows directly from Theorem 2.1.2. Indeed, the surjectivity of φ implies the sur-
jectivity of IMxIM/σ IM → IxI/σ I. As for the injectivity of the latter, note that if i ∈ I and
m,m′ ∈ IMxIM satisfy imσ(i)−1 = m′, then [i,m] and [1,m′] belong to the same fiber of φ.
As for part (b), we will derive it from part (a) in section 8. (In fact the surjectivity in part (b)
follows easily from the surjectivity in Theorem 2.1.2.)

Another consequence is our main theorem, a version of the Hodge-Newton decomposition,
given in Theorem 2.1.4 below. For affine Deligne-Lusztig varieties in the affine Grassmannian of
a split group, the analogous Hodge-Newton decomposition was proved under unnecessarily strict
hypotheses in [K3] and in the general case by Viehmann [V2, Theorem 1] (see also Mantovan-
Viehmann [MV] for the case of unramified groups). To state this we need to fix a standard
parabolic subgroup P = MN and an element b ∈M(L). Let KM = M ∩K, where K, as usual,
denotes G(o). For a G-dominant coweight µ ∈ X∗(A), the σ-centralizer JGb := {g ∈ G(L) :
g−1bσ(g) = b} of b acts naturally on the affine Deligne-Lusztig variety XG

µ (b) ⊂ G(L)/K defined
to be

XG
µ (b) := {gK ∈ G(L)/K | g−1bσ(g) ∈ KεµK}.

Also, JMb acts on XM
µ (b) ⊂M(L)/KM . Now the Hodge-Newton decomposition under discussion

asserts the following: suppose that the Newton point νMb ∈ X∗(A)R is G-dominant, and that
ηM (b) = µ in ΛM . Then the canonical closed immersion XM

µ (b) ↪→ XG
µ (b) induces a bijection

JMb \XM
µ (b) →̃ JGb \XG

µ (b).

Of course if we impose the stricter condition that 〈α, νMb 〉 > 0 for all α ∈ RN , then JMb = JGb
and so we get the stronger conclusion XM

µ (b) ∼= XG
µ (b), yielding what is normally known as the

Hodge-Newton decomposition in this context. The version with the weaker condition is essentially
a result of Viehmann, who formulates it somewhat differently [V2, Theorem 2], in a way that
brings out a dichotomy occurring when G is simple.

In the affine flag variety, it still makes sense to ask how XG
x (b) and XM

x (b) are related, for
x ∈ W̃M and b ∈M(L). Our Hodge-Newton decomposition below provides some information in
this direction.

Theorem 2.1.4. Suppose P = MN is semistandard and xa is a P -alcove.

(a) If XG
x (b) 6= ∅, then [b] meets M(L).

(b) Suppose b ∈ M(L). Then the canonical closed immersion XM
x (b) ↪→ XG

x (b) induces a
bijection

JMb \XM
x (b) →̃ JGb \XG

x (b).
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Figure 1. The figure illustrates the notion of P -alcove for G of type C2. On the left, P = w0B,
where w0 is the longest element in W . On the right, P = s1s2s1P ′ where P ′ is the standard
parabolic B ∪ Bs2B. In both cases, the black alcove is the base alcove, the region P is in light
gray, and the P -alcoves are shown in dark gray.

Note that part (b) implies that if xa is a P -alcove, then for every b ∈ M(L), we have
XG
x (b) = ∅ if and only if XM

x (b) = ∅. We will prove Theorem 2.1.4 in section 8 and then derive
some further consequences relating to emptiness/non-emptiness of XG

x (b), in section 9.

3. P -alcoves and acute cones of alcoves

3.1
Let P = MN be a fixed semistandard parabolic subgroup. The aim of this section is to link
the new notion of P -alcove to the notion of acute cones, and to help the reader visualize the set
of P -alcoves. Let P denote the set of alcoves xa which satisfy the inequalities xa >α a for all
α ∈ RN .

For each element w ∈ W , we recall the notion of acute cone of alcoves C(a, w), following
[HN]. Given an affine hyperplane H = Hα,k = H−α,−k, we assume α has the sign such that
α ∈ w(R+), i. e. such that α is a positive root with respect to wB. Then define the w-positive
half space

Hw+ = {v ∈ X∗(A)R : 〈α, v〉 > k}.
Let Hw− denote the other half-space.

Then the acute cone of alcoves C(a, w) is defined to be the set of alcoves xa such that some
(equivalently, every) minimal gallery joining a to xa is in the w-direction. By definition, a gallery
a1, . . . ,al is in the w-direction if for each crossing ai−1|Hai, the alcove ai−1 belongs to Hw− and ai
belongs to Hw+. By loc. cit. Lemma 5.8, the acute cone C(a, w) is an intersection of half-spaces:

C(a, w) =
⋂

a⊂Hw+

Hw+.

Proposition 3.1.1. The set of alcoves P is the following union of acute cones of alcoves

P =
⋃

w :P⊇wB
C(a, w). (3.1.1)

9
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Figure 2. This figure shows P -alcoves for G of type G2. On the left, P = s1s2s1(B ∪Bs2B), on
the right, P = s2s1s2s1B.

Proof. For any root α ∈ R and k ∈ Z, let H+
α,k denote the unique half-space for Hα,k which

contains the base alcove a. Note that for any α ∈ R and w ∈W , we have

H+
α,k(α,a)−1 =

{
Hw+
α,k(α,a)−1, if α ∈ w(R+)

Hw−
α,k(α,a)−1, if α ∈ w(R−).

(3.1.2)

Now suppose w ∈ W satisfies P ⊇ wB, or in other words N ⊆ wU , or equivalently, RN ⊆
w(R+). Then we see using (3.1.2) that

C(a, w) =
⋂

α∈w(R+)

Hw+
α,k(α,a)−1 =

⋂
α∈w(R+)

H+
α,k(α,a)−1,

so the union on the right hand side of (3.1.1) is⋃
w :RN⊆w(R+)

⋂
α∈w(R+)

H+
α,k(α,a)−1 (3.1.3)

and in particular is contained in
⋂
α∈RN H

+
α,k(α,a)−1 = P.

For the opposite inclusion, we set

U =
⋃

w :RN⊆w(R+)

C(a, w).

We will prove the implication
xa /∈ U =⇒ xa /∈ P (3.1.4)

by induction on the length ` of a minimal gallery a = a0,a1, . . . ,a` = xa. If ` = 0, there is
nothing to show, so we assume that ` > 0 and that the implication holds for ya := a`−1.

Assume xa /∈ U . There are two cases to consider. If ya /∈ U , then by induction ya /∈ P. This
means that ya and a are on opposite sides of a hyperplane Hα,k(α,a)−1 for some α ∈ RN . The

10
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same then holds for xa, which shows that xa /∈ P.

Otherwise, ya ∈ U , so that ya belongs to some C(a, w) with RN ⊆ w(R+). Let H = Hβ,m

be the wall separating ya and xa. Since xa /∈ C(a, w) and sβ,mxa ∈ C(a, w), we have that
m ∈ {0,±1}, and xa ∈ C(a, sβw). Now, if sβ ∈ WM , then RN ⊆ sβw(R+) and xa ∈ U , a
contradiction. Thus β ∈ ±RN , and without loss of generality we may assume β ∈ RN . Now in
passing from ya to xa, we crossed H in the β-opposite direction, where by definition this means
for any point a in the interior of a, x(a) − y(a) ∈ R<0β

∨. Indeed, if not then since β ∈ w(R+)
the crossing ya|Hxa is in the w-direction; in that case xa belongs to C(a, w) (since ya does), a
contradiction.

To conclude, we observe that if a = a0, . . . ,a` is a minimal gallery and crosses some Hβ,m

with β ∈ RN in the β-opposite direction, then the terminal alcove a` must actually lie outside
of P (since such a gallery must cross the hyperplane Hβ,k(β,a)−1).

4. Reformulation of Theorem 2.1.2

4.1

In the following reformulation of Theorem 2.1.2, we assume P = MN is semistandard and xa is
a P -alcove. As in Beazley’s work [Be], it is easier to work with single cosets xI than with double
cosets IxI, and the next result allows us to do just that.

Lemma 4.1.1. Theorem 2.1.2 is equivalent to the following statement: the map

φ : (xI ∩ I)× xIM∩IM xIM → xI

given by (i,m) 7→ imσ(i)−1 is surjective. Moreover, it is bijective if xa is a strict P -alcove. In
general, if [i, xj] and [i′, xj′] belong to the same fiber of φ, then xj and xj′ are σ-conjugate by
an element of xIM ∩ IM .

Proof. It is straightforward to verify that the following diagram with vertical inclusion maps is
Cartesian:

(xI ∩ I)× xIM∩IM xIM

��

φ // xI

��
I ×IM IMxIM

φ // IxI.

The lemma is now clear by appealing to I-equivariance: each element of IxI is σ-conjugate under
I to an element of xI, and φ is I-equivariant with respect to the action by σ-conjugation on IxI
and the action on I×IM IMxIM given by i′[i,m] := [i′i,m] for i′ ∈ I and [i,m] ∈ I×IM IMxIM .

We can now prove the portion of Theorem 2.1.2 relating to the fibers of φ. Suppose that
[i1, xj1], [i2, xj2] ∈ (xI ∩ I)× xIM∩IM xIM satisfy i1xj1σ(i1)−1 = i2xj2σ(i2)−1. Letting i := i−1

2 i1,
we see that

x−1ix = j2σ(i)j−1
1 . (4.1.1)

We have the Iwahori decompositions I = INIMIN and xI = xIN
xIM

xIN , where IN := N ∩ I
and IN := N ∩ I. Using our assumption that xa is a P -alcove, we deduce

xI ∩ I = IN ( xIM ∩ IM ) xIN . (4.1.2)

11
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Write i = i− i0 i+, with i− ∈ IN , i0 ∈ xIM ∩ IM , and i+ ∈ xIN . Using (4.1.1) we get

x−1
i− · x

−1
i0 · x

−1
i+ = j2σ(i−) · j2σ(i0)j−1

1 · j1σ(i+). (4.1.3)

By the uniqueness of the factorization of elements in N ·M ·N , we get
x−1

i− = j2σ(i−) (4.1.4)
x−1

i0 = j2σ(i0)j−1
1 (4.1.5)

x−1
i+ = j1σ(i+). (4.1.6)

From (4.1.5), we deduce that xj1 is σ-conjugate to xj2 by an element in xIM ∩ IM . This
proves the main assertion regarding the fibers of φ.

It remains to prove that φ is injective when xa is a strict P -alcove. In that case conjugation
by x is strictly expanding (resp. contracting) on IN (resp. on IN ). In other words, the condition
(2.1.1) hence also (2.1.3) holds with the inclusions replaced by strict inclusions. But then (4.1.4)
(resp. (4.1.6)) can hold only if i− = 1 (resp. i+ = 1). Thus, in that case we have i = i0 ∈ xIM∩IM ,
and it follows that [i1, xj1] = [i2, xj2]. This proves the desired injectivity of φ.

5. A variant of Lang’s theorem for vector groups

5.1
As before, let k denote a finite field with q elements, and let k denote an algebraic closure of k. We
write σ for the Frobenius automorphism x 7→ xq of k. In this section we will be concerned with
an automorphism τ of k, which is required to be either σ or σ−1. By a τ -space (V,Φ) we mean
a finite dimensional vector space V over k together with a τ -linear map Φ : V → V . We do not
require that Φ be bijective. The category of τ -spaces is abelian and every object in it has finite
length. Let (V,Φ) be a simple object in this category. We claim that V is 1-dimensional (cf. the
proof of Lemma 1.3 in [KR]). Since ker Φ is a subobject of V , we must have either ker Φ = V or
ker Φ = 0. In the first case Φ = 0, every subspace is a subobject, and therefore simplicity forces
V to be 1-dimensional. In the second case Φ is bijective, and a subspace W is a subobject ⇐⇒
ΦW = W ⇐⇒ Φ−1W = W . Therefore we may as well assume that τ = σ (since Φ−1 is σ-linear
if Φ is σ−1-linear). Then by Lang’s theorem for general linear groups over k, our τ -space is a
direct sum of copies of (k, σ), hence due to simplicity is 1-dimensional.

Lemma 5.1.1. Let (V,Φ) be a τ -space. Then the k-linear map v 7→ v − Φ(v) from V to V is
surjective.

Proof. Filter (V,Φ) so that each successive quotient is 1-dimensional. Since the desired surjec-
tivity follows from surjectivity of the induced map on the associated graded object, we just
need to prove surjectivity when V is 1-dimensional. This amounts to the solvability of the equa-
tions x − axq = b and x − ax1/q = b. Solvability of the first equation is obvious, and so too is
that of the second after the change of variables x = yq, which leads to the equivalent equation
yq − ay = b.

Corollary 5.1.2. Let V0 be a finite dimensional k-vector space, let V = V0 ⊗k k, and let
M : V → V be a linear map. Then

(1) for every w ∈ V there exists v ∈ V such that σv −Mv = w, and

(2) for every w ∈ V there exists v ∈ V such that v −Mσv = w.

12
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Proof. The second statement follows from the lemma (with τ = σ), and the first follows from
the lemma (with τ = σ−1) after making the change of variables v = σ−1v′.

Remark 5.1.3. We note that the second statement of the corollary can also be proved in the
same way as Lang’s theorem. However this method does not handle the first statement of the
corollary in the case when M is not bijective.

6. Proof of surjectivity in Theorem 2.1.2

6.1 The method of successive approximations
Again assume that xa is a P -alcove. Recall that by Lemma 4.1.1, we need to prove the surjectivity
of the map

(xI ∩ I)× xIM → xI

given by (i,m) 7→ imσ(i)−1. In other words, given an element of xI, we can σ-conjugate it by
an element of xI ∩ I into the set xIM .

Define the normal subgroup In ⊂ I, n = 0, 1, 2, . . . , to be the n-th principal congruence sub-
group of I. More precisely, let G denote the Bruhat-Tits parahoric o-group scheme corresponding
to I, so that G(o) = I. For n > 0, let In denote the kernel of G(o)� G(o/εno).

Define the normal subgroups Nn ⊂ N(o) ∩ I, Nn ⊂ N(o) ∩ I and Mn ⊂ M(o) ∩ I to be the
intersections In ∩N resp. In ∩N resp. In ∩M . For each n > 0, we have the Iwahori factorization

In = MnNnNn = NnNnMn.

We have the relations
xNn ⊆ Nn (6.1.1)
xNn ⊇ Nn

which follow from our assumption that xa is a P -alcove.
Conjugating by x the decomposition I = IMININ yields xI = xIM

xIN
xIN . By our assump-

tions on x, we have
xI ∩ I = ( xIM ∩ IM ) xIN IN .

Similarly, for each n > 0, we have
xIn ∩ In = ( xMn ∩Mn) xNnNn.

The next lemma is a key ingredient in the proof of Theorem 2.1.2. Here and in the remainder of
this section we use the following notation: for h ∈ G(L), a superscript h− stands for conjugation
by h, and a superscript σ− means application of σ, so in particular, for g, h ∈ G(L), the symbol
hσg will stand for hσ(g)h−1, and σhg will stand for σ(h)σ(g)σ(h−1).

Lemma 6.1.1. Fix an element m ∈ IM and an integer n > 0.

(i) Given i− ∈ Nn, there exists b− ∈ Nn such that (xm)−1
b−i−

σb−1
− ∈ Nn+1.

(ii) Given i+ ∈ Nn, there exists b+ ∈ Nn such that b+i+
mxσb−1

+ ∈ Nn+1.

Proof. Borrowing the notation of [GHKR], §5.3, the group N possesses a finite separating filtra-
tion by normal subgroups

N = N [1] ⊃ N [2] ⊃ · · ·

13
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defined as follows. Choose a Borel subgroup B′ containing A and contained in P ; use B′ to
determine a notion of (simple) positive root for A acting on Lie(G). Let δ′N be the cocharacter in
X∗(A/Z) (where Z denotes the center of G) which is the sum of the B′-fundamental coweights
$α, where α ranges over the simple B′-positive roots for A appearing in Lie(N). Then let N [i]
be the product of the root groups Uβ ⊂ N for β satisfying 〈β, δ′N 〉 > i. The subgroups N [i] are
stable under conjugation by any element in M (as one can check using the Bruhat decomposition
of M with respect to the Borel subgroup B′∩M). The successive quotients N〈i〉 := N [i]/N [i+1]
are abelian (see loc. cit.).

We define Nn[i] := Nn∩N [i], and Nn〈i〉 := Nn[i]/Nn[i+ 1]. We define the groups N [i], N〈i〉,
Nn[i], and Nn〈i〉 in an analogous manner.

Now we are ready to prove statement (i). Note that the successive quotients Nn〈i〉 are abelian,
and moreover Nn+1〈i〉 is a subgroup of Nn〈i〉, and the quotient

Nn〈i〉/Nn+1〈i〉

is a vector group over the residue field of o. Conjugation by m−1 ∈ IM or x−1 preserves Nn as
well as each Nn[i] and Nn〈i〉 (for x−1, we use (6.1.1) above). Hence the map b− 7→ (xm)−1

b−
σb−1
−

induces on each vector group Nn〈i〉/Nn+1〈i〉 a map like that considered in Corollary 5.1.2 (1).
Using that lemma repeatedly on these quotients in a suitable order, we may find b− ∈ Nn such
that

(xm)−1
b−i−

σb−1
− ∈ Nn+1,

thus verifying part (i).
Now for part (ii) we use a very similar argument. Conjugation by mx preserves Nn (for x we

use (6.1.1) above), as well as each Nn[i] and Nn〈i〉. Hence the map b+ 7→ b+
mxσb−1

+ induces on
each vector group Nn〈i〉/Nn+1〈i〉 a map like that considered in Corollary 5.1.2 (2). We conclude
as in part (i) above. This completes the proof of the lemma.

Now we continue with the proof of Theorem 2.1.2. The Iwahori subgroup I has the filtration
I ⊃ I1 ⊃ I2 ⊃ I3 ⊃ . . . by principal congruence subgroups. We want to refine this filtration to a
filtration I = I[0] ⊃ I[1] ⊃ I[2] ⊃ I[3] ⊃ . . . satisfying the following conditions:

(i) Each I[r] is normal in I.

(ii) Each I[r] is a semidirect product I〈r〉I[r + 1], where I〈r〉 is either an affine root subgroup
(hence one-dimensional over our ground field k) or else contained in A(o).

One can construct such filtrations directly by inserting suitable terms into the filtration by
principal congruence subgroups. It turns out to be much cleaner and more useful for other
portions of this paper, to take instead a generic Moy-Prasad filtration (see below for a discussion
of these). In any case, we fix one such filtration (which need not have any special properties
relative to our chosen P = MN).

We start with a P -alcove xa and an element y ∈ xI. We want to find an element g ∈ xI ∩ I
such that gy σ(g)−1 ∈ xIM . As usual we do this by successive approximations, first σ-conjugating
y into xIMI[1], then into xIMI[2], and so on. We have to take care that the elements doing the
σ-conjugating approach 1 as r → ∞. Assuming we can do this, if h(r) ∈ xI ∩ I is used to
σ-conjugate the appropriate element of xIMI[r] into xIMI[r + 1], then the convergent product

g := · · ·h(2)h(1)h(0)

14
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has the desired property.
So we need to show that any element xiM i[r] ∈ xIMI[r] is σ-conjugate under xI ∩ I to an

element of xIMI[r + 1] (and that the σ-conjugators can be taken to be small when r is large).
Use item (2) to decompose i[r] as i〈r〉i[r + 1]. There are two cases. If I〈r〉 ⊂ A(o), then we can
absorb i〈r〉 into iM , showing that our element already lies in xIMI[r + 1].

Otherwise i〈r〉 lies in one of the affine root subgroups of I; write α for the ordinary root
obtained as the vector part of our affine root. If α is a root in M , then again we absorb i〈r〉
into iM and do not need to σ-conjugate. Otherwise α is a root in N or N , and in either case we
may use the Lang theorem variant (i.e. the appropriate statement in Lemma 6.1.1) to produce
an element h ∈ xI ∩ I (suitably small when r is large) such that

hxiM i〈r〉σ(h)−1 = xiM i
′,

for some i′ ∈ I[r+1]. (For example, if i〈r〉 ∈ Nn take h := xb+, where b+ is the element produced
in Lemma 6.1.1 (ii) for m := iM and i+ := mi〈r〉m−1.) Then

hxiM i〈r〉i[r + 1]σ(h)−1 = xiM i
′ (σ(h)i[r + 1]σ(h)−1) ∈ xIMI[r + 1],

as desired. (We used here that I[r+ 1] is normal in I.) Lemma 6.1.1 produces elements h which
are suitably small when r is large, so that we are done, modulo the information on Moy-Prasad
filtrations which follows.

6.2 Moy-Prasad filtrations
Our reference for Moy-Prasad filtrations is [MP]. Recall that Moy-Prasad filtrations on I are
obtained from points x in the base alcove a. On the Lie algebra this works as follows. The
vector space g ⊗k k[ε, ε−1] is graded by the group X∗(A) ⊕ Z (since g is graded by X∗(A) and
k[ε, ε−1] is graded by Z). (For the moment k is any field.) The pair (x, 1) gives a homomorphism
X∗(A)⊕ Z→ R, which we use to obtain an R-grading on g⊗k k[ε, ε−1], as well as an associated
R-filtration. We also obtain an R-filtration on the completion g(F ) of g ⊗k k[ε, ε−1]. Thus, for
r ∈ R the subspace g(F )>r is the completion of the direct sum of the affine weight spaces of
weight (with respect to (x, 1)) greater than or equal to r, which for the affine weight space εna
means that n > r, and for an affine weight space εngα (α being an ordinary root) means that
α(x) +n > r. Of course g(F )>0 is the Iwahori subalgebra obtained as the Lie algebra of I 1. It is
clear that [g(F )>r, g(F )>s] ⊂ g(F )>r+s, from which it follows that g(F )>r is an ideal in g(F )>0

whenever r is non-negative.
When r is non-negative, the Moy-Prasad subgroups G(F )>r of G(F ) are by definition the

subgroups generated by suitable subgroups of A(o) and of the various root subgroups, in such
a way that the Lie algebra of G(F )>r ends up being g(F )>r. In characteristic 0 the fact that
g(F )>r is an ideal in g(F )>0 implies that G(F )>r is normal in I = G(F )>0. Moy and Prasad
prove normality in the general case from other considerations. In our present situation, where G
is split, it is straightforward to prove the normality using commutator relations for the various
affine root groups Uα+n in G(F ).

What does it mean for x to be a generic element in the base alcove? For an arbitrary point x in
the standard apartment it may accidentally happen that the homomorphism (x, 1) : X∗(A)⊕Z→

1Warning: This description is incompatible with the normalization of the correspondence between alcoves and
Iwahori subgroups we are using in this paper: it turns out G(F )>0 is really “opposite” to our Iwahori I. To get
our I, we should instead define g(F )>r to be the completion of the sum of the affine weight spaces of weight (with
respect to (x,−1)) less than or equal to −r.
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R sends two distinct affine weights occurring in g ⊗k k[ε, ε−1] to the same real number. When
such an accident never occurs, we say that x is generic. The set of non-generic points in the
standard apartment is a locally finite union of affine hyperplanes, including all the affine root
hyperplanes, but also those obtained by setting any difference of roots equal to an integer. In
the case of SL(2), all points in the base alcove but its midpoint are generic. In general one can
at least say that the set of generic points in the base alcove is non-empty and open. When x is
generic, then going down the Moy-Prasad filtration strips away affine weight spaces, one-by-one,
just as we want.

6.3 A refinement
It is clear that in case xIM = IM , we can do better: we can σ-conjugate any element in xIM to x
using an element of IM . To see this we adapt the proof of Lang’s theorem to prove the surjectivity
of the map IM → IM given by h 7→ h−1 xσh. Indeed, IM has a filtration by normal subgroups
which are stabilized by Ad(x), such that our map induces on the successive quotients a finite
étale surjective map (take the Moy-Prasad filtration on IM corresponding to the barycenter of
the alcove in the reduced building for M(L) corresponding to IM ). Using the surjectivity just
proved, given i ∈ IM we find an h ∈ IM solving the equation xix−1 = h−1 xσh. We then have
h(xi)σ(h)−1 = x. Thus, we have proved the following proposition.

Proposition 6.3.1. Suppose x ∈ W̃M is such that there exists a semistandard parabolic sub-
group P = MN having the property that xIN ⊆ IN , i. e. such that xa is a P -alcove. Then
any element of xI is σ-conjugate to an element of xIM using an element of xI ∩ I. If moreover,
xIM = IM , then we may σ-conjugate any element of xI to x, using an element of xI ∩ I.

Given an element x ∈ W̃M such that xIM = IM , in general there is no parabolic P = MN
such that xIN ⊆ IN and x−1

IN ⊆ IN (see also the discussion after Definition 7.2.3 below).
However, when M is adapted to I in the sense of Definition 13.2.1, such P does exist, as is shown
in Proposition 13.2.2.

7. Review of σ-conjugacy classes

7.1 Classification of σ-conjugacy classes
We recall the description of the set B(G) of σ-conjugacy classes in G(L); for details see [K1],
[K2] 5.1, and [K4] 1.3. We denote by ΛG the quotient of X∗(A) by the coroot lattice; this is the
algebraic fundamental group of G. We can identify ΛG with the group of connected components
of the loop group G(L). Let ηG : G(L) −→ ΛG be the natural surjective homomorphism, as con-
structed in [K2], §7 and denoted there by ωG; it is sometimes called the Kottwitz homomorphism.
Analogously, we denote by ΛM the quotient of X∗(A) by the coroot lattice for M , and by ηM
the corresponding homomorphism.

If P = MN is a standard parabolic subgroup of G with unipotent radical N and M the
unique Levi containing A, then the set ∆ of simple roots for G decomposes as the disjoint union
of ∆M and ∆N , where ∆M is the set of simple roots of M , and ∆N is the set of those simple roots
for G which occur in the Lie algebra of N . We write AP (or AM ) for the connected component of
the center of M , and we let aP denote the real vector space X∗(AP )⊗R. As usual, P determines
an open chamber a+

P in aP defined by

a+
P = {v ∈ aP : 〈α, v〉 > 0, for all α ∈ ∆N}.

16



Affine Deligne-Lusztig varieties in affine flag varieties

The composition X∗(AP ) ↪→ X∗(A) � ΛM , when tensored with R, yields a canonical isomor-
phism aP ∼= ΛM⊗R. Let Λ+

M denote the subset of elements in ΛM whose image under ΛM⊗R ∼= aP
lies in a+

P .
Let D be the diagonalizable group over F with character group Q. As in [K1], an element

b ∈ G(L) determines a homomorphism νb : D→ G over L, whose G(L)-conjugacy class depends
only on the σ-conjugacy class [b] ∈ B(G). We can assume this homomorphism factors through
our torus A, and that the corresponding element νb ∈ X∗(A)Q is dominant. Then b 7→ νb is
called the Newton map (relative to the group G). Recall that b ∈ G(L) is called basic if νb factors
through the center Z(G) of G.

We shall use some properties of the Newton map. We can identify the quotient X∗(A)Q/W
with the closed dominant chamber X∗(A)+

Q. The map

B(G)→ X∗(A)+
Q × ΛG (7.1.1)

b 7→ (νb, ηG(b))

is injective ([K2], 4.13).
The Newton map is functorial, such that we have a commutative diagram

B(M) //

��

B(G)

��
X∗(A)Q/WM × ΛG // X∗(A)Q/W × ΛG

(7.1.2)

and moreover the vertical arrows, given by “(Newton point, Kottwitz point)”, are injections.
Indeed, the right vertical arrow is the injection (7.1.1). To show the left vertical arrow is injective,
it is enough to prove that if b1, b2 ∈ M(L) have the same Newton point and the same image
under ηG, then they have the same image under ηM . We may assume that b1, b2 ∈ W̃M (see
Corollary 7.2.2 below); for i = 1, 2 write bi = ελiwi for λi ∈ X∗(A) and wi ∈ WM . Let Q∨

(resp. Q∨M ) denote the lattice generated by the coroots of G (resp. M) in X∗(A). The equality
ηG(b1) = ηG(b2) means that λ1−λ2 ∈ Q∨. The equality νb1 = νb2 implies that λ1−λ2 ∈ Q∨M⊗R.
It follows that λ1 − λ2 ∈ Q∨M , and this is what we wanted to prove.

The following lemma is a direct consequence of the commutativity of the diagram above.

Lemma 7.1.1. Let M ⊂ G be a Levi subgroup containing A. If [b′]M ⊂ [b] for some b′ ∈ M(L),
then νb = νb′,G−dom as elements of X∗(A)+

Q.

Here νb′ is the Newton point of b′ (viewed as an element of M(L)) and νb′,G−dom denotes the
unique G-dominant element of X∗(A)Q in its W -orbit.

We denote by λM the canonical map

λM : ΛM = X∗(Z(M̂))→ X∗(Z(M̂))R = X∗(Z(M))R ↪→ X∗(A)R. (7.1.3)

This can be identified with the map

ΛM → X∗(AM )Q ↪→ X∗(A)Q

where the first arrow is given by averaging the WM -action. Next we define the following subsets
of X∗(A)+

Q: the subset NG consists of all Newton points νb for b ∈ B(G), and N+
M consists of the

images of elements of Λ+
M , under the map λM . We have the equality

NG =
∐

P=MN

N+
M , (7.1.4)
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the union ranging over all standard parabolic subgroups of G.
This equality results from two facts. First, we are taking the Newton points associated to

elements of B(G) and making use of the decomposition of B(G)

B(G) =
∐
P

B(G)P ,

where P ranges over standard parabolic subgroups and B(G)P is the set of elements [b] ∈ B(G)
such that νb ∈ a+

P (see [K1, K2]); note that elements in B(G)P can be represented by basic
elements in M(L) ([K2], 5.1.2). Second, for b a basic element in M(L) (representing e. g. an
element in B(G)P ) its Newton point νb is the image of ηM (b) ∈ ΛM under λM . This follows from
the characterization of νb in [K1], 4.3 (applied to M in place of G), together with (7.1.2).

Remark 7.1.2. The right hand side in (7.1.4) is easy to enumerate for any given group (with the
aid of a computer). This fact makes feasible our computer-aided verifications of our conjectures
relating to the non-emptiness of Xx(b), see section 9. Moreover, the injectivity of (7.1.1) together
with (7.1.4) gives a concrete way to check whether two elements in G(L) are σ-conjugate.

7.2 Construction of standard representatives for B(G)
Here we will define the standard representatives of σ-conjugacy classes in the extended affine
Weyl group. First note that the map G(L) → B(G) induces a map W̃ → B(G). Our goal is to
find special elements in W̃ which parametrize the elements of B(G).

Denote by ΩG ⊂ W̃ the subgroup of elements of length 0. Let G(L)b resp. B(G)b denote
the set of basic elements resp. basic σ-conjugacy classes in G(L). In the following lemma we
recollect some standard facts relating the Newton map to the homomorphism ηG : G(L)� ΛG.
The connection between the two stems from fact that if b ∈ G(L) is basic, then the Newton point
νb ∈ X∗(Z(G))R is the image of ηG(b) ∈ ΛG under the canonical map λG : ΛG → X∗(A)R (see
(7.1.3)).

Lemma 7.2.1. (i) The map ηG induces a bijection B(G)b →̃ ΛG.

(ii) Elements in ΩG ⊂ G(L) are basic, and the map ηG induces a bijection ΩG →̃ ΛG.

(iii) The canonical map ΩG → B(G)b is a bijection.

Proof. First suppose b ∈ ΩG. For sufficiently divisible N > 1, the element bN is a translation
element which preserves the base alcove, hence belongs to X∗(Z(G)). The characterization of νb
in [K1], 4.3, then shows that b is basic, proving the first statement in (ii). For part (i), recall that
an isomorphism is constructed in loc. cit. 5.6, and this is shown to be induced by ηG in [K2], 7.5.
Since ηG is trivial on I and Waff ⊂ Gsc(L), (i) and the Bruhat-Tits decomposition

G(L) =
∐

wτ∈WaffoΩG

IwτI

imply that the composition

ΩG
// G(L)b

ηG // ΛG
is surjective. Since this composition is easily seen to be injective, (ii) holds. Part (iii) follows
using (i-ii).

Here is a slightly different point of view of the lemma: The basic conjugacy classes are in
bijection with ΛG, the group of connected components of the ind-scheme G(L) (or the affine flag
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variety), and the bijection is given by just mapping each basic σ-conjugacy class to the connected
component it lies in. The key point here is that the Kottwitz homomorphism agrees with the
natural map G(L)→ π0(G(L)) = ΛG; see [K1], [PR] §5.

As a consequence of the lemma (applied to G and its standard Levi subgroups), we have the
following corollary.

Corollary 7.2.2. The map W̃ → B(G) is surjective.

Definition 7.2.3. For [b] ∈ B(G)P ⊂ B(G), we call the representative in ΩM ⊆ W̃ which we
get from Lemma 7.2.1 (iii) the standard representative of [b]. Here standard refers back to our
particular choice B of Borel subgroup. If we made a different choice of Borel subgroup containing
A, we would get a different standard representative; all such representatives will be referred to
as semistandard.

The standard representative b = ενv hence satisfies

(i) b ∈ W̃M , i. e. v ∈WM ,

(ii) bIMb
−1 = IM .

Remark 7.2.4. Let x ∈ ΩG and write x = ελw with λ ∈ X∗(A) and w ∈ W ; we call λ the
translation part of x. Then λ is the (unique) dominant minuscule coweight whose image in ΛG
coincides with that of x. Indeed, since x preserves the base alcove a, the transform of the origin
by x, namely λ, lies in the closure of the base alcove. This is what it means to be dominant and
minuscule.

Now consider standard (semistandard is not enough) P = MN and x ∈ ΩM . Write x = ελwM
with λ ∈ X∗(A) and wM ∈ WM . We know that λ is M -dominant and M -minuscule. We claim
that xa is a P -alcove if and only if λ is dominant. Indeed, xa is a P -alcove if and only if
xINx

−1 ⊂ IN . Now wMINw
−1
M = IN , because P was assumed standard. So xa is a P -alcove if

and only if ελIN ε−λ ⊂ IN if and only if α(λ) > 0 for all α ∈ RN if and only if α(λ) > 0 for all
α > 0.

Example 7.2.5. Let G = GLn, let A be the diagonal torus, and let B be the Borel group of
upper triangular matrices. In this case, the Newton map is injective. See [K4], in particular the
last paragraph of section 1.3. We can view the Newton vector ν of a σ-conjugacy class [b] as a
descending sequence a1 > · · · > an of rational numbers, satisfying an integrality condition. The
standard parabolic subgroup P = MN is given by the partition n = n1 + · · · + nr of n such
that the ai in each corresponding batch are equal to each other, and such that the ai in different
batches are different. The standard representative is (represented by) the block diagonal matrix
with r blocks, one for each batch of entries, where the i-th block is(

0 εki+1Ik′i
εkiIni−k′i 0

)
∈ GLni(F ).

Here we write the entry an1+···+ni−1+1 = · · · = an1+···+ni of the i-th batch as ki + k′i
ni

with
ki, k

′
i ∈ Z, 0 6 k′i < ni, which is possible by the integrality condition, and I` denotes the ` × `

unit matrix. It follows from the definitions that ki > ki+1 for all i = 1, . . . , r − 1. We see that
the standard representative x of [b] has dominant translation part if and only if for all i with
k′i+1 6= 0 we have ki > ki+1. Furthermore, this is equivalent to xa being a P -alcove. If these
conditions are satisfied, then xa is a fundamental P -alcove in the sense of Definition 13.1.2.
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Ulrich Görtz, Thomas J. Haines, Robert E. Kottwitz and Daniel C. Reuman

8. Proofs of Corollary 2.1.3(b) and Theorem 2.1.4

8.1

Assume P = MN is semistandard and xa is a P -alcove. There is a commutative diagram

IMxIM/σ IM
∼ //

∼=
��

IxI/σ I

∼=
��∐

[b′]∈B(M)x

JMb′ \XM
x (b′) //

∐
[b]∈B(G)x

JGb \XG
x (b).

(8.1.1)

Here, for [b′] ∈ B(M)x we choose once and for all a representative b′ ∈ M(L); for [b] ∈ B(G)x
we also choose once and for all a representative b ∈ G(L). If under B(M)x → B(G)x, [b′] 7→ [b],
then choose once and for all c ∈ G(L) such that c−1bσ(c) = b′. In that case our choices yield the
map

JMb′ \XM
x (b′)→ JGb \XG

x (b)
m 7→ cm.

We have now defined the bottom horizontal arrow.

Next we define the right vertical arrow. Let an element of IxI/σ I be represented by y ∈ IxI.
There is a unique [b] ∈ B(G)x such that y ∈ [b]. Write y = g−1bσ(g) for some g ∈ G(L). Then
the right vertical map associates to [y] = [g−1bσ(g)] the JGb -orbit of gI ∈ XG

x (b). The left vertical
arrow is defined similarly. It is easy to check that both vertical arrows are bijective. It is also
clear that the diagram commutes. The bijectivity of the top horizontal arrow (Corollary 2.1.3(a))
thus implies the surjectivity of the map B(M)x → B(G)x (in Corollary 2.1.3(b)).

We now prove that B(M)x → B(G)x is also injective. Given b ∈ M(L), regard its Newton
point νMb as an element in X∗(A)+

Q, which denotes here the set of M -dominant elements of
X∗(A)Q. The map

B(M)→ X∗(A)+
Q × ΛM

b 7→ (νMb , ηM (b))

is injective, see (7.1.1). Now suppose b1, b2 ∈ B(M)x have the same image in B(G)x. Since
ηM (b1) = ηM (x) = ηM (b2), by the preceding remark it is enough to show that νMb1 = νMb2 . We
claim that our assumption on x forces each νMbi to be not only M -dominant, but G-dominant.
Indeed, bi is σ-conjugate in M(L) to an element in IMxIM , and since x(N ∩I) ⊆ N ∩I, it follows
that the isocrystal

(LieN(L),Ad(bi) ◦ σ)

comes from a crystal (i.e., there is some o-lattice in LieN(L) carried into itself by the σ-linear
map Ad(bi) ◦ σ; in fact, when bi itself lies in IMxIM , the lattice LieN(L)∩ I does the job). The
slopes of any crystal are non-negative, which means in this situation that 〈α, νMbi 〉 > 0 for all
α ∈ RN . This proves our claim. Now since νMb1 and νMb2 are conjugate under W (cf. (7.1.2)) they
are in fact equal. This completes the proof of Corollary 2.1.3(b).

In light of the diagram (8.1.1), Theorem 2.1.4 follows from Corollary 2.1.3.
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9. Consequences for affine Deligne-Lusztig varieties

9.1
In this section we present various consequences of Theorem 2.1.4, and also some conjectures,
relating to the non-emptiness and dimension of XG

x (b). We prove some parts of our conjectures.
Our conjectures have been corroborated by ample computer evidence. The computer calculations
were done using the “generalized superset method”, that is, the algorithm implicit in Theorem
11.3.1. This will be discussed in section 11.

9.2 Translation elements x = ελ

Let us examine the non-emptiness of Xx(b) in a very special case.

Corollary 9.2.1. Suppose x = ελ. Then Xx(b) 6= ∅ if and only if [b] = [ελ] in B(G).

Proof. There is a choice of Borel B′ = AU ′ such that xa is a B′-alcove (λ is B′-dominant for an
appropriate choice of B′). Thus, by Theorem 2.1.4 with M = A, we see XG

x (b) 6= ∅ if and only
if b is σ-conjugate to a translation εν for ν ∈ X∗(A), and XA

x (εν) 6= ∅. But the latter inequality
holds if and only if λ = ν.

Remark 9.2.2. As G. Lusztig pointed out, the Corollary has a simple direct proof in the special
case where G is simply-connected and b = 1. Let x = ελ and suppose λ belongs to the coroot
lattice. Suppose g−1σ(g) ∈ IxI. Since the affine flag variety is of ind-finite type, the Iwahori
subgroup gI is fixed by σr for some r > 0. Thus, g−1σr(g) ∈ I. On the other hand, g−1σr(g) ∈
IxI · · · IxI (product of r copies of IxI), which since the lengths add is just IεrλI. This intersects
I only if λ = 0.

9.3 A necessary condition for the non-emptiness of Xx(b)
We want to use Theorem 2.1.4 to obtain results about affine Deligne-Lusztig varieties. Clearly,
whenever Xx(b) 6= ∅, then x and b must lie in the same connected component of the loop group,
i.e. ηG(x) = ηG(b). Whenever we can use Theorem 2.1.4 to relate Xx(b) to an affine Deligne-
Lusztig variety for a Levi subgroup M , then we will get a similar necessary condition with respect
to ηM . Typically, ΛM is much larger than ΛG, so the condition for M will be a much stronger
restriction.

However, one has to be careful here, because the intersection of M(L) with the G-σ-conjugacy
class [b] will in general consist of several M -σ-conjugacy classes. Here is what we can say:

Proposition 9.3.1. Fix a σ-conjugacy class [b] in G with Newton vector νb, and an element

x ∈ W̃ . If XG
x (b) 6= ∅, then the following holds: if P = MN is a semistandard parabolic subgroup

such that xa is a P -alcove, then ηG(x) = ηG(b) and

ηM (x) ∈ ηM (Wνb ∩NM ), (9.3.1)

where NM denotes the image of B(M) in X∗(A)M−dom
Q under the Newton map.

The set Wνb∩NM is the finite set of M -dominant elements of X∗(A)Q that are W -conjugate
to νb and arise as the Newton point of some element of M(L). See Example 9.3.2 below for a
specific example. If b is basic, then the statement of Proposition 9.3.1 simplifies. We will consider
the basic case in the next subsection.

Our condition (9.3.1) means that x has the same value under ηM as an element b′ ∈ M(L)
with νMb′ ∈ Wνb. By the injectivity of the left vertical arrow of (7.1.2), for a fixed [b] there are
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only finitely many σ-conjugacy classes [b′] ∈ B(M) such that νMb′ ∈ Wνb and ηG(b′) = ηG(b). In
particular, the condition that ηM (x) = ηM (b′) for some such b′ is a condition which we can check
with a computer.

Proof. Condition (9.3.1) is a direct consequence of Theorem 2.1.4. Indeed, we know from part
(a) of that theorem that [b] = [b′] for some b′ ∈ M(L), and that XM

x (b′) 6= ∅, which implies in
turn that ηM (x) = ηM (b′). Lemma 7.1.1 then shows that νMb′ ∈Wνb, as desired.

Example 9.3.2. Let G = SL3, P2 = B ∪ Bs2B, and P = s1P2. As in the proposition, write
P = MN . In terms of matrices, we have

M =

 ∗ ∗
∗

∗ ∗

 , N =

 1
∗ 1 ∗

1

 , I ∩N =

 1
o 1 εo

1

 .

Assume that the Newton vector of b is νb = (1,−1
2 ,−

1
2). We have Wνb ∩NM = {(−1

2 , 1,−
1
2)}.

Now consider an element x = εµs1s2s1 ∈ W̃M , µ = (µ1, µ2, µ3), and assume that x is a
P -alcove, i.e., µ2 − µ1 > −1 and µ2 − µ3 > 1. The proposition states that Xx(b) = ∅ unless
(µ1 +µ3, µ2) = ηM (x) = (−1, 1). This is equivalent to µ2 = 1 since

∑
µi = 0, x being an element

of SL3. Altogether we find that Xx(b) = ∅ unless µ is one of the four cocharacters (−1, 1, 0),
(0, 1,−1), (1, 1,−2), (2, 1,−3).

Note that Proposition 9.3.1 implies that for fixed b and proper parabolic subgroup P , there
are only finitely many x such that xa is a P -alcove and for which Xx(b) can be non-empty.

Proposition 9.3.1 provides an obstruction to the non-emptiness of affine Deligne-Lusztig va-
rieties: (9.3.1) must hold whenever xa is a P -alcove. In the case where [b] is basic, it seems
reasonable to expect that this is the only obstruction; see Conjecture 9.4.2 below. In the general
case, it is clear that there are additional obstructions. If b is a translation element, then from
Theorem 6.3.1 in [GHKR] we see that whenever Xx(b) 6= ∅, there exists w ∈W such that x > wb
in the Bruhat order. (For general b, one can obtain a similar criterion by passing to a totally
ramified extension of L where b splits.) This condition implies in particular that for all projec-
tions to affine Grassmannians, the corresponding affine Deligne-Lusztig variety is non-empty, but
is stronger than that. However, as the following example shows, there are still more elements x
which give rise to an empty affine Deligne-Lusztig variety.

Example 9.3.3. Let G = SL3, b = ελ where λ = (2, 0,−2). Let x = s01210120120 = ε(3,1,−4)s121

(we write s12 for s1s2 etc.). Then x > b (a reduced expression for b is s01210121), and xa is not
a P -alcove for any proper parabolic subgroup P . However, Xx(b) = ∅. (Cf. Figure 3.24 in [Re1]
which shows the situation for this b.)

9.4 Non-emptiness of Xx(b) for b basic
In this subsection, let b be basic in G(L). In that case Lemma 7.1.1 and the injectivity of the
left vertical arrow of (7.1.2) imply the following: if [b] ∩M(L) 6= ∅ for some semistandard Levi
subgroup M ⊆ G, then Lemma 7.1.1 shows that [b] ∩M(L) is a single σ-conjugacy class inside
M with the same Newton vector as the Newton vector of [b] with respect to G. (On the other
hand, the standard representative of [b] with respect to G is not necessarily an element of M ,
and in particular is in general different from the standard representative with respect to M .)

Applying Proposition 9.3.1 to the basic case, we get
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Corollary 9.4.1. Let [b] be basic. Suppose P = MN is a semistandard parabolic subgroup
such that xa is a P -alcove. Then Xx(b) = ∅, unless [b] meets M(L) and ηM (x) = ηM (νb).

Let us emphasize that ηM (νb) is really an abbreviation; here it stands for the value under ηM
for the unique σ-conjugacy class [b′] ∈ B(M) which satisfies ηG(b′) = ηG(b) and νMb′ = νb.

Conjecture 9.4.2. In the corollary, the opposite implication holds as well. In other words, when
b is basic, Xx(b) is empty if and only if there exists a semistandard P = MN such that xa is a
P -alcove, and ηM (x) 6= ηM (νb).

This conjecture can be checked in the rank 2 cases “by hand”, and in higher rank cases,
computer experiments provide further support for the conjecture: it has been confirmed for the
simply connected groups (i. e. for b = 1) of type A3 and x of length 6 27, of type A4 and x of
length 6 17 and of type C3 and x of length 6 23, and in several cases with b basic, but different
from 1.

In the remainder of this subsection we discuss some sufficient conditions for the non-emptiness
of Xx(b), when b is basic.

Lemma 9.4.3. Let x = ελw ∈ W̃ be an element which is not contained in any Levi subgroup.
Then

Xx(b) 6= ∅ ⇐⇒ ηG(x) = ηG(b).

Here by not contained in any Levi subgroup, we mean that no representative of x in NG(A)(L)
is contained in a Levi subgroup of G associated with a proper semistandard parabolic subgroup of
G. Since we consider only Levi subgroups containing the fixed maximal torus A, their (extended
affine) Weyl groups are subgroups of the (extended affine) Weyl group of G. In terms of Weyl
groups we can state the condition as: the finite part w of x is not contained in any conjugate of
a proper parabolic subgroup of W .

If w belongs to the Coxeter conjugacy class of W , then the condition is satisfied. For the
symmetric groups, i. e. if G is of type An, the converse is also true, as one sees using disjoint
cycle decompositions. For all other types, however, there exist other conjugacy classes which do
not meet any (standard) parabolic subgroup of W (see for instance [GP], where these conjugacy
classes are called cuspidal; some authors call them elliptic).

Before beginning the proof we note that similar considerations can be found in [KR, Propo-
sition 4.1] and [Re1, §3.3.4].

Proof. As before, it is clear that Xx(b) 6= ∅ implies ηG(x) = ηG(b). On the other hand, given the
latter condition, we will show that x is itself σ-conjugate to b, in other words that the Newton
vector of x is νb. Our assumption ensures that x is in the right connected component of G(L),
so that we only need to prove that x is basic.

In order to show that x is basic, we prove that the Newton vector of x, νx = 1
N

∑N−1
i=0 wiλ ∈

X∗(A)Q is W -invariant. (Here N denotes the order of w in W .) The point νx lies in (the closure
of) some Weyl chamber, and hence its stabilizer is generated by a subset of the set of simple
reflections for this chamber, and hence is the Weyl group of some Levi subgroup (or of all of G).
On the other hand, w is contained in this stabilizer, and so our assumption gives us that the
stabilizer of νx is in fact W .
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As the proof shows, if G is semi-simple the elements x ∈ W̃ which are not contained in any
Levi have finite order in W̃ . Cf. [GHKR] Prop. 7.3.1.

Now let x ∈ W̃ . If x is not contained in any Levi, then we understand whether Xx(b) = ∅
by the lemma. In general, there is a smallest semistandard Levi subgroup M− containing x,
and a smallest semistandard Levi subgroup M+ ⊇ M− such that xa is a P+-alcove for some
semistandard parabolic subgroup P+ with Levi part M+. Both of these statements follow from
[Bo], Prop. 14.22, which says that for (semistandard) parabolic subgroups P1, P2, the subgroup
(P1 ∩ P2)RuP1 is again a (semistandard) parabolic subgroup; it has Levi part M1 ∩M2. There
may be more than one parabolic P+ with Levi part M+ for which xa is a P+-alcove, and of
course, we may have M+ = P+ = G.

We then have, by Theorem 2.1.4, (and assuming that [b] meets M+, because otherwise
XG
x (b) = ∅, again by Theorem 2.1.4),

XG
x (b) 6= ∅ ⇐⇒ XM+

x (b) 6= ∅ =⇒ ηM+(x) = ηM+(νb).

Further, the lemma gives us (assuming that [b] meets M−)

XM−
x (b) 6= ∅ ⇐⇒ ηM−(x) = ηM−(νb).

The condition ηM−(x) = ηM−(νb) is quite restrictive; and it becomes more restrictive the smaller
M− is.

So, in terms of proving Conjecture 9.4.2, the case which remains to consider is the case of
x which satisfy the following two conditions: (i) either [b] does not meet M− or it does and
X
M−
x (b) = ∅, and (ii) [b] meets M+ and ηM+(x) = ηM+(νb). The conjecture predicts that in this

case XM+
x (b) 6= ∅.

9.5 Relation with Reuman’s conjecture
In this section, we will formulate a generalization of Reuman’s conjecture, and prove part of it,
as a consequence of the results obtained above. To formulate the conjecture, we consider the
following maps from W̃ to W . The map η1 is just the projection from W̃ = W nX∗(A) to W .
It is a group homomorphism. To describe the second map, we identify W with the set of Weyl
chambers. The map η2 : W̃ →W keeps track of the finite Weyl chamber whose closure contains
the alcove xa. We define η2(x) = w, where w is the unique element in W such that w−1xa is
contained in the dominant chamber (so that the identity element of W̃ maps to the identity
element of W ).

We say that x ∈ W̃ lies in the shrunken Weyl chambers, if k(α, xa) 6= k(α,a) for all roots α,
or equivalently, if Uα ∩ xI 6= Uα ∩ I for all α. For T a subset of the set S of simple reflections in
W , let WT ⊂W denote the subgroup generated by T . Let `(w) denote the length of an element
w ∈ W̃ . Finally, recall that we define the defect defG(b) of an element b ∈ G(L) to be the F -rank
of G minus the F -rank of Jb (cf. [GHKR]).

Conjecture 9.5.1. a) Let [b] be a basic σ-conjugacy class. Suppose x ∈ W̃ lies in the shrunken
Weyl chambers. Then Xx(b) 6= ∅ if and only if

ηG(x) = ηG(b), and η2(x)−1η1(x)η2(x) ∈W \
⋃
T(S

WT ,

and in this case

dimXx(b) =
1
2
(
`(x) + `(η2(x)−1η1(x)η2(x))− defG(b)

)
.
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b) Let [b] be an arbitrary σ-conjugacy class, and let [bb] be the unique basic σ-conjugacy class

with ηG(b) = ηG(bb). Then there exists Nb ∈ Z>0, such that for all x ∈ W̃ of length `(x) > Nb,
we have

Xx(b) 6= ∅ ⇐⇒ Xx(bb) 6= ∅,
and in this case

dimXx(b) = dimXx(bb)− 1
2
(
〈2ρ, ν〉+ defG(b)− defG(bb)

)
,

where ν denotes the Newton point of b.

Part (b) of this conjecture generalizes Conjecture 7.5.1 of [GHKR]. It fits well with Beazley’s
Conjecture 1.0.1 and the qualitative picture of B(G)x that is suggested by her results on SL(3)
(see [Be]). The term 〈2ρ, ν〉 appearing here can also be interpreted (see section 13) as the length
of a suitable semistandard representative of [b] in W̃ .

Using the algorithms discussed in [GHKR] and in this article, we obtained ample numerical
evidence for this conjecture. We made computations for root systems of type A2, A3, A4, C2,
C3, G2, and for a number of choices of b, including cases where b is split, basic, or neither of the
two, and both cases where ηG(b) = 0 and 6= 0.

The following remark shows that this conjecture is compatible with what we already know
about affine Deligne-Lusztig varieties in the affine Grassmannian (cf. [GHKR],[V2]).

Remark 9.5.2. Conjecture 9.5.1 implies Rapoport’s dimension formula for affine Deligne-Lusztig
varieties Xµ(b) in the affine Grassmannian for b basic (and µ ∈ X∗(A) dominant). Indeed, if
w0 ∈W is the longest element, then we have

dimXµ(b) + `(w0) = sup{dimXx(b); x ∈WεµW}.

Now for the longest element x ∈WεµW , we have η1(x) = η2(x) = w0, so

η2(x)−1η1(x)η2(x) = w0 ∈W \
⋃
T(S

WT ,

and by the dimension formula given in the conjecture, the supremum above is equal to
1
2

(sup{`(x); x ∈WεµW}+ `(w0)− defG(b)) .

Let Xµ denote the G(o)-orbit of εµG(o) in the affine Grassmannian. Since

sup{`(x); x ∈WεµW} = dimXµ + `(w0) = 〈2ρ, µ〉+ `(w0),

altogether we obtain

dimXµ(b) = 〈ρ, µ〉 − 1
2

defG(b),

which is the desired result.

Let us relate this conjecture to the results of the previous subsection. The relation relies on
the following lemma (which also follows easily from Proposition 3.1.1).

Lemma 9.5.3. Let x ∈ W̃ , and write w = η2(x) ∈W .

a) If P = MN ⊃ wB is a parabolic subgroup with x ∈ W̃M , then xa is a P -alcove.

b) If x is an element of the shrunken Weyl chambers which is a P -alcove for a semistandard
parabolic subgroup P , then P ⊃ wB.

25
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Proof. First note that by assumption w−1xa lies in the dominant chamber. This means precisely
that w−1xI ∩ U ⊆ I ∩ U (where U denotes the unipotent radical of our Borel B), so we obtain

xI ∩N ⊆ xI ∩ wU ⊆ w(I ∩ U) ⊆ I.

This inclusion is what we needed to show for part a).
Now let us prove b). Assume xa is a P -alcove and write P = MN for the Levi decomposition

of P . We need to show that N ⊆ wU . Let α ∈ RN . Then we have
xI ∩ Uα ( I ∩ Uα.

(We get ( rather than just ⊆ because x is in the shrunken Weyl chambers.) This implies however
that

xI ∩ U−α ) I ∩ U−α.
On the other hand, by what we have seen above,

xI ∩ wU ⊆ wI ∩ wU ⊆ wU(εo).

This shows that U−α 6⊆ wU , hence Uα ⊆ wU , as we wanted to show.

From this lemma, we obtain the following strengthening of the “only if” direction of part a)
of Conjecture 9.5.1 above.

Proposition 9.5.4. Assume that the Dynkin diagram of G is connected. Let b be basic. Let
x ∈ W̃ , and write x = ελv, v ∈W . Assume that λ 6= νb and that η2(x)−1η1(x)η2(x) ∈

⋃
T(SWT .

Then Xx(b) = ∅.

Proof. Write w := η2(x) ∈ W . By the lemma and our hypothesis, xa is a P -alcove for a proper
parabolic subgroup P = MN ⊃ wB of G. The only thing we need to check in order to apply
Corollary 9.4.1 is that ηM ′(w

−1
x) 6= ηM ′(νb), where M ′ = w−1

M . (Recall that the precise meaning
of ηM ′(νb) is described after Cor. 9.4.1.) But if we had equality here, then w−1λ− νb would be a
linear combination of coroots of M ′. On the other hand, w−1λ is dominant, and since M ′ is the
Levi component of a proper standard parabolic subgroup, we obtain λ = νb, which is excluded
by assumption.

Why does this imply the “only if” direction of part a) of Conjecture 9.5.1? We need to show
that XG

x (b) = ∅ if xa is shrunken and η2(x)−1η1(x)η2(x) belongs to a proper parabolic subgroup
of W . Let Gi denote a simple factor of Gad, and let xi resp. bi denote the image of x resp. b in
Gi. Choose i such that η2(xi)−1η1(xi)η2(xi) belongs to a proper parabolic subgroup of the Weyl
group of Gi. It is enough to prove that XGi

xi (bi) = ∅, since this obviously implies XG
x (b) = ∅.

Therefore we can and shall assume that G = Gi, so that the Dynkin diagram of G is connected,
from now on. Now write x = ελv. We claim that if xa belongs to the shrunken Weyl chambers
and η2(x)−1η1(x)η2(x) belongs to a proper parabolic subgroup of W , then λ 6= νb. Suppose
instead that λ = νb. Then ελ belongs to the center of G and xa = va. This alcove belongs to
the shrunken Weyl chambers only if η1(x) = v = w0. But in that case η2(x)−1η1(x)η2(x) cannot
belong to a proper parabolic subgroup of W . This proves our claim, and then we may apply
Proposition 9.5.4 to conclude that XG

x (b) = ∅.

We conclude this subsection by showing that our Conjecture 9.4.2 implies the validity of the
“if” direction of part a) of Conjecture 9.5.1.
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Proposition 9.5.5. Assume that Conjecture 9.4.2 holds. Let x ∈ W̃ be an element of the
shrunken Weyl chambers with ηG(x) = ηG(b) and

η2(x)−1η1(x)η2(x) ∈W \
⋃
T(S

WT .

Then Xx(b) 6= ∅.

Proof. It is enough to show that xa is not a P -alcove for any proper parabolic subgroup P =
MN ⊂ G. By the lemma above, if it were we would have P ⊃ η2(x)B. But the assumption says
precisely that x does not lie in W̃M for such P .

10. Dimension theory for the groups IMN

10.1

In this section we lay some conceptual foundations for studying the dimensions of affine Deligne-
Lusztig varieties Xx(b), where [b] ∈ B(G) is an arbitrary σ-conjugacy class. These foundations
play a key role in the sections that follow.

We insert a remark about the notion of dimension: Using the usual definition of (Krull)
dimension as the supremum of the lengths of chains of irreducible closed subsets, we can speak
about the dimension of Xx(b) without knowing anything about these subsets. Note though that
we do know that they are schemes, locally of finite type, over k (see [HV], Cor. 5.5), and that
they are finite-dimensional (as follows from the corresponding result for affine Deligne-Lusztig
varieties in the affine Grassmannian). In the proof below, it is however of crucial importance to
work with the inverse image of Xx(b) in G(L), and to assign a “dimension” to this inverse image,
and to more general (“ind-admissible”) subsets of G(L).

In the case where b = εν for some ν ∈ X∗(A), a similar study was carried out in [GHKR],
section 6. The result was a finite algorithm to compute dimensions (a special case of our Theorem
11.3.1 below). In this paragraph, we introduce a suitable framework of ind-admissible sets and
their dimension that works for general elements b.

Let J be an Iwahori subgroup which is the fixer of an alcove in the standard apartment, and
let P = MN ⊃ A be any parabolic subgroup of G. Let JP = JMN (where JM := J ∩M). We
will define the ind-admissible subsets of JP and then establish a “dimension theory” for them,
similar to the theory in [GHKR]. The groups JP “interpolate” between the extreme cases I and
A(o)U(L), and as we will see they are precisely adapted to the study of affine Deligne-Lusztig
varieties for elements b more general than the extreme cases b = 1 and b a translation element.

Fix any semistandard Borel subgroup contained in P and use it to define the sets of simple
roots ∆M and ∆N . We fix a coweight λ0 with 〈α, λ0〉 = 0 for α ∈ ∆M , and 〈α, λ0〉 > 0 for
α ∈ ∆N , and consider the subgroups

N(m) := εmλ0(N ∩ J)ε−mλ0 , m ∈ Z,

cf. loc. cit. 5.2; our choice of λ0 is a little different, but this clearly does not affect the validity
of the dimension theory for N as in loc. cit. Furthermore, we choose a separated descending
filtration (JM (m))m∈Z of JM by normal subgroups, such that JM (m) = JM for m 6 0, and such
that all the quotients JM (m)/JM (m′) are finite-dimensional over k. (For example, we could use
a Moy-Prasad filtration.) Finally, we set JP (m) := JM (m)N(m), and we obtain a separated and
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exhaustive filtration

JP ⊃ · · · JP (−1) ⊃ JP (0) ⊃ JP (1) ⊃ JP (2) ⊃ · · · .

The quotients JP (m)/JP (m′), m 6 m′ are finite-dimensional varieties over k in a natural way
(more precisely, they coincide, in a natural way, with the set of k-valued points of a k-variety).
Since JM normalizes each N(m), JP (m)/JP (m′) is a fiber bundle over JM (m)/JM (m′) with fibers
N(m)/N(m′). We say that a subset Y ⊆ JP is admissible, if there are m 6 m′ such that it is
contained in JP (m) and is the full inverse image under the projection JP (m)→ JP (m)/JP (m′)
of a locally closed subset of JP (m)/JP (m′). We say that Y ⊆ JP is ind-admissible, if for all
m, Y ∩ JP (m) is an admissible subset of JP . Obviously, admissible subsets are in particular
ind-admissible.

As in [GHKR], for an admissible subset Y ⊂ JP (m), we can define a notion of dimension

dimY := dim(Y/JP (m′))− dim(JP (0)/JP (m′))

for suitable m′ > 0; note this is always an element of Z, unless Y is empty. For an ind-admissible
subset Y ⊂ JP , we define

dimY := sup{dim(Y ∩ JP (−m)) : m > 0}.

We may sometimes have dimY = +∞ (for example for Y = JP ). Of course in making these
definitions we made a choice, namely we normalized things so that dim(JP (0)) = 0. But as before
differences

dimY1 − dimY2

for admissible subsets Y1, Y2 are independent of any such choice.

11. The generalized superset method

11.1

Recall that in [GHKR], Theorem 6.3.1, the dimension of Xx(εν) is expressed in terms of the
dimensions of intersections of wU(L)- and I-orbits in G(L)/I (for w ∈ W ). Such intersections
can be understood in terms of foldings in the Bruhat-Tits building of G(L) (see loc. cit. 6.1), and
in this way we got an algorithm to compute dim Xx(εν). This algorithm led to and supported
our conjectures in [GHKR].

In this section we explain the generalized superset method, which extends the above from
translation elements b = εν to general b. Correspondingly, it provides the data for the dimensions
in the general case, and is of independent interest because it shows that the emptiness patterns
coincide in the p-adic and function field cases (see Corollary 11.3.5). The generalized superset
method involves the intersections of wIP - and I-orbits (for w ∈ W ). Such intersections can also
be interpreted combinatorially in terms of foldings in the building. For this we need to consider
a new notion of retraction that is adapted to IP -orbits rather than U(L)-orbits. We will start
with a discussion of these new retractions.

11.2 The retractions ρP
Fix a standard parabolic P = MN . Write IP = IMN = (I ∩M(L))N(L).

Lemma 11.2.1. Let w ∈ W̃ , and JP = w−1
IP . The projection NGA(L)→ JP \G(L)/I induces a
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bijection

W̃ ∼= JP \G(L)/I.

Proof. Because we can conjugate the situation by w−1, we may as well assume that w = 1. Since
the set P\G(L)/K has only one element, we can identify the double quotient P\G(L)/I with
WM\W ∼= W̃M\W̃ . We obtain a commutative diagram

W̃
//

q

��

IP \G(L)/I

p

��
W̃M\W̃

∼= // P\G(L)/I.

Now for v ∈ W̃ , we have

q−1(W̃Mv) = W̃Mv ∼= IM\M/(vI)M ∼= IP \P/(vI ∩ P ) ∼= p−1(PvI).

This proves the lemma.

Denote by MW the set of minimal length representatives in W of the cosets in WM\W .

Lemma 11.2.2. Let λ ∈ X∗(A) be such that 〈α, λ〉 = 0 for all roots α in M , and let v ∈ MW .

(i) All elements of IM fix the alcove ελva.

(ii) If n ∈ N , and if λ satisfies ε−λnελ ∈ vI ∩ N (which is true whenever λ is sufficiently
antidominant with respect to the roots in LieN), then n fixes the alcove ελva.

Proof. To prove (1), we first note that (vI)M = IM , because v is the minimal length representative
in its WM -coset. This shows that

IM = ελv(I ∩ v−1
M) ⊆ ελvI.

Similarly, under the assumption on n made in (2), we obtain that n ∈ ελvI.

Denote by A the standard apartment of G with respect to our fixed torus A. Let ρP be
the retraction from the Bruhat-Tits building of G(L) to A, defined as follows. For each alcove
b in the building, all retractions of b with respect to an alcove of the form ελva, λ, v as in
part (2) of the lemma, have the same image, say c. Here we must stipulate that λ is sufficiently
anti-dominant (depending on b) with respect to the roots in LieN . We set

ρP (b) = c.

(In fact, we get the same retraction if we retract with respect to any alcove which lies between
the root hyperplanes Hα and Hα,1 for all roots α of M , and is sufficiently antidominant for all
roots of G lying in N . Compare also Rousseau’s notion of cheminée, [Ro] §9.)

Lemma 11.2.3. For g ∈ IP , ρP |gA = g−1.

Proof. Clearly, g−1 maps gA to A, and g−1 fixes the alcoves tλva for λ sufficiently anti-dominant.
This implies the lemma.

The group G(L) acts transitively on the set of extended alcoves, and the stabilizer of the base
alcove is the Iwahori I. Therefore we can identify the quotient G(L)/I with the set of extended
alcoves.

Proposition 11.2.4. Let y ∈ W̃ .
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(i) We have

IP yI/I = ρ−1
P (ya).

In other words: we can identify ρP (as a map from the set of alcoves in the building to

the set of alcoves in the standard apartment) with the map G(L)/I → IP \G(L)/I ∼= W̃
obtained from Lemma 11.2.1.

(ii) More generally, let w ∈ W̃ , and let JP = w−1
IP . Consider the map

ρP,w : G(L)/I → W̃ , g 7→ w−1ρP (wg).

Then

JP yI = ρ−1
P,w(ya).

Proof. Part (1) follows from the previous lemma, cf. [BT], Remarque 7.4.22 which deals with
the case P = G. To prove part (2), combine part (1) with the following commutative diagram:

G(L)
proj //

w−1·−
��

ρP

&&
IP \G(L)/I

∼= //

w−1·−
��

W̃

w−1·−
��

G(L)
proj // JP \G(L)/I

∼= //
W̃

In the extreme cases, we get the following: If P = G, then ρG is just the usual retraction ρa
with respect to the base alcove. If P = B, then we get as ρB the retraction with respect to “a
point at infinity in the B-antidominant chamber”. Note that the maps ρP,w are retractions to
the standard apartment just like the ρP , but for a different choice of base alcove.

11.3 An algorithm for computing dimXx(b)
In this subsection, we give a formula for the dimensions

dimXx(b) ∩ IPwa,

for any w ∈ W̃ . The method should be seen as an interpolation of the cases where b is a translation
element and b = 1, respectively. See Example 11.3.6, where we discuss how these extreme cases
fit into the framework used here.

Let [b] ∈ B(G)P . From the dimensions dimXx(b) ∩ IPwa, we get the dimension of Xx(b),
because we have

dimXx(b) = sup
w∈fW dim(Xx(b) ∩ IPwa). (11.3.1)

To show this, observe that

dimXx(b) = sup
v∈fW dim(Xx(b) ∩ Iva),

where · indicates the closure. Now every Iva is contained in a finite union of IP -orbits, in fact

Iva ⊆
⋃
w∈Sv

IPwa

30



Affine Deligne-Lusztig varieties in affine flag varieties

where Sv := {w ∈ W̃ : w 6 v}. Thus

dim(Xx(b) ∩ Iva) = sup
w∈Sv

dim(Xx(b) ∩ Iva ∩ IPwa) 6 sup
w∈fW dim(Xx(b) ∩ IPwa)

which shows that in (11.3.1), 6 holds. Since the inequality > is obviously true, the desired
equality follows. Also note that we know a priori that dimXx(b) is finite, for example by using the
finite-dimensionality of affine Deligne-Lusztig varieties in the affine Grassmannian, established
in [GHKR] and [V1].

Our result in Theorem 11.3.1 is not a “closed formula”, even for fixed w, because it involves the
dimensions of intersections of I- and w−1

IP -orbits. However, these dimensions can be computed
(at least by a computer) for fixed w. (Here we make use of the interpretation of IP -orbits in
terms of “foldings”, see Proposition 11.2.4.)

Throughout this subsection, we fix a σ-conjugacy class, say [b] ∈ B(G)P ⊂ B(G), letting M
denote the Levi component of a standard parabolic P = MN . Denote by b ∈ W̃M the standard
representative of [b] (see Definition 7.2.3). Write IP = IMN . We have bIP b−1 = IP . Denote by
ν ∈ X∗(A)Q the Newton vector for b (where b is considered as an element of M(L)). Since b
is M -basic, ν is “central in M” (and in particular M -dominant). Let νdom denote the unique
G-dominant element in the W -orbit of ν.

For any y ∈ W̃ , we write ay := ya. Let ρ ∈ X∗(A)Q denote the half-sum of the positive roots
of A in G.

Theorem 11.3.1. Let w ∈ W̃ . Then writing b̃ = w−1bw, and denoting by ν the Newton vector
of b, we have

dim(Xx(b) ∩ IPwa) = dim(Iax ∩ w−1
IPab̃)− 〈ρ, ν + νdom〉.

Proof. Fix a representative of w in NGA(L) fixed by σ, and again denote it by w. Then multi-
plication by w−1 defines a bijection

Xx(b) ∩ IPaw ∼= Xx(w−1bw) ∩ w−1
IPa,

which preserves the dimensions. Note that w−1
IP := w−1

(IP ) here.
We write b̃ = w−1bw, and consider the map

fb̃ : w
−1
IP −→ w−1

IP ,

g 7→ g−1b̃σ(g)b̃−1.

Let

X̃x(b̃) = {g ∈ G(L); g−1b̃σg ∈ IxI}.

Then X̃x(b̃) ∩ w−1
IP = f−1

b̃
(IxIb̃−1 ∩ w−1

IP ), so

Xx(b̃) ∩ w−1
IPa = f−1

b̃
(IxIb̃−1 ∩ w−1

IP )/(I ∩ w−1
IP ).

Lemma 11.3.2. We have the equality

dim f−1

b̃
(IxIb̃−1 ∩ w−1

IP )− dim(IxIb̃−1 ∩ w−1
IP ) = 〈ρ, ν − νdom〉.

Proof of Lemma. To ease the notation, let us write JP := w−1
(IP ) = (w

−1
I)w−1P

, and JM :=
(w
−1
I)wM . It is easy to see that IxIb̃−1∩JP is an admissible subset of JP . It will follow from our

proof below that its preimage under fb̃ is ind-admissible, so that we can define the dimensions
of these subsets using the theory from section 10. The left hand side of the equality is therefore
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well-defined. We can even make a very convenient choice of filtration on JM , one which is stable
under Ad(b̃): take the Moy-Prasad filtration JM (•) on JM associated to the barycenter of the
alcove in the reduced building of M(L) which corresponds to JM .

A straightforward calculation shows that we can write the map fb̃ as follows (here i ∈ JM ,
n ∈ w−1

N):

g = in 7→ g−1b̃σ(g)b̃−1 = i−1 b̃σ(i) · ĩn−1 b̃σ(n),

with ĩ := b̃σ(i)−1i.
The projection JP → JM is an “ind-admissible fiber bundle”, in a sense which the reader

will have no trouble making precise (see section 10). The above description of fb̃ indicates how
it behaves on the base and on the fibers. Let us analyze the relative dimension of fb̃ by studying
the base and the fibers in turn.

First, we consider the base JM . Since b̃ normalizes JM , the map JM → JM , i 7→ i−1 b̃σ(i) is
surjective, and has relative dimension zero. The proof is an adaptation of the proof of Lang’s the-
orem. Indeed, JM has a filtration by normal subgroups (the JM (m) for m > 0 in the Moy-Prasad
filtration described above) which are stabilized by Ad(b̃), such that on the finite-dimensional
quotients our map JM → JM induces a Lang map, which is finite étale and surjective.

Second, we study the relative dimension of fb̃ “on the fibers” of JP → JM . That is, we fix
ĩ ∈ JM as above, and study the fibers of the map w−1

N(L)→ w−1
N(L) given by n 7→ ĩn−1 b̃σ(n).

Fortunately, most of the necessary work was already done in [GHKR], Prop. 5.3.2. In fact, that
proposition implies that the fiber dimension is (using the notation of loc. cit.)

d(̃i, b̃) := d(n(L),Adn(̃i)−1 Adn(b̃)σ) + val det Adn(̃i).

Here n denotes the Lie algebra of w
−1
N . Since ĩ ∈ JM , the second summand vanishes. Moreover,

Adn(̃i)−1 Adn(b̃) = Adn(i−1b̃σ(i)). Since σ-conjugation induces an isomorphism of F -spaces, we
obtain

d(̃i, b̃) = d(1, b̃) = 〈ρ, ν − νdom〉,
cf. loc. cit. Prop. 5.3.1.

It is clear that we should be able to put these two pieces of information together (and
obtain the stated result that the relative dimension of fb̃ is 〈ρ, ν − νdom〉) by looking at the
corresponding finite-dimensional situation. However, to make this vague idea convincing it seems
easiest to follow the argument of loc. cit. Prop. 5.3.1. First, we correct for the inconvenient fact
that fb̃ need not preserve JP (0). Let P ′ := w−1

P , M ′ := w−1
M , N ′ := w−1

N , and I ′ := w−1
I.

For any m1,m2 ∈M ′(L) which normalize JP = I ′P ′ , define

fm1,m2 : JP −→ JP ,

g 7→ m1g
−1m−1

1 ·m2σ(g)m−1
2 .

Note that fb̃ = f1,b̃. Fix λ0 ∈ X∗(Z(M ′)) such that 〈α, λ0〉 > 0 for all α ∈ RN ′ . Then we may
replace fb̃ = f1,b̃ with f := fεtλ0 ,εtλ0 b̃ for a suitably large integer t, chosen such that f preserves
JP (0) = I ′M ′ · N ′ ∩ I ′. Note that f then automatically preserves JP (m) for each integer m > 0
(we shall not need this fact). Denote by f0 : JP (0)→ JP (0) the restriction of f to JP (0). As in
loc. cit., our goal is now to prove the following

Claim: Let m1 = εtλ0 and m2 = εtλ0 b̃ and set f := fm1,m2 . If Y ⊂ JP is admissible, then
f−1Y is ind-admissible and

dim f−1Y − dimY = d(m1,m2).
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Continuing to follow the strategy of the proof of Prop. 5.3.2 of loc. cit., we can use the proof
of loc. cit. Claim 1 to find an a := εt1λ0 for a large integer t1 such that

caJP (0) ⊆ fJP (0),

where ca denotes the conjugation map g 7→ aga−1 for g ∈ JP . Fix this element a once and for
all. Next we prove the following

Subclaim: Suppose that Y is an admissible subset of caJP (0). Then f−1
0 (Y ) is admissible,

and

dim f−1
0 Y − dimY = d(m1,m2).

Proof of Subclaim: At this point we have to replace the filtration {JP (m)}m>0 of JP (0) with
one which is better behaved with respect to the morphism f0. So, for m > 0 let I ′m ⊂ I ′ denote
the m-th principal congruence subgroup of the Iwahori subgroup I ′; by convention I ′0 = I ′. Let
JM,m := I ′m ∩M ′ and N ′m := I ′m ∩ N ′. Let JP,m = JM,mN

′
m = I ′m ∩ P ′. It is clear that JM

normalizes each N ′m, so that we have a fiber bundle for each 0 6 m1 6 m2

π : JP,m1/JP,m2 → JM,m1/JM,m2

with fiber Nm1/Nm2 . Also, using our specific choices of m1,m2 above, it is clear that f0 preserves
JP,m and in fact f0 induces a well-defined map on the quotients

f : JP,0/JP,m → JP,0/JP,m

for any m > 0. Here, we used that m1 and m2 and JP,0 each normalize JP,m, for all m > 0. (See
(6.1.1).)

Now choose a large positive integer m such that Y comes from a locally closed subset Y of
JP,0/JP,m. Consider the following commutative diagram

JP,0

p

��

f0 // JP,0

p

��
JP,0/JP,m

π

��

f // JP,0/JP,m

π

��
JM,0/JM,m

fM // JM,0/JM,m,

where p is the canonical projection, π is the fiber bundle described above, and f and fM are
the morphisms induced by f0. Note that f−1

0 Y = p−1f
−1
Y , showing that f−1

0 Y is admissible.
Note also that since Y ⊆ caJP (0) ⊆ fJP (0), the subset Y is contained in the image of f , and
our dimension formula is a consequence of the identity

dim f
−1
Y − dimY = d(m1,m2).

But the latter equality now follows easily from our earlier considerations of the base and fiber of
the fiber bundle π: the map fM is surjective of relative dimension zero, and the relative dimension
of f on locally closed subsets of the fibers of π over π(Y ) is given by d(m1,m2); see the proof of
loc. cit. Claim 3. This proves our subclaim.

As in loc. cit., our claim follows from the subclaim. Write d(m1,m2) =: d. If Y ⊂ JP is
any admissible subset, then we have proved that f−1Y ∩ a1

−1JP (0)a1 is admissible of dimension
dimY + d for any a1 ∈ Z(M ′)(F ) such that a1Y a

−1
1 ⊆ aJP (0)a−1. Let t0 be sufficiently large so
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Ulrich Görtz, Thomas J. Haines, Robert E. Kottwitz and Daniel C. Reuman

that at := εtλ0 satisfies atY a−1
t ⊆ aJP (0)a−1 for all t > t0. For all such t we have proved that

f−1Y ∩ a−1
t JP (0)at is admissible of dimension dimY + d. This is enough to prove the claim,

hence also the lemma.

Remark 11.3.3. The proof of Lemma 11.3.2 shows that fb̃ : JP → JP is surjective.

Now let

d(x, b̃,w
−1
IP ) := dim(Iax ∩ w−1

IPab̃).

We have a dimension-preserving bijection

Iax ∩ w−1
IPab̃

∼= (IxIb̃−1 ∩ w−1
IP )/(w

−1
IP ∩ b̃I)

given by right multiplication by b̃−1, so that

d(x, b̃,w
−1
IP ) = dim IxIb̃−1 ∩ w−1

IP − dimw−1
IP ∩ b̃I.

Let ρN ∈ X∗(A)Q denote the half-sum of the roots in RN .

Lemma 11.3.4. Consider cb̃ : w
−1
IP → w−1

IP , g 7→ b̃gb̃−1. Then

w−1
IP ∩ b̃I = cb̃(

w−1
IP ∩ I),

hence

dim(w
−1
IP ∩ I)− dim(w

−1
IP ∩ b̃I) = 〈2ρN , ν〉.

Proof. As the previous lemma, this can be proved by looking at the projection JP → JM and
then separately computing the contribution from the base JM (which is 0) and that from the
fibers (which is 〈2ρN , ν〉, see [GHKR]).

Altogether we have now

dimXx(b) ∩ IPaw
= dim f−1

b̃
(IxIb̃−1 ∩ w−1

IP )− dim I ∩ w−1
IP

= dim IxIb̃−1 ∩ w−1
IP − dim I ∩ w−1

IP + 〈ρ, ν − νdom〉

= d(x, b̃,w
−1
IP ) + dimw−1

IP ∩ b̃I − dim I ∩ w−1
IP + 〈ρ, ν − νdom〉

= d(x, b̃,w
−1
IP ) + 〈ρ, ν − νdom〉 − 〈2ρN , ν〉

= d(x, b̃,w
−1
IP )− 〈ρ, ν + νdom〉,

where in the final step we have used the equality 〈ρ, ν〉 = 〈ρN , ν〉. This is what we wanted to
show.

Together with the description (Proposition 11.2.4) of w
−1
IP -orbits in G(L)/I as fibers of a

certain retraction of the building, Theorem 11.3.1 gives us an algorithm to compute whether
for a given w the intersection Xx(b) ∩ IPwa is empty or non-empty; compare [GHKR] 6.1. If
this information were available for all w, we could conclude whether Xx(b) is non-empty (and
compute its dimension from the dimensions of all these intersections). As noted above, it is
clear that all affine Deligne-Lusztig varieties are finite-dimensional, so that the supremum of
dim(Xx(b)∩ IPwa) is attained for some w. It does not seem easy to give a bound for the length
of w depending on x and b.
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The theorem allows us to compare the function field case with the p-adic case. For b ∈ W̃ ,
similarly as the Xx(b) defined above, we have an “affine Deligne-Lusztig set” Xx(b)Qp inside
G(Q̂ur

p )/I, where I denotes the corresponding Iwahori.

Corollary 11.3.5. Let x ∈ W̃ and b ∈ W̃ . Then Xx(b) 6= ∅ if and only if Xx(b)Qp 6= ∅.

Proof. One checks that, as far as the non-emptiness is concerned, the proof of Theorem 11.3.1
works without any changes in the p-adic case. The combinatorial properties of the retractions
which describe the intersections occurring there coincide in the function field case and the p-adic
case.

Even for the dimensions, it is plausible to expect that arguments as in the proof of Theo-
rem 11.3.1 can be used in the p-adic case, once a viable notion of dimension has been defined.

Example 11.3.6. As examples, let us consider the extreme cases:

(i) P = B. Then IP = A(o)U , and b = εν ∈ B(G)B where ν ∈ X∗(A) is a regular dominant
translation element. This case was considered in [GHKR]. The above formula is the same
as in loc. cit., equations (6.3.3), (6.3.4).

(ii) P = G. Then IP = I, and b ∈ ΩG is a basic σ-conjugacy class. In this case, the dimension
formula reads

dimXx(b) ∩ Iwa = dim Iax ∩ w−1
Iaw−1bw

(since ν is central in G). This case is the case analyzed by Reuman in [Re2] for the case
b = 1, and low-rank groups. So let b = 1 (the case of other basic b’s is analogous). We have
that

Xx(1) 6= ∅ ⇐⇒ ∃w ∈ W̃ : IxI ∩ w−1
I 6= ∅

⇐⇒ ∃w ∈ W̃ : ρ−1
G (x) ∩ ρ−1

G,w(1) 6= ∅.

There are two ways to reformulate this. The algorithmic description in the spirit of the
above amounts to

Xx(1) 6= ∅ ⇐⇒ ∃w ∈ W̃ : 1 ∈ ρG,w(IxI)
On the other hand, we also obtain

Xx(1) 6= ∅ ⇐⇒ ∃w ∈ W̃ : x ∈ ρG(Iw−1IwI).

which leads to the “folding method” used by Reuman, since Iw−1IwI/I, as a set of alcoves
in the building, is exactly the set of alcoves which can be reached by a gallery of type
ir, . . . , i1, i1, . . . , ir (for a fixed reduced expression w = si1 · · · sir). See also section 13.

Remark 11.3.7. dimension formula in Example 11.3.6 (2) can be interpreted in terms of structure
constants for the affine Hecke algebra. Let H denote the affine Hecke algebra over Z[v, v−1]
corresponding to the extended affine Weyl group W̃ and let Tx ∈ H denote the standard basis
element corresponding to x ∈ W̃ . Define the parameter q := v2, and consider the structure
constants C(x, y, z) ∈ Z[q] for x, y, z ∈ W̃ defined by the equality in H

TxTy =
∑
z

C(x, y, z)Tz.

Then it is straightforward to check that

dim Iax ∩ w−1
Iaw−1bw = degqC(x,w−1b−1, w−1).
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Ulrich Görtz, Thomas J. Haines, Robert E. Kottwitz and Daniel C. Reuman

(By convention, we set degq0 := −∞ = dim ∅.) Determining the structure constants C(x,w−1b−1, w−1)
is also a “folding algorithm”, so this does not give an essentially different way to compute dimen-
sions of affine Deligne-Lusztig varieties. But it does give some insight on the inherent complexity
of the algorithm.

12. On reduction to the basic case and a finite algorithm

12.1
One drawback of Theorem 11.3.1 is that it does not produce a finite algorithm to compute the
non-emptiness or dimension of XG

x (b). In this section, we explain how we can at least find a finite
algorithm which reduces the non-emptiness and dimension of XG

x (b) to that of a finite number
of related varieties XM ′

y (b̃), where for all the latter b̃ is basic in M ′.
Using Theorem 11.3.1, we will usually have to check an infinite number of orbit intersections

to determine whether a given Xx(b) is empty or not. However, for b basic, we have proved the
emptiness predicted by Conjecture 9.4.2 in Corollary 9.4.1. Why are we confident that Conjecture
9.4.2 also correctly predicts non-emptiness? In order to confirm the non-emptiness of Xx(b) in
a case it is expected, it is sufficient for the computer to detect a single non-empty intersection
Iax ∩ w−1

Iaw−1bw for some w, and in practice the computer does detect one (as far as we have
checked). In other words, concerning the non-emptiness question for b basic, in practice the
algorithm always terminates in finitely many steps, and in this way we are able to generate a
complete emptiness/non-emptiness picture, at least when `(x) is small enough for the computer
to handle.

Let P = MN denote a standard parabolic subgroup. Suppose b ∈ ΩM ⊂M(L) is the standard
representative of a basic σ-conjugacy class in M(L), and let ν = νMb denote its Newton vector.

Recall that MW denotes the set of minimal length representatives of the cosets in WM\W .
Note that P\G(L)/I ∼= MW .

From now on, we fix an element w ∈ MW . Write M ′ = w−1
M , N ′ = w−1

N , and P ′ = w−1
P .

Let us denote b̃ := w−1
b ∈ ΩM ′ . Note that IM ′ = w−1

(M ∩ wI) = w−1
(M ∩ I) is an Iwahori

subgroup of M ′. Let e0 denote the base point of the affine flag variety G(L)/I and let e′0 denote
the base point in M ′(L)/IM ′ .

We consider the map

αw : Pwe0 →M ′(L)/IM ′

mnwe0 7→ w−1
me′0,

which is easily seen to be well-defined and surjective. Fix m ∈ M(L) and write m′ := w−1
m ∈

M ′(L). The map mnwe0 7→ w−1
n determines a bijection

α−1
w (m′e′0) = N ′/N ′ ∩ I. (12.1.1)

We warn the reader that αw is not a morphism of ind-schemes; however its restriction to the
inverse image of any connected component of M ′(L)/IM ′ is a morphism of ind-schemes.

Now for x ∈ W̃ , and w, b as above, define the finite set

SP (x,w) := {y ∈ W̃M ′ : N ′ay ∩ Iax 6= ∅}.

Note that N ′ay ∩ Iax 6= ∅ ⇔ IP ′ay ∩ Iax 6= ∅. For a given x, there are only finitely many y such
that the latter holds; see Proposition 11.2.4.
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The following proposition is an analogue of part of [GHKR], Prop. 5.6.1.

Proposition 12.1.1. (1) The map αw restricts to give a surjective map

βw : XG
x (b) ∩ Pwe0 −→

⋃
y∈SP (x,w)

XM ′
y (b̃). (12.1.2)

(2) Assume XG
x (b) ∩ Pwe0 6= ∅. For a fixed m′ ∈ M ′(L) such that m′e′0 ∈ XM ′

y (b̃), set b′ :=
m′−1b̃σ(m′) ∈ IM ′yIM ′ . Then the fiber β−1

w (m′e′0) is a locally finite-type algebraic variety
having dimension

dimβ−1
w (m′e′0) = dim(Iax ∩ N ′ay)− 〈ρ, ν + νdom〉,

a number which depends on y but not on m′e′0.

(3) We have

dim XG
x (b) = sup

w,y : y∈SP (x,w)
{dim(Iax ∩ w−1

Nay) + dim(X
w−1

M
y (w

−1
b))} − 〈ρ, ν + νdom〉.

The proposition implies that, modulo knowledge of certain basic cases (i.e., the XM ′
y (b̃)),

there is a finite algorithm to determine the non-emptiness and dimension of XG
x (b). Conjecture

9.4.2 predicts a finite algorithm to determine the non-emptiness of each XM ′
y (b̃). Thus, in effect

it predicts a finite algorithm for the non-emptiness of XG
x (b) itself.

Corollary 12.1.2. We have XG
x (b) 6= ∅ if and only if there exist w ∈ MW and y ∈ SP (x,w)

with XM ′
y (b̃) 6= ∅.

Proof of Proposition: It is clear that αw sends the left hand side of (12.1.2) into the right hand
side. If m′e′0 ∈ XM ′

y (b̃), then the isomorphism (12.1.1) restricts to give an isomorphism

β−1
w (m′e′0) = f−1

b′ (IxIb′−1 ∩N ′)/N ′ ∩ I, (12.1.3)

where b′ := m′−1b̃σ(m′) and where we define

fb′ : N ′ −→ N ′

n′ −→ n′−1b′σ(n′)b′−1.

Since fb′ is surjective (see Remark 11.3.3) and IxI∩N ′b′ 6= ∅, we see that βw is surjective, proving
(1). Also, the fibers of βw are algebraic varieties locally of finite type, and their dimension can
be computed from (12.1.3) using the method of the proof of Theorem 11.3.1. This proves (2).
Finally, (3) follows from (1) and (2).

Remark 12.1.3. For affine Deligne-Lusztig varieties in the affine Grassmannian, it is known that
XG
µ (b) 6= ∅ if and only if [b] ∈ B(G,µ) (cf. [KR],[K3],[Lu],[Ga],[W]). The condition [b] ∈ B(G,µ)

means that ηG(b) = µ in ΛG and νb 6 µ (“Mazur’s inequality”). For XG
x (b), where as before

we take b ∈ ΩM , one might ask for the analogues of “Mazur’s inequalities,” where by this we
mean a family of congruence conditions and inequalities imposed on x,b and νb which hold if
and only if XG

x (b) is non-empty. In light of the above proposition, we see that, whatever Mazur’s
inequalities end up being, they should hold if and only if there exists w ∈ MW such that for
some y ∈ W̃w−1M

, we have

– w−1
Ny ∩ IxI 6= ∅ and

– X
w−1

M
y (w

−1
b) 6= ∅.
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In view of Conjecture 9.4.2, the second item should be understood as a family of congruence
conditions. The first item should correspond to a family of inequalities and congruence conditions
between x, y ∈ W̃ . Taken together the inequalities will be somewhat stronger than the condition
y 6 x in the Bruhat order on W̃ .

13. Fundamental alcoves and the superset method

13.1 Fundamental alcoves
We now single out some alcoves that will be used to generalize Reuman’s superset method [Re2]
to all σ-conjugacy classes in G(L).

Definition 13.1.1. For x ∈ W̃ we say that xa is a fundamental alcove if every element of IxI
is σ-conjugate under I to x.

Equivalently, the alcove xa is fundamental if every element of xI is σ-conjugate under xI ∩ I
to x.

Now let P = MN be a semistandard parabolic subgroup of G. There is then an Iwahori
decomposition I = INIMIN . We use the Iwahori subgroup IM of M(L) to form the subgroup
ΩM ⊂ W̃M ; note that the canonical surjective homomorphism W̃M � ΛM restricts to an isomor-
phism ΩM

∼= ΛM . We compose this isomorphism with the canonical homomorphism ΛM → aM ,
obtaining a homomorphism ΩM → aM ; for x ∈ ΩM we will denote by νx ∈ aM the image of x
under this homomorphism. Note that x 7→ νx is intrinsic to M and has nothing to do with P .

Definition 13.1.2. For x ∈ W̃M we say that xa is a fundamental P -alcove if it is a P -alcove for
which x ∈ ΩM , or, in other words, if xIMx

−1 = IM , xINx
−1 ⊂ IN , and x−1INx ⊂ IN .

Proposition 6.3.1 implies that any fundamental P -alcove is a fundamental alcove, just as the
terminology suggests. An obvious question (that we have not tried to answer) is whether any
fundamental alcove arises as a fundamental P -alcove for some semistandard P .

The next result gives some insight into P -alcoves, although we will make only incidental use
of it. We write ρN ∈ a∗ for the half-sum of the elements in RN .

Proposition 13.1.3. Write ΩP for the set of x ∈ ΩM such that xa is a fundamental P -alcove.

(i) ΩP is a submonoid of ΩM .

(ii) Let x, y ∈ ΩP . Then IxIyI = IxyI and `(x) + `(y) = `(xy). Here ` is the usual length

function on W̃ .

(iii) Let x ∈ ΩP . Then `(x) = 〈2ρN , νx〉.

Proof. (1) This is clear from the definitions.
(2) For the first statement just note that

xIy = (xINx−1)xy(y−1IMy)(y−1INy) ⊂ INxyIMIN ⊂ IxyI.

The second statement follows from the first (easy, and presumably well-known).
(3) Since both the left and right sides of the equality to be proved are additive functions on

the monoid ΩP , we may replace x by xm for any positive integer m. Taking m to be the order
of the image of x in WM , we are reduced to the case in which x is a translation element lying in
ΩP . Such an element is of the form εµ for some cocharacter µ ∈ X∗(A) whose image is central in
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M and dominant with respect to any Borel subgroup of P containing A. It is easy to see that
νx is simply the image of µ under the canonical inclusion of X∗(A) in a. Thus the equality to be
proved is a consequence of the equality `(εµ) = 〈2ρN , µ〉, which in turn follows from the usual
formula for the length of translation elements in W̃ , in view of the fact that all roots of M vanish
on µ.

13.2 Levi subgroups adapted to I

Let M be a Levi subgroup of G containing A. Once again we put IM = M(L) ∩ I and form
ΩM ⊂ W̃M relative to IM . We will also make use of the homomorphism x 7→ νx from ΩM to aM
that was explained in the previous subsection.

We write P(M) for the set of parabolic subgroups of G having M as Levi component. For
P ∈ P(M) we define Ω>0

M (respectively, Ω>0
M ) to be the set of elements x ∈ ΩM such that

〈α, νx〉 > 0 (respectively, 〈α, νx〉 > 0) for all α ∈ RN . It is clear that most elements of Ω>0
M lie in

ΩP ; however, we are going to give a condition on M which will guarantee that every element of
Ω>0
M lies in ΩP . (Compare this with Remark 7.2.4, which shows that when P = MN is standard,

an element ελw ∈ ΩM lies in ΩP if and only if λ is G-dominant.)

As usual the group W̃M acts by affine linear transformations on both a and its quotient
a/aM , the natural surjection a� a/aM being W̃M -equivariant. The subgroup ΩM then inherits
an action on a and a/aM .

Definition 13.2.1. We say that M is adapted to I (respectively, weakly adapted to I) if there
exists λ ∈ a (respectively, in the closure of a) whose image in a/aM is fixed by the action of ΩM .

For any such λ it is easy to see that xλ = λ+ νx for all x ∈ ΩM .

Proposition 13.2.2. If M is adapted to I, then Ω>0
M ⊂ ΩP , and consequently for every x ∈ ΩM

there exists P ∈ P(M) for which xa is a fundamental P -alcove. Similarly, if M is weakly adapted
to I, then Ω>0

M ⊂ ΩP .

Proof. We begin by proving the first statement. For α ∈ RN we must show that xa >α a, which is
to say that k(α, xa) > k(α,a). For any λ ∈ a we have k(α, xa) = dα(xλ)e and k(α,a) = dα(λ)e.
Now pick λ as in the definition of being adapted to I. Since x ∈ Ω>0

M , we see from the equality
xλ = λ+ νx that α(xλ) > α(λ); it is then clear that dα(xλ)e > dα(λ)e.

Now we prove the second statement. For α ∈ RN we now have

k(α,a)− 1 6 α(λ) < α(xλ) 6 k(α, xa)

and hence k(α,a) 6 k(α, xa), as desired.

Proposition 13.2.3. Let M be any Levi subgroup containing A. Then there exists w ∈W such
that wM is adapted to I.

Proof. There exist fixed points of ΩM on a/aM lying on no affine root hyperplane for M (for
example, when M is simple, one can take the barycenter of the base alcove for W̃M ). We choose
such a fixed point λ and then choose λ ∈ a mapping to λ. We are free to add any element of
aM to λ, so we may assume that λ lies on no affine root hyperplane for G. If λ happens to lie in
a, then M is adapted to I. In any case there exists a unique alcove x′a containing λ. The Levi
subgroup is then adapted to I ′ = x′Ix′−1. Taking w to be the inverse of the image of x′ in W ,
we find that wM is adapted to I.
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Being adapted to I is quite a strong condition on M . It is important to realize that standard
Levi subgroups are often not adapted to our standard Iwahori subgroup I, even though both
notions of standard are tied to the same Borel subgroup.

Corollary 13.2.4. For every [b] ∈ B(G) there exists a semistandard representative x ∈ W̃ of
[b] such that xa is a fundamental alcove and hence IxI ⊂ [b].

Proof. This follows from the previous two propositions and Definition 7.2.3.

13.3 Superset method
Let b ∈ G(L). The superset W̃ (b) associated to b is the set of x ∈ W̃ such that IxI is contained
in Iy−1IbIyI for some y ∈ W̃ . The reason for the name superset is that the set of x ∈ W̃ such
that Xx(b) 6= ∅ is contained in W̃ (b). Indeed, if Xx(b) 6= ∅, then there exists g ∈ G(L) such that
g−1bσ(g) ∈ IxI. There also exists y ∈ W̃ such that g ∈ IyI, and then

IxI = Ig−1bσ(g)I ⊂ Iy−1IbIyI.

Proposition 13.3.1. Suppose that x0a is a fundamental alcove, and let b0 be any element of
Ix0I. Then

{x ∈ W̃ : Xx(b0) 6= ∅} = W̃ (b0).

Proof. We already know the inclusion ⊂. To establish ⊃ we consider x ∈ W̃ (b0) and choose
y ∈ W̃ such that IxI ⊂ Iy−1Ib0IyI. Then IxI meets y−1Ib0Iy, and since (by our hypothesis on
x0) every element of Ib0I has the form i−1b0σ(i) for suitable i ∈ I, there is some element in IxI
of the form ẏ−1i−1b0σ(i)ẏ, where ẏ is a representative of y in the F -points of the normalizer of
A in G. Since ẏ = σ(ẏ), this shows that IxI meets [b0], as desired.

Corollary 13.3.2. For every [b] ∈ B(G) there is a semistandard representative b0 ∈ [b] for
which the superset method applies, yielding

{x ∈ W̃ : Xx(b0) 6= ∅} = W̃ (b0).

Proof. Combine Corollary 13.2.4 with Proposition 13.3.1.

14. Examples

14.1
To illustrate our results and conjectures (Conjecture 9.4.2 and Conjecture 9.5.1 (a)), in this
section we present two examples for the group GSp4 (i. e. for Dynkin type C2). In the first
example, b = 1, in the second one, b is one of the generators of the subgroup Ω ⊂ W̃ of all length
0 elements (the picture is independent of the choice of generator; in fact, it depends only on the
parity of the image of b under an isomorphism Ω ∼= Z).

In both cases, we identify the coset Wab ⊂ W̃ with the set of alcoves in the standard apart-
ment. Here, the origin is marked by a dot, and the base alcove is black. Gray alcoves correspond
to non-empty affine Deligne-Lusztig varieties (and the number given is the dimension), while
white alcoves correspond to empty ones.

The thick black lines indicate the shrunken Weyl chambers. The dashed lines indicate the
W -cosets εµW inside the shrunken Weyl chambers. Recall the maps η1 and η2 from Section 9.5:
Viewing each dashed square as a copy of the finite Weyl group, η1 maps an element to the
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position it has inside the dashed square it lies in (i.e., to the corresponding element of W ). On
the other hand, the map η2 is constant on each finite Weyl chamber, i.e., it maps an alcove to
the finite Weyl chamber it lies in, considered as an element of W . As the conjecture predicts,
inside a shrunken Weyl chamber all dashed squares look the same (independently of b!).

For further examples, we refer to [GHKR], and also to the version of that paper on the arxiv
server (arXiv:math/0504443v1).
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Figure 3. Dimensions of ADLV for type C2, b = 1.
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Figure 4. Dimensions of ADLV for type C2, b “supersingular”.
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