Matrix Exponentials

If X is a square matrix, then the infinite series

$$\exp(X) = \sum_{n=0}^{\infty} \frac{1}{n!} X^n$$

always converges. The path

$$\mathbb{R} \xrightarrow{\Phi} \text{Mat}(n, \mathbb{R})$$

$$t \mapsto \exp(tX)$$

satisfies three basic properties:

$$\Phi(0) = 1$$
$$\Phi(-t) = \Phi(t)^{-1}$$
$$\Phi(s + t) = \Phi(s)\Phi(t)$$

and is called a one-parameter group. These generalize the basic law of exponents $e^{x+y} = e^x e^y$ and closely relates to the fact that e^x solves the differential equation $f'(t) = f(t)$ with initial condition $f(0) = 1$.

We observed that if you translate by a vector v and then translate by another vector w, then the composition is translation by the vector sum $v + w$. In a similar vein, the composition of two rotations (through the origin) of angles θ and ϕ is the rotation through the origin by angle $\theta + \phi$. Using complex numbers, this follows from the suggestive formula

$$e^{i\theta} = \cos(\theta)1 + \sin(\theta)i$$

representing rotation ρ_θ through angle θ.

The proofs of these basic properties are outlined in the bonus problems at the end. (You can use some of those properties in the next problems. In general, compute a few powers X^n and look for patterns.)
Prove or disprove:

(1) \[\exp(t \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}) = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix}\]

(2) \[\exp(t \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}) = \begin{bmatrix} e^t & 0 \\ 0 & e^{2t} \end{bmatrix}\]

(3) \[\exp(t \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}) = e^t \begin{bmatrix} e^t & 0 \\ 0 & e^{2t} \end{bmatrix}\]

(4) \[\exp(t \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}) = e^t \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}\]

(5) \[\exp(t \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}) = \begin{bmatrix} \cos(t) & -\sin(t) \\ \sin(t) & \cos(t) \end{bmatrix}\]

\[= \cos(t) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \sin(t) \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}\]

(6) \[\exp(t \begin{bmatrix} 1 & -2 \\ 1 & -1 \end{bmatrix}) = \cos(t) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \sin(t) \begin{bmatrix} 1 & -2 \\ 1 & -1 \end{bmatrix}\]

(7) \[\exp(t \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}) = \begin{bmatrix} 1 & t & t^2/2 \\ 0 & 1 & t \\ 0 & 0 & 1 \end{bmatrix}\]

(8) \[\exp(t \begin{bmatrix} \log(5) & 0 & 0 \\ 0 & -6 & 0 \\ 0 & 0 & 7 \end{bmatrix}) = \begin{bmatrix} 5^t & 0 & 0 \\ 0 & e^{-6t} & 0 \\ 0 & 0 & e^{7t} \end{bmatrix}\]

(9) \[\exp(t \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}) = \begin{bmatrix} \cos(t) & -\sin(t) & 0 \\ \sin(t) & \cos(t) & 0 \\ 0 & 0 & 1 \end{bmatrix}\]

(10) \[\exp(t \begin{bmatrix} 0 & -3 & 0 \\ 3 & 0 & 0 \\ 0 & 0 & 7 \end{bmatrix}) = \begin{bmatrix} \cos(3t) & -\sin(3t) & 0 \\ \sin(3t) & \cos(3t) & 0 \\ 0 & 0 & e^{7t} \end{bmatrix}\]

Hint: For (??), use the fact that

\[\begin{bmatrix} 1 & -2 \\ 1 & -1 \end{bmatrix} = U \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} U^{-1}\]

where

\[U = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} .\]
Bonus Problems

Here are the steps for proving that if X, Y are square matrices with $XY = YX$, then

$$ \exp(X) \exp(Y) = \exp(X + Y) $$

In particular,

$$ \Phi(t) := \exp(tX) $$

satisfies the three basic properties of one-parameter groups.

1. Define the binomial coefficient

$$ \binom{n}{p} := \begin{cases} \frac{n!}{p!(n-p)!} & \text{if } 0 \leq p \leq n \\ 0 & \text{otherwise} \end{cases} $$

and show that

$$ \binom{n+1}{p} := \binom{n}{p} + \binom{n}{p-1} $$

2. From this deduce Newton's Binomial Theorem:

$$ (X + Y)^n = \sum_{p=0}^{n} \binom{n}{p} X^p Y^{n-p} $$

assuming that $XY = YX$.

3. From this deduce that

$$ \exp(X) \exp(Y) = \exp(X + Y) $$

if $XY = YX$.

4. Find a counterexample to this when $XY \neq YX$.

5. Suppose that $\Phi(t)$ is a path of matrices satisfying $\phi(0)$ is the identity and

$$ \phi(s)\phi(t) = \phi(s + t) $$

for $s, t \in \mathbb{R}$. Let $X := \phi'(0)$ be the derivative of $\phi(t)$ at $t = 0$. Then

$$ \phi'(t) = X\phi(t) $$

6. From this deduce that $\phi(t) = \exp(tX)$.