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Introduction 

In 1912 Bieberbach proved that every compact flat Riemannian manifold M is 
finitely covered by a flat torus. More precisely, M has the form (F\G)/H where 
G is a group of translations of Euclidean space, F c G  is a discrete subgroup, 
and H is a finite group of isometries of the space of right cosets F\G. For a 
proof see e.g. Wolf [18]. 

The condition that M has a flat Riemannian metric can be separated into 
two conditions. First, M has an affine structure - a distinguished covering by 
coordinate charts, whose coordinate changes are affine. Second, M has a 
Riemannian metric whose coefficients in the affine charts are constants. 

In this paper we relax the second condition. A polynomial Riemannian 
metric on the affine manifold M is a Riemannian metric whose local ex- 
pression in affine coordinates has the form ~gi~(x)dxidx ~ where the gij are 
polynomial functions on Euclidean space E. By letting the gij be rational 
functions on E, we arrive at the more general notion of a rational Riemannian 
metric. (It is not assumed that these expressions define Riemannian metrics on 
all of E.) 

The object of this paper is to determine which affine manifolds have 
polynomial Riemannian metrics and to give examples of affine manifold hav- 
ing rational Riemannian metrics. 

Theorem 1. Let M be a compact affine manifold. Then M admits a polynomial 
Riemannian metric if and only if M is finitely covered by a complete afJ~ne 
nilmanifold. 

An affine manifold is complete provided its universal covering is E with its 
canonical affine structure. An affine nilmanifold is an affine manifold of the 
form F\G  where G is a simply-connected nilpotent Lie group with a left- 
invariant affine structure and F ~ G  is a discrete subgroup. 

It follows from Theorem 1 that M=(F\G) /H where H is a finite group 
acting freely on the complete nilmanifold F\G by affine automorphisms and F 
is a discrete uniform subgroup of G. The proof  shows that the polynomial 
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Riemannian metric on M comes from a left-invariant metric on G. It is 
therefore locally homogeneous. (For rational Riemannian metrics on a com- 
pact affine manifold we only conjecture such local homogeneity.) 

Here is a simple example; it can easily be generalized to higher dimensions. 
A simply transitive affine action of the vector group G - R  2 on the vector 
space E = R  2 is defined by 

f: G-,Aft(E), 
S 2 

This action is generated by the flows of the commuting vector fields ~/c~y and 
~:/~x+x~/~y. The resulting left-invariant complete affine structure on G de- 
fines a complete affine structure on the torus F \ G  (where F is any lattice) 
which is not isomorphic to any flat Riemannian affine structure (Kuiper [12], 
see also Kobayashi and Nomizu [10], p. 211). For different choices of F one 
finds different affine structures on the torus. The space of 1-forms on E that 
are invariant under G has as a basis dx and d y - x  dx. The symmetric 2-form 

(dx) 2 + (d y -  x dx) 2 =(x 2 + l ) d x 2 -  2 x dx d y + d y 2 

is therefore a polynomial Riemannian metric on E invariant under the action f 
of G. The metric evidently induces a polynomial Riemannian metric on the 
affine two-torus F\G.  

Suppose that one generator of F is a translation (x, y ) ~  (x, y +  2). Then the 
glide-reflection (x, y)~--~(-x, y+ 1) induces an affine isometry of this torus, of 
period two. The orbit space is a Klein bottle with a complete affine structure 
admitting a polynomial Riemannian metric. 

Proofs of Theorems 

We briefly review the basic concepts, referring the reader to Fried, Goldman, 
and Hirsch [5] for details. 

Let E = R "  be a fixed real vector space. The group of affine automorphisms 
of E will be denoted Aft(E); the group of linear automorphisms will be 
denoted GL(E). Let L:  Aff(E)~GL(E) denote the natural homomorphism. 

M will always denote an affine manifold of dimension n > 1, connected and 
without boundary. Denote the universal covering of M by ~/. There is an 
affine immersion D: AT/--,E and a homomorphism h: n~Aff(E)  for which D is 
equivariant, where g=rc~(M) is the group of deck transformations of M. We 
call D the developing map and h the affine holonomy homomorphism of the affine 
manifold M. Together they determine the affine structure of M; conversely, the 
affine structure determines D up to composition with some peAff(E), and it 
determines h up to conjugation by p. When D is bijective M is called a 
complete affine manifold. 

The subgroup F=h(Tz)cAff(E) is called the affine holonomy group of M, 
and the subgroup L(F)cGL(E)  is the linear holonomy group. It is not hard to 
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show that an affine manifold M has a polynomial  Riemannian metric gM if 
and only if there is a polynomial  2-form g on E invariant under  F such that 
g ~ t = D * g  is a Riemannian metric on AT/. This latter condit ion means that  g is 
positive definite on the developing image D()~7/). 

Let G be a simply-connected Lie group. An  affine structure on G is left- 
invariant if every left-nmltiplication is an affine map with respect to affine 
coordinates on G. When a left-invariant affine structure is complete, there is a 
simply transitive affine action of  G on E. The developing map can be taken to 
be the map p~--~p(O), the evaluation of this action at the origin. Conversely, 
every simply transitive affine action of G determines a left-invariant affine 
structure on G. It is known (see Milnor  [13]) that  if G admits such a structure, 
then G is solvable. The converse is conjectured, but is not  known even for 
nilpotent Lie groups G. 

We now state the main step in the proof  of Theorem 1. 

Proposition 2. Let M be an affine manifold admitting a complete polynomial 
Riemannian metric. Then: 

(a) the affine structure on M is complete 
(b) the affine holonomy group has a finitely generated nilpotent subgroup of 

finite index. 

Proof of Part (a). It suffices to prove that ~ / i s  complete. Therefore we assume 
that M is simply connected and that there is an affine immersion D: M ~ E .  
We use D to define local affine coordinates on M. Let g denote the polynomial  
2-form on E such that the polynomial  Riemannian  metric on M is gM=D * g. 

The condit ion that M be complete as an affine manifold is well-known [3] 
to be equivalent to the condit ion of geodesic completeness: every affine map 
from an interval into M extends to an affine map  of all of R. It is easy to see 
that this condit ion holds provided that every affine map  s: [0, b)-~M extends 
to a cont inuous map on [0, b]. Since the polynomial  Riemannian metric on M 
is complete, it suffices to prove that the path s has finite gM-length, or 
equivalently, that the path D o s has finite length with respect to g. Now D o s is 
the restriction of  an affine map  So : R ~ E .  Then the g-length of  the part  of  s o 

b 

corresponding to s is ~ g(s'o(t),S'o(t)) 1/2 dt, which is finite. This completes the 
0 

proof. 
In the proof  above, we used the polynomial  nature of  the metric only to 

obtain a continuous 2-form on E. Using the well-known fact that a local 
isometry of  a complete Riemannian manifold is a covering, the same proof  
gives the following result: 

Proposition 3. Suppose the affine manifold M has a complete Riemannian metric 
whose lift to f4 is D*g for some continuous 2-form g on E. Then the affine 
structure is complete. I f  g is defined only on some open subset (2 of E, then the 
developing map D is a covering of ~1 onto a connected component of (2. 

Proof of Part (b) of Proposition 2. F rom part  (a) we know that M is complete, 
so we take 2~/= E. Therefore the polynomial  Riemannian  metric g u  is covered 
by a polynomial  Riemannian metric g on E. The affine h o l o n o m y  group F is a 
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group of isometries of this metric; since it also acts by deck transformations on 
E, it must be a discrete subgroup of Aft(E). 

We consider Aft(E) as embedded in GL(E x R) in the usual way: an affine 
map x~-,Ax+b becomes the linear map (x,t)~--~(Ax+tb, t). Thus Aft(E) is a 
subgroup of GL(E • R), namely the subgroup which preserves projection onto 
R. In particular, it is algebraic. 

Thus we may take the algebraic hull A(F) (i.e. Zariski closure of F) as a 
subgroup of Aft(E). 

Evidently A(F) also preserves the polynomial Riemannian metric g; the 
condition that an affine transformation preserve a polynomial tensor field is a 
polynomial condition on the affine transformation. Thus A(F) is a Lie group of 
isometries of the metric g. It follows that all the isotropy subgroups of A(F) are 
compact. 

Let K c A ( F )  be a maximal isotropy subgroup. Being compact, K is re- 
ductive. Since every reductive group of affine transformations has a fixed point 
(see Milnor [13]), it follows that K is a maximal reductive subgroup. 

Let UcA(F)  be the unipotent radical. Then by a result of C. Chevalley 
A(F) is the semidirect product of U and any maximal reductive subgroup 
(Hochschild [8], theorem 14.2). It follows that A(F) is the semidirect product 
K t~U. Observe that U is connected (the exponential map is surjective) and F 
is a discrete subgroup of A(F). Therefore part  (b) of Proposition 2 follows 
from: 

Proposition 4. Let G be a Lie group which is the semidirect product of a compact 
subgroup K and a connected nilpotent normal subgroup U. I f  F c G is a discrete 
subgroup, then F has a finitely generated nilpotent subgroup of finite index. 

Proof Let p: G--*K be the canonical projection with kernel U. Consider any 
neighborhood W of the identity eeK and define F 0 c F  to be the subgroup 
generated by F c~p- 1 W. 

We assert that F 0 has finite index in F. We may assume that p(F) is dense 
in K; otherwise replace K by the closure of p(F). Since K is compact, it is 
covered by finitely many left-translates of W by elements of K. Since p(F) is 

dense, there exist Yl,Y2 . . . . .  Yr in F such that K =  ~) P0'i) W. Equivalently G 
i=1 

= ~) Yi P-~ W. It follows that the cosets Yi Fo cover F, proving that F o has finite 

index in F. 
By a theorem of Zassenhaus (see Raghunathan [14], proposition 8.11), 

there is a neighborhood W of the identity p(e) in K with the following 
properties: 

(1) W is closed under the commutator  operation Ix, y] = x - l y  ~xy; 
(2) for every sequence x1,x 2 . . . .  in p - J W ,  the sequence x 1, [ - X I , X 2 ] ,  

[[xl,x2],x3], [[[xl,x2],x3],x4], ... converges to the identity e in G; 
(3) the convergence is uniform for all such sequences x~ ,x 2 . . . .  

Fix such neighborhood W; define F o as above. 
Let F c F o be a finite set. Since F is discrete it follows that for some integer 

n depending on F, we have [ [ . . . Ix  I ,x2] ... .  ] ,x , ]  =1 for all Xl,X 2 . . . . .  x, eF. 
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This implies that the subgroup generated by F is n-step nilpotent. To see this, 
we prove by induction on n that a group H is n-step nilpotent provided it has a 
finite generating set F such that every n-fold commutator  as above of elements of 
F is the identity. Since every (n - l ) - fo ld  commutator  centralizes the generating 
set it must be in the center Z of H. The induction hypothesis now implies that 
H/Z is (n-1)-s tep  nilpotent, whence H is n-step nilpotent. 

We have proved that every finitely generated subgroup of F 0 is nilpotent 
(and thus solvable). Another theorem of Zassenhaus (see Raghunathan [14], 
corollary 8.4) says that in such a case F 0 itself must be solvable. Thus F 0 is a 
discrete solvable subgroup of a Lie group having finitely many components. It 
follows from a result of Auslander and Baumslag (see Milnor [13]) that F 0 is 
polycyclic, and therefore finitely generated. Therefore F 0 is nilpotent. This com- 
pletes the proof of Proposition 4, and hence the proof of Proposition 2. 

Proof of Theorem 1. Suppose that M is a compact affine manifold with a 
polynomial Riemannian metric gM- By compactness, gM is complete. By Prop- 
osition 2, M is a complete affine manifold which admits a finite covering M' 
with nilpotent affine holonomy group. In Fried, Goldman, and Hirch [5] it is 
proved that such affine manifolds M' are complete affine nilmanifolds F\G.  
Let H be the group of deck transformations of M ' ~ M ;  then H acts affinely 
and M = (F\G)/H as claimed. 

Conversely, suppose that M is a compact affine manifold finitely covered 
by a complete affine nilmanifold M ' = F ' \ G .  There is a subgroup F o of F'  which 
is normal in nl (M ) and which has finite index. Then Fo'\G is a complete affine 
manifold M 0 which is a regular finite regular covering space of M. Let H 
denote the group of deck transformations of Mo-~M. Then H is an affine 
transformation group on H 0. 

Now G has a left-invariant Riemannian metric. In [5], section 8, it is 
proved that every left-invariant tensor field on G is polynomial in affine charts. 
Therefore G has a left-invariant polynomial Riemannian metric. It follows that 
F0\G has such a metric also. Averaging this metric by H gives a polynomial 
Riemannian metric on M. The proof of Theorem 1 is complete. 

In the foregoing proof of the existence of polynomial metrics, compactness 
of M was used only to ensure completeness of the affine structure. If we simply 
postulate this completeness instead and observe that left-invariant metrics are 
homogeneous, we obtain: 

Theorem 4. Let M be a complete affine maniJold which is finitely covered by an 
affine nilmanifold. Then M has a polynomial Riemannian metric which is com- 
plete and locally homogeneous. 

Remarks 

(1) Bieberbach's theorem can be derived from Theorem 1 as follows. The 
algebraic hull A(F) is a group of isometries of the Euclidean metric on R"; the 
unipotent radical must then be the simply transitive group of translations. The 
finite covering constructed is necessarily a flat torus and Bieberbach's theorem 
follows easily. 
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(2) The class of affine manifolds with polynomial Riemannian metrics can 
be characterized in another way in terms of the eigenvalues of the holonomy. 
In [5] it is proved that the class of compact affine manifolds whose holonomy 
is unipotent coincides with the class of compact complete affine nilmanifolds. 
It follows that an affine manifold has a covering in this class if and only if the 
eigenvalues of every element of the linear holonomy L(F) are roots of unity. D. 
Fried [4] has proved the following stronger statement: a compact affine 
manifold is finitely covered by a complete affine nilmanifold if and only if the 
eigenvalues of every element of L(F) have norm 1. Combining Fried's result 
with Theorem 1 we conclude: a compact affine manifold has a polynomial 
Riemannian metric if and only if all of the eigenvalues of elements of L(F) lie on 
the unit circle in ~. 

Rational Riemannian Metrics 

Now suppose that M is a compact affine manifold with a rational Riemannian 
metric g,M which is affine coordinates has the form 

q(x)- ~ ~ pij(x) dx i dxj 

where q(x) and all the pi~(x) are polynomials. Then the proof of Theorem 1 
goes through, completely as before, provided we assume that q(x) has no zeroes 
on E. Thus a compact affine manifold admitting such a metric is finitely 
covered by a complete affine nilmanifold, and on the corresponding nilpotent 
Lie group the metric lifts to a left-invariant metric. It follows from w of [5] 
that such a metric must be polynomial. 

The condition that gu comes from a 2-form defined on all of E is satisfied 
whenever the algebraic hull A(F) acts transitively on E. In [6] we prove this is 
the case if M is a compact affine manifold with a parallel volume form (i.e. the 
standard Euclidean n-form dxa . . .dx  . in affine coordinates). Then, assuming 
the existence of a rational Riemannian metric, M must be complete; in fact M 
must be covered by a compact complete affine nilmanifold and the metric must 
be of the type described. 

The obstruction to the existence of a parallel volume is precisely the 
element of Ha(M; R) given by the logarithm of the absolute value of the 
determinant of the linear holonomy homomorphism. Thus if the first Betti 
number of M is zero, then every affine structure must admit parallel volume, 
every rational Riemannian metric must be polynomial. This also shows that 
there are manifolds M such that every affine structure admits a polynomial 
Riemannian metric. Take any closed manifold with b l (M)=0  and such that 
rtl(M) has a nilpotent subgroup of finite index (for example a suitable flat 
Riemannian manifold). By [5] it follows that every affine manifold homeomor- 
phic to M must be finitely covered by a complete affine nilmanifold; the poly- 
nomial Riemannian metrics are then just the left-invariant Riemannian metrics 
on the corresponding Lie group invariant under the finite group of deck trans- 
formations. 
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When q(x) is allowed to vanish in E, then Proposi t ion 3 implies that  the 
developing m a p  is a covering onto a connected componen t  of  E - q  1(0). 
Nonetheless  a rich variety of  examples may occur:  

Hopf Manifolds 

Let 7 r  n) be a linear expansion, i.e. a linear m a p  all of whose eigenvalues 
have norm greater than 1. Then the cyclic group F = { 7 " :  n~Z} acts proper ly  
discontinuously and fi-eely on R " - { 0 }  with quotient  an affine manifold M 
diffeomorphic to S" 1 X S 1. 

Suppose first that  7 is a homothety ,  i.e. scalar mult ipl icat ion by some 2 > 1. 
Then d(xio 7) = 2 dx~ and ~; takes spheres of  radius r to spheres of  radius hr. It  
follows that  (x 2 + ... + x  2) 1 ( ( d x l ) 2  + . . .  +(dxn)2)  defines a F- invar iant  Rieman-  
nian metric on R " - { 0 }  which is rational. Thus the quotient  M admits  a 
rat ional  Riemannian  metric. 

In general when 3' is an arbi t rary  expansion, the H o p f  manifold M may  or 
may not admit  a rational R iemann ian  metric. The following theorem shows 
that  the set of  expansions i' for which the corresponding H o p f  manifold M has 
a rat ional  R iemann ian  metric is dense, and its complement  is dense. 

Theorem 5. Let 7~GL(R") be an expansion and let M=(R"-{O})/F be the 
corresponding Hopf manifold. Then M admits a rational Riemannian metric if 
and only if 

(1) 7 is diagonalizable over C 
and 

log 12/1 
(2) The collection of eigenvalues {21 . . . . .  2k} c ~  satisfies: ~ is rational 

for all i and j. 
(It is interesting to note that condit ions (1) and (2) are precisely the condit ion 
for a cyclic group F that  A(F)/F be compact .)  ~ 

Proofi Suppose that  7 satisfies hypotheses  (1) and (2); that  is, for some basis of 
R" = R 2k " x C" k the linear m a p  7 is represented by a diagonal  matr ix  

.~laO 

eii{,) 2ta2k-,,+ 0 

e(i~n k) 2(ak) 

where the a / a r e  positive integers, 2 > 0 ;  ~;elR. 
Define a " r a d i u s  funct ion" r: R 2a " x C" - k o R  by the following recipe: 

r (x l  . . . .  , X 2 k - n ,  z2a-n+ 1 . . . . .  za) 
2b2k-r, Z -- {(xl)2b' + ... +(x2k_, )  +1 2k-,,+ 1l 2b . . . . . .  + ' "  +]Zkl2bk} ~ 

Note added in proof: If M is a compact  affine manifold a necessary condition (although not 
sufficient) for M to admit  a rational Riemannian metric is that A(F)/F be compact. 
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where the bj are positive integers chosen so that a I bl =.. .=akbk=m is some 
(probably large) positive integer. Then 7 takes "spheres of radius r" to "spheres 
of radius 22mr, '' i.e. r satisfies 

roT=22mr. 

Then the expression 

(x2bl-{ - ...-t-[Zkl2bk) -1 (2b,(2b 1 - 1) x 261 2 ( d x  1)2 q_ . . .  

+ 2bk(2b k -  1)]Zk[ 2bk 2 d'-Zk dZk) 

defines a F-invariant rational Riemannian metric on R"-{0}  and hence a 
rational Riemannian metric on M. 

Conversely suppose that M is a Hopf manifold with holonomy F and let 
g~ be a rational Riemannian metric on M. Let g be the induced metric on R n 
-{0}. Now a linear map 7 is diagonalizable over q7 (i.e. is semisimple) if and 
only if the smallest algebraic subgroup A(F) of GL(R") containing F has no 
nontrivial unipotent elements (see e.g. [9]). Hence if a generator 7 of F is not 
semisimple, then A(F) contains a nontrivial unipotent subgroup U. Since A(F) 
acts isometrically on ( R " -  {0}, g), for every p=t=0 the isotropy group A(F)v is 
compact. Now U (being unipotent) has a fixed point p:4=0. Thus A(F)pc~ U is a 
nontrivial compact subgroup of a unipotent group. This contradiction proves 
(1). 

Thus 7 may be represented over I13 by a diagonal matrix with real eigen- 
values 21 . . . . .  22k_n and complex eigenvalues •2k-n+ 1, "~2k--n+ 1 . . . .  , 2k, s NOW 
the compact group G=0(1)Zk-"x U(I) "-k centralizes F and so defines a com- 
pact group action on M. By averaging over G we can then replace the original 
rational Riemannian metric gM by a rational Riemannian metric h M which is 
invariant under G. Let h be the induced metric on R " -  {0}. 

In particular h defines a rational Riemannian metric on the Hopf  manifold 
M' whose holonomy group F' is generated by the diagonal matrix with entries 

[)~1l . . . . .  [;tZk ,[, 122k-,+ i[, I)~2k ,+ 1l . . . . .  IAkl, I;~kl- 
Let l< i<j<n.  Then the xlxj-plane Eij is invariant under F' and the 

quotient (Ei j -{0}) /F is a Hopf  two-torus with holonomy generated by 

7ij= [ '~  ' ]20j,] �9 

log I;~,1 
Now if ~ is irrational, the group generated by 7ij is Zariski dense in the 

group D of diagonal matrices in GL(R2). It is not hard to prove that every D- 
invariant rational Riemannian metric on R 2 must be of the form 

a 2 A r b  cdy 2 
x 2dx- x y d x d y + ~ -  with bZ<4ac. 

But such a metric is not defined everywhere o n  R 2 -  {0}, a contradiction. 
This concludes the proof of Theorem 5. 
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Homogeneous Spaces 

If G is a Lie group with a lefl-invariant affine structure and F is a discrete 
subgroup then the space of right cosets F\G  inherits an affine structure from 
G. The right-invariant vector fields on G form a Lie algebra of affine vector 
fields on G (since they are infinitesimal left-multiplications). Since the coef- 
ficients of the right-invariant vector fields are polynomials (of degree 1) it 
follows by duality that the coefficients of the right-invariant 1-forms are ra- 
tional functions. By choosing a basis of right-invariant 1-forms and summing 
their squares (this is equivalent to decreeing the dual basis of vector fields to 
be orthonormal), we obtain a right-invariant rational Riemannian metric on G. 

However this rational Riemannian metric on G does not in general define a 
metric on F \ G ,  since it is not necessarily left-invariant. To obtain an affine 
manifold with a rational Riemannian metric in this way, we need both the 
affine structure and the metric to be invariant under the same group of 
multiplications. Hence if G carries a bi-invariant affine structure and a discrete 
subgroup F, then the coset space F\G  (as well as G/F) is an affine manifold 
with a rational Riemannian metric. 

To construct bi-invariant affine structures, take any finite-dimensional real 
associative algebra A. Let A* denote the new associative algebra whose under- 
lying vector space is A + R where the multiplication is given by 

(x, s). (y, t) = (x y + t x + sy, s t). 

(In other words, we have "adjoined" the two-sided identity (0, 1). Note that A 
may or may not have an identity to start with.) Let E denote the affine 
hyperplane of all (x, 1) in A*; clearly E is closed under multiplication. The set 
of invertible elements of E form an open subset G, which has an affine 
structure induced by the inclusion of G in E. Since both left multiplication and 
right multiplication define affine transformations of E, the affine structure on G 
is bi-invariant. (Compare Milnor [13].) 

The bracket in the Lie algebra of G is given by the commutator  [X, Y] 
= X Y - Y X  in A; here we use the natural identification of A with the tangent 
space to G at the identity. Conversely the original product in A arises from 
covariant differentiation of left-invariant vector fields. It can be proved that 
every bi-invariant affine structure arises in this way (see Vey [15], or Goldman 
[7]). 

The above construction yields many rational Riemannian metrics on cer- 
tain solvmanifolds with affine structures; we also obtain affine structures and 
rational Riemannian metrics on compact quotients F \ G L ( n ;  J) where J = R ,  
�9 , or the quaternions. 

There are also left-invariant affine structures on Lie groups G which are 
not right-invariant, but nonetheless admit left-invariant rational Riemannian 
metrics. In [5] the following example is given. G is the subgroup of GL(3; R) 
consisting of matrices 

|e 2S 0 ] 
1 ~ (s,u, veR). 



10 W.M. Goldman and M.W. Hirsch 

Evident ly  G acts s imply t ransi t ively on the half-space H = {(x, y, z): z > 0}. Then 
G inheri ts  an affine s t ructure  from H via the eva lua t ion  map  .lv at any po in t  p 
of  H;  we pick p = ( 0 , 0 ,  1). This affine s t ructure  is invar iant  under  left-multipli-  
cat ions.  The ra t iona l  1-forms z- ldz ,  z -Z(dx-z - lxdz) ,  d y - y z  ldz in H 
cor respond  under  Jp to a basis of  the lef t - invar iant  1-forms on G; thus the 
expression 

(z -l dz)2+(z--adx_z 3xdz)2+(dy-yz  l dz) 2 

cor responds  to a lef t - invariant  ra t iona l  R i e m a n n i a n  metr ic  on G. F o r  every 
discrete uni form subgroup  F of G, we ob ta in  a compac t  affine solvmanifold  
F\G with a ra t iona l  R i emann ian  metric.  

Cones 

(D) Ano t he r  class of examples  arise from homogeneous  sharp convex cones 
(see Vinberg [-17]). Let  E be a real vector  space and f 2 c E  a convex cone 
conta in ing  no comple te  line. Let  G be a subgroup  of  GL(E)  which preserves f2; 
then there is a G- invar ian t  R i e m a n n i a n  metr ic  on ~2 canonica l ly  associa ted to 
f2 (for ano ther  exposi t ion  of  this fact see Vey [16], w If G acts t ransi t ively on 
~2, this R i emann ian  metr ic  is a ra t iona l  R i e m a n n i a n  metr ic  (Koszul  [!  1]). F o r  
each discrete subgroup  F the quot ien t  M=F'\f2 is an affine mani fo ld  with a 
na tu ra l  ra t ional  R i emann ian  metric.  

The  wel l -known affine s tructures  on the p roduc t  of  a closed surface 2; of 
genus greater  than  one and S 1 (see [5] or  [13]) are of this form. Here (2 
= {(x, y, z): x 2 +  y 2 _  z 2 <0},  G =SO(2 ,  1) and  the ra t iona l  R i e ma nn ia n  metr ic  is 

(X2-t-y2--7_2) -2 {(-3x2 + y2-z2)dxdx +4xydxdy+(x2-  3y2-z2)dydy 

- 4 x z d x d z - 4 y z d y d z + ( x  2 + y 2 - 5 z  2) dzdz} .  

F r o m  its invar iance  under  G, this metr ic  restricts to one of cons tan t  negative 
curvature  on each hype rbo lo id  x 2 +y2  _22 = c o n s t a n t .  which is embedded  as a 
fiber 2;; indeed this metr ic  is jus t  the p roduc t  metr ic  on X x S j. 
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