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FLAT BUNDLES WITH SOLVABLE HOLONOMY 

WILLIAM M. GOLDMAN AND MORRIS W. HIRSCH 

ABsTRAcT. Let G be a solvable linear Lie group. We show that for every flat 
pnncipal G-bundle { over a CW-complex M, there is a finite-sheeted covering 
spacep: M-3 M such that p*C is trivial as a principal G-bundle. This result is used 
to show that every affine manifold with solvable fundamental group has a finite 
covering which is parallelizable. 

In this note M denotes a connected manifold or CW-complex with fundamental 
group so and G denotes a Lie group. A bundle t over M with structure group G is 
virtually trivial if and only if there is a finite covering space p: M -- M such that 
p*t is a trivial bundle. We call t a flat G-bundle if the structure group has been 
reduced to a totally disconnected subgroup r c G, the holonomy group of the flat 
bundle. A vector bundle is flat if the associated principal bundle is flat. 

The following result is known to others (e.g. D. Sullivan [6]) but there seems to 
be no published proof. Our purpose is to supply one. 

THEOREM 1. Let ( be a flat vector bundle over M whose holonomy group is finitely 
generated and contains a solvable subgroup of finite index. Then t is virtually trivial. 

The proof is based on 

THEOREM 2. Suppose G is a solvable Lie grow with finitely many components, 
which admits a faithful matrix representation. Let t be a flat principal G-bundle over 
M whose holonomy group is finitely generated. Then ( is virtually trivial. 

PROOF OF THEOREM 1 FROM THEOREM 2. Let ( be a flat vector bundle over M, 
induced by a representation 4: X -* GL(n; R). Assuming the hypotheses of Theo- 
rem 1, we may pass to a finite covering of M and assume that p(4r) is actually 
solvable. Note that a subgroup of finite index in a finitely generated group is 
finitely generated. 

Let G denote the Zariski closure of 0(47) in GL(n; R). Since any algebraic group 
has finitely many components and the Zariski closure of a solvable group is 
solvable, G satisfies the hypotheses of Theorem 2. Therefore the principal G-bundle 
induced by 4: sr -* G is virtually trivial. Q.E.D. 

We briefly recall how a homomorphism h: X7 -+ G induces a flat G-bundle, which 
we denote by h,. Let p: M -> M denote a universal covering and identify 7r as the 
group of deck transformations. Give Xr the diagonal action on M x G defined by 
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y(x, g) = (yx, h(y)g). The orbit space (M x G)/'r is the total space of a flat 
G-bundle over M; the projection sends the orbit of (x, g) to p(x). The holonomy 
group is h(7r). 

The following well-known results will be used. For convenience we indicate 
proofs. 

LEMMA 3. Let h,: r -. G, 0 < t < 1, be a continuous family of homomorphisms. 
Then (ho)b and (hl)b are isomorphic G-bundles. In particular, (h,), is a trivial 
G-bundle if ho is the trivial homomorphism. 

PROOF. There is a G-bundle ( over M x [0, 1] such that (IMx(t) is isomorphic to 

(h,)b. Apply the covering homotopy theorem. Q.E.D. 

LEMMA 4. Let 4): G -. H be a homomorphism which is a homotopy equivalence of 
Lie groups. Then hb is a trivial G-bundle provided (4 o h), is a trivial H-bundle. 

PROOF. Ss induces a homotopy equivalence of classifying spaces B4: BG -* BH. 
(In fact let EG -- BG be the universal principal G-bundle. Then H acts freely on 
the contractible space EH = (EG x H)/ G, where G acts on H via 4 and G acts 
diagonally on EG x H. Therefore EH -. (EH)/H is a universal bundle for H; but 
BH = (EH)/H is naturally identified with (EG)/G = BG. Thus we can take 
BH = BG.) 

Let f: M -. BG be the classifying map for hb (as a G-bundle). Then (B4)) o f: 
M -. BH classifies (j o h)b. Since (4 o h), is trivial, (B4) o f is null homotopic, and 
therefore, so isf. Q.E.D. 

PROOF OF THEOREM 2. Let t be induced by h: T- G with h(7r)= r. Let Go c G 
be the identity component. Then h-'G0 has finite index in ir. We may replace J by 
the induced bundle 4t over the covering space corresponding to h-'Go. The 
holonomy group of to is r n Go c Go. Therefore we may assume G is connected. 

The assumptions on G imply that the commutator subgroup G' is closed and 
contractible (see Hochschild [3, Chapter XVIII, Theorem 3.2D. Therefore the 
natural homomorphism 4: G -* G/ G' is a homotopy equivalence. It follows from 
Lemma 4 that t is virtually trivial provided (4) o h)b is virtually trivial. Therefore 
we may replace G by G/G'. Hence we assume that G is a connected abelian Lie 
group. 

Now F is a finitely generated abelian group, so there is a free abelian subgroup 
Fo c F of finite index. Passing to the covering of M corresponding to h-1o, we 
assume P is free abelian. 

Let Ab: G -+ G be the universal covering group. Since P is free abelian and G is 
abelian, there is a homomorphism 0: P -+ G with 'po 9 = identity of P. 

Consider the commutative diagram 

0 o h G 

XT G 
h 
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Now G is a 1-connected abeian Lie group; hence it is a vector group. For any 
t E R there is a homomorphism ut: XT - G, y - t[(O o h)(y)]. Therefore , o ut: 
XT - G, 0 < t < 1, is a continuous family of homomorphisms connecting the trivial 
homomorphism to h. It follows from Lemma 3 that hb is trivial. Q.E.D. 

One particular case of interest occurs when M is an affine manifold, i.e. when M 
is locally modelled on an affine space so that overlapping charts are identified by 
affine maps. In that case the tangent bundle of M is a flat vector bundle. From 
Theorem 1 we deduce the following: 

COROLLARY 5. Let M be an affine manifold whose fundamental group is finitely 
generated and has a solvable subgroup of finite index. Then M is virtually paralleliz- 
able, i.e. M has a finite covering which is parallelizable. 

It is an open question whether every affine manifold is virtually parallelizable. In 
particular this would imply the famous conjecture (posed by Chern) that the Euler 
characteristic of a compact affine manifold must vanish. This was proved in the 
complete case by Kostant and Sullivan [8]. Using examples of Milnor [4], Smillie 
has constructed examples [5] of compact manifolds having nonzero Euler char- 
acteristic, whose tangent bundles are isomorphic to flat vector bundles. However it 
seems quite difficult to determine whether the manifolds can be made affine. 

Auslander and Szczarba [7] give an example of a 5-dimensional compact flat 
orientable Riemannian manifold with solvable fundamental group, whose Stiefel- 
Whitney class w2 is nonzero. This shows that not all orientable affine manifolds are 
stably parallelizable. 

In [2] Hirsch and Thurston prove the following related result: Letp: E -+ M be a 
bundle with compact fiber X and structure group F c Homeo(X). Suppose that p 
is induced by a representation 4: 771(M) -> F and F is amenable (e.g. a finite 
extension of a solvable group). Then the induced homomorphismp*: H*(M; R) -+ 

H*(E; R) is injective. This is in some sense a cohomological version of Theorem 2 
when the structure group is not a Lie group G as above. 

Using considerably deeper methods than these used here, Deligne and Sullivan 
[1] prove the sharp result that if { is a flat complex vector bundle (i.e. a C"-bundle 
induced by a representation p: w1(M) -> GL(n; C)) over a compact polyhedron M, 
then ( is virtually trivial. As noted above there are flat real vector bundles (see [4]) 
which have nonzero Euler class and hence are nontrivial over any finite covering. 
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