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An affinely flat manifold (or just affine manifold) is a manifold with a distin-
guished coordinate atlas with locally affine coordinate changes. Equivalently M
is a manifold equipped with an affine connection with vanishing curvature and
torsion. A complete affine manifold M is a quotient E/Γ where Γ ⊂ Aff(E) is a
discrete group of affine transformations acting properly on E. This is equivalent to
geodesic completness of the connection. In this case, the universal covering space
of M is affinely diffeomorphic to E, and the group π1(M) of deck transformations
identifies with the affine holonomy group Γ.

Flat Riemannian manifolds are special cases where Γ is a group of Euclidean
isometries. The classical theorems of Bieberbach provide a very satisfactory picture
of such structures: every compact flat Riemannian manifold is finitely covered by
a flat torus E/Λ where Λ ⊂ G is a lattice in the group G of translations of E.
Furthermore every complete flat Riemannian manifold is a flat orthogonal vector
bundle over its a soul, a totally geodesic flat Riemannian manifold. (See, for
example, Wolf [29].)

An immediate consequence is χ(M) = 0 if M is compact (or even if Γ is just
nontrivial). This follows immediately from the intrinsic Gauß-Bonnet theorem of
Chern [11], who conjectured that the Euler characteristic of a closed affine manifold
vanishes. (Chern-Gauß-Bonnet applies only to orthogonal connections and not to
linear connections.) In this generality, Chern’s conjecture remains unsolved.

Affine manifolds are considerably more complicated than Riemannian mani-
folds, where metric completeness is equivalent to geodesic completeness. In par-
ticular, simple examples such as a Hopf manifold Rn \ {0}/〈γ〉, where γ is a linear
expansion of Rn illustrate that closed affine manifolds need not be complete. For
this reason we restrict only to geodesically complete manifolds.

Kostant and Sullivan [20] proved Chern’s conjecture when M is complete. In
other directions, Milnor [24] found flat oriented R2-bundles over surfaces with
nonzero Euler class. Using Milnor’s examples, Smillie [26] constructed flat affine
connections on some manifolds of nonzero Euler characteristic. (Although the
curvature vanishes, it seems hard to control the torsion.)

Auslander’s flawed proof [4] of Kostant-Sullivan still contains interesting ideas.
Auslander claimed that every closed complete affine manifold is finitely covered
by a complete affine solvmanifold G/Γ, where G ⊂ Aff(E) is (necessarily solvable)
closed subgroup of affine automorphisms of E. This generalizes Bieberbach’s struc-
ture theorem for flat Riemannian manifolds. Whether every closed complete affine
manifold has this form is a fundamental question in its own right, and this question
is now known as the “Auslander Conjecture.” ([16]). It has now been established
in all dimensions n < 7 by Abels-Margulis-Soifer [2, 3].

Milnor’s paper [25] clarified the situation. Influenced by Tits [28] he asked
whether any discrete subgroup of Aff(E) which acts properly on E must be virtually
polycyclic. If so then complete affine manifolds admit a simple structure, and can
be classified by techniques similar to the Bieberbach theorems. Tits’s theorem
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implies that either Γ is virtually polycyclic or it must contain a free subgroup of
rank two. Thus Milnor’s question is equivalent to whether Z ? Z admits a proper
affine action.

Margulis [21, 22] showed that indeed nonabelian free groups can act prop-
erly and affinely on affine spaces of all dimensions > 2. In dimension 3, Fried-
Goldman [16] showed that if Γ ⊂ Aff(E) is discrete and acts properly, then ei-
ther Γ is polycyclic or the linear holonomy homomorphism L maps Γ faithfully
onto a discrete subgroup of a subgroup conjugate to the special orthogonal group
SO(2, 1) ⊂ GL(3,R). In particular Σ := H2/L(Γ) is a complete hyperbolic surface
homotopy-equivalent to M3 = E/Γ.

Already this implies Auslander’s Conjecture in dimension 3: Since M3 is closed,
Γ has cohomological dimension 3, contradicting Γ being the fundamental group
of a surface Σ. Much deeper is the fact that Σ cannot be closed (Mess [23]).
Therefore Γ must itself be a free group.

Since Margulis’s examples admit complete flat Lorentzian metrics, quotients
E/Γ where Γ is free of rank > 2, have been called Margulis spacetimes.

Which groups admit proper affine actions in higher dimension remains an in-
triguing and mysterious question. The Bieberbach theorems imply that any dis-
crete group of Euclidean isometries is finitely presented. The class of properly
acting discrete affine groups contains Z ? Z, and is closed under Cartesian prod-
ucts and taking subgroups. Thus properly discontinuous affine groups needn’t
be finitely generated, and even finitely generated properly discontinuous affine
groups needn’t admit finite presentations (Stallings [27]). The only hyperbolic
groups known to admit proper affine actions are free.

In his 1990 doctoral thesis [14], Drumm gave a geometric proof of Margulis’s
result and sharpened it. Using polyhedral hypersurfaces in R3 called crooked
planes, he built fundamental polyhedra for proper afffine actions of discrete groups.
Therefore his examples are homeomorphic to solid handlebodies. (This has been
recently proved in general, for convex cocompact L(Γ), by Choi-Goldman [12] and
Danciger-Guéritaud-Kassel [13] independently.)

Using crooked planes, Drumm [15] showed that Mess’s theorem is the only
obstruction for the existence of a proper affine deformation: Every noncompact
hyperbolic surface admits a proper affine deformation with a fundamental poly-
hedron bounded by crooked planes. Using much different dynamical methods,
Goldman-Labourie-Margulis [18] identify the space of proper affine deformations
of a convex cocompact Fuchsian group as an open convex cone in a vector space.

Our joint work [6, 7, 5, 8] with Charette and Drumm classifies Margulis space-
times where Γ ∼= Z ?Z using crooked planes. Recently Danciger-Guéritaud-Kassel
announced that every Margulis spacetime with convex cocompact L(Γ) admits a
crooked fundamental polyhedron.
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