Due Tuesday, 27 September

(1) Let \(\ell \subset \mathbb{E}^2 \) be a line. Show that there is a unique point on \(\ell \) which is closest to the origin \(O \), as follows.
 (a) Suppose that \(p_0 \in \mathbb{E}^2 \) is a point on \(\ell \) and \(v \in \mathbb{R}^2 \) is a vector parallel to \(\ell \). Then \(v \) specifies the direction of \(\ell \) and \(v \neq 0 \).
 Find an expression for the points \(p(t) \) on \(\ell \) in parametric form, where \(t \in \mathbb{R} \) is the parameter, and \(v \) and \(p_0 \) are given.
 (b) Compute the distance \(f(t) = d(p(t), O) \) in terms of \(t, p_0, v \).
 (c) Show that \(f(t) \) has a unique minimum at \(t = t_0 \) and compute \(t_0 \) in terms of \(p_0, v \).
 (d) Prove that the vector from \(O \) to the closest point \(p(t_0) \) is perpendicular to the vector \(v \) specifying the direction of \(\ell \).
 (e) Describe, in terms of complex numbers, all lines for which \(p(t_0) = O \).
 (f) Suppose that \(p(t_0) \neq O \). Show that \(\ell \) is completely determined by \(p(t_0) \).
 (g) Using complex numbers, find an expression for \(\ell \) in terms of the complex number corresponding to \(p(t_0) \).

(2) Write \(p(t_0) = P(\ell) \). Use the above expression for \(\ell \) in terms of \(P(\ell) \) to see how this parametrization transforms under:
 (a) A scaling \(z \mapsto \lambda z \), where \(\lambda > 0 \);
 (b) A rotation \(z \mapsto e^{i\theta} z \);
 (c) A reflection \(z \mapsto \overline{z} \);
 (d) A translation \(z \mapsto z + \zeta \), where \(\zeta \in \mathbb{C} \).

(3) Using the affine patch
\[
\mathbb{A}^2 \hookrightarrow \mathbb{P}^2
\]
\[
(x, y) \mapsto [x : y : 1]
\]
which of the following sets of homogeneous coordinates represent the point \((0.2, -0.5) \in \mathbb{A}^2 \)?
 (a) \([0.2 : -0.5 : 0]\)
 (b) \([2 : -5 : 1]\)
(c) \([-4 : 10 : 2]\)
(d) \([5 : 2 : 1]\)
(e) \([-0.2 : 0.5 : -1]\)

(4) Which of the following triples of homogeneous coordinates define a set of three collinear points in \mathbb{P}^2? For those ones, find the homogeneous coordinates for the line containing them.
(a) \([0.2 : -0.5 : 0], [1 : 3 : 0], [2 : 7 : 0]\)
(b) \([0.2 : -0.5 : 0], [1 : 3 : 0], [2 : 7 : 1]\)
(c) \([1 : 2 : -3], [-1 : 1 : 0], [0 : 4 : -4]\)
(d) \([1 : 1 : 1], [1 : 1 : -1], [4 : 4 : 1]\)
(e) \([1 : 1 : 1], [1 : 1 : -1], [1 : 4 : 4]\)

(5) Here are four affine patches:

\[\mathbb{A}^2 \xrightarrow{A_1} \mathbb{P}^2 \]
\[(y, z) \longmapsto [1 : y : z] \]

\[\mathbb{A}^2 \xrightarrow{A_2} \mathbb{P}^2 \]
\[(x, z) \longmapsto [x : 1 : z] \]

\[\mathbb{A}^2 \xrightarrow{A_3} \mathbb{P}^2 \]
\[(x, y) \longmapsto [x : y : 1] \]

\[\mathbb{A}^2 \xrightarrow{A_4} \mathbb{P}^2 \]
\[(u, v) \longmapsto [u + 1 : u - v : u + v] \]

(a) Find an ideal point for each of these affine patches.
(b) Find the affine coordinates of the point \([1 : 2 : 3]\) in terms of these three affine patches. That is, compute $A^{-1}_i([1 : 2 : 3])$ for $i = 1, 2, 3, 4$.
(c) Let P be the parabola
\[\{(x, y) \in \mathbb{A}^2 \mid y = x^2\} \]
and consider the closure C of $\mathbb{A}_3(P) \subset \mathbb{P}^2$. Express C in homogeneous coordinates.
(d) Does P have an ideal point?
(e) Determine $(A_i)^{-1}(C)$ for $i = 2, 3, 4$ and their ideal points (if any).