MATH 431-2018 PROBLEM SET 5 - CORRECTED

DUE THURSDAY 15 NOVEMBER 2018

- (1) (The circumcircle)
 - (a) (Bisectors) Let $z_0, z_1 \in \mathbb{C}$ be distinct complex numbers representing points in the Euclidean plane \mathbb{E}^2 . Define the (metric or perpendicular) bisector $B(z_0, z_1)$ as the set of $z \in \mathbb{C}$ such that $d(z, z_0) = d(z, z_1)$. Show that $B(z_0, z_1)$ is a line and derive a formula for it in terms of z_0 and z_1 .
 - (b) If z_0, z_1, z_2 are not collinear, Show that $B(z_0, z_1)$ and $B(z_0, z_2)$ are *not* parallel. Show that their (unique) intersection point $B(z_0, z_1) \cap B(z_0, z_2)$ lies on $B(z_1, z_2)$.
 - (c) Show that a unique circle contains z_0, z_1, z_2 .
- (2) (Cross-ratio) If z_0, z_1, z, z_∞ are four distinct points in \mathbb{P}^1 , find a unique projective transformation

$$\zeta \xrightarrow{f} \frac{a\zeta + b}{c\zeta + d}$$

which maps

$$z_0 \longmapsto 0,$$

$$z_1 \longmapsto 1,$$

$$z_\infty \longmapsto \infty$$

Then f(z) is called the *cross-ratio* $C(z_0, z_1, z, z_\infty)$ of the quadruple (z_0, z_1, z, z_∞) .

(a) Show that ϕ is a projective transformation of \mathbb{P}^1 , then

$$\mathcal{C}(z_0, z_1, z, z_\infty) = \mathcal{C}(\phi(z_0), \phi(z_1), \phi(z), \phi(z_\infty)).$$

- (b) If z_0, z, z_1, z_∞ lie on a circle, must $\mathcal{C}(\phi(z_0), \phi(z_1), \phi(z), \phi(z_\infty))$ be real? Is the converse true?
- (c) Remember the function

$$\mathbb{A}(z, z_1, z_0) := \frac{z - z_0}{z_1 - z_0}$$

from Problem Set 4? Show that

$$\mathcal{C}(z_0, z_1, z, \infty) = \mathbb{A}(z, z_1, z_0)$$

and, more generally,

$$\mathcal{C}(z_0, z_1, z, z_\infty) = \frac{\mathbb{A}(z_0, z_\infty, z)}{\mathbb{A}(z_0, z_\infty, z_1)}.$$

(d) Let $\{1, 2, 3, 4\} \xrightarrow{\sigma} \{1, 2, 3, 4\}$ be a permutation which interchanges two pairs in $\{1, 2, 3, 4\}$ (for example, $1 \stackrel{\sigma}{\longleftrightarrow} 2$, $3 \stackrel{\sigma}{\longleftrightarrow} 4$, which is commonly denoted (12)(34)). Show that

$$\mathcal{C}(z_1, z_2, z_3, z_4) = \mathcal{C}(z_{\sigma(1)}, z_{\sigma(2)}, z_{\sigma(3)}, z_{\sigma(4)})$$

- (e) Let $z := \mathbb{C}(z_1, z_2, z_3, z_4)$. Prove that: $\mathcal{C}(z_1, z_2, z_3, z_4) = z$ $C(z_2, z_1, z_3, z_4) = 1 - z$ $C(z_4, z_2, z_3, z_1) = 1/z$ $C(z_2, z_4, z_3, z_1) = (z - 1)/z$ $C(z_2, z_3, z_1, z_4) = 1/(1-z)$ $C(z_3, z_1, z_2, z_4) = 1 - 1/z$
- (3) (Harmonic quadruples) A quadruple (z_1, z_2, z_3, z_4) is harmonic
 - if $C(z_1, z_2, z_3, z_4) = 1/2$, or equivalently $C(z_1, z_3, z_4, z_2) = -1$. (a) If $z_1, z_2, z_3 \in \mathbb{A}^1$ are affine points, then (z_1, z_2, z_3, ∞) is harmonic if and only if $z_3 = \operatorname{mid}(z_1, z_2)$.
 - (b) Suppose that $\ell \subset \mathbb{P}^2$ is a projective line containing four distinct points z_1, z_2, z_3, z_4 and $\ell_1, \ell_2, \ell_3, \ell_4$ are distinct lines (and distinct from ℓ) such that

$$\ell, \ell_1, \ell_2$$
 concur at z_1
 ℓ, ℓ_3, ℓ_4 concur at z_3

and

$$z_{2} = \langle \ell_{1} \cap \ell_{3} \rangle \langle \ell_{1} \cap \ell_{4} \rangle$$
$$z_{4} = \langle \ell_{1} \cap \ell_{4} \rangle \langle \ell_{1} \cap \ell_{3} \rangle$$

(See Figure 1.) Prove that (z_1, z_2, z_3, z_4) is a harmonic quadruple. (Hint: find a useful set of coordinates for these points and lines and apply projective transformations to reduce to an "obvious" (affine?) case.)

(c) Prove, conversely, if (z_1, z_2, z_3, z_4) is a harmonic quadruple on a line ℓ , then there exists a configuration $\ell_1, \ell_2, \ell_3, \ell_4$ as above.

FIGURE 1. A Harmonic Quadruple

(4) Let \mathbf{a}, \mathbf{b} be *linearly independent* vectors in \mathbb{R}^3 defining *non-collinear* points

$$a = [\mathbf{a}], b = [\mathbf{b}] \in \mathbb{P}^2$$

respectively. Show that the line \overleftarrow{ab} containing a, b is defined in homogeneous coordinates $[X:Y:Z] \in \mathbb{P}^2$

$$(\mathbf{a} \times \mathbf{b})^{\dagger} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = 0.$$

We generalize this to planes in \mathbb{P}^3 passing through three points $a, b, c \in \mathbb{P}^3$. Let V denote \mathbb{R}^4 and let $\mathbf{a}, \mathbf{b}, \mathbf{c} \in \mathsf{V}$ be nonzero vectors representing the homogeneous coordinates of the points a, b, c respectively. Define an alternating trilinear map

$$\mathsf{V}\times\mathsf{V}\times\mathsf{V}\xrightarrow{\mathsf{Orth}}\mathsf{V}^*$$

as follows. If $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d} \in V$, denote the determinant of the 4×4 matrix whose columns are $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ by $\mathsf{Det}(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d})$. For fixed vectors $\mathbf{a}, \mathbf{b}, \mathbf{c} \in V$, the map

$$\mathbf{d} \mapsto \mathsf{Det}(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d})$$

is linear (hence a covector), denoted $\mathsf{Orth}(\mathbf{a},\mathbf{b},\mathbf{c})\in\mathsf{V}^*.$ (a) Let

$$\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \\ c_4 \end{bmatrix}.$$

be vectors in \mathbb{R}^4 . Express $\mathsf{Orth}(\mathbf{a}, \mathbf{b}, \mathbf{c})$ in terms of 3×3 determinants, that is,

$$\begin{vmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{vmatrix} := x_{13} \begin{vmatrix} x_{21} & x_{22} \\ x_{31} & x_{33} \end{vmatrix} - x_{23} \begin{vmatrix} x_{11} & x_{12} \\ x_{31} & x_{32} \end{vmatrix} + x_{33} \begin{vmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{vmatrix}$$
$$= x_{11}x_{22}x_{33} + x_{12}x_{23}x_{31} + x_{13}x_{21}x_{32}$$
$$- x_{11}x_{23}x_{32} - x_{13}x_{22}x_{31} - x_{12}x_{21}x_{33}$$
(b) Prove or disprove: *a*, *b*, *c* are collinear if and only if

(b) Prove or disprove: a, b, c are collinear if and only if

 $\operatorname{Orth}(\mathbf{a},\mathbf{b},\mathbf{c})=0.$

(c) Prove or disprove: Suppose $\mathbf{v} := \mathsf{Orth}(\mathbf{a}, \mathbf{b}, \mathbf{c}) \neq 0$. Then \mathbf{v} define homogeneous coordinates of the plane in \mathbb{P}^3 containing a, b, c.