

Convex Real Projective Structures on Closed Surfaces are Closed Author(s): Suhyoung Choi and William M. Goldman Source: Proceedings of the American Mathematical Society, Vol. 118, No. 2 (Jun., 1993), pp. 657-661 Published by: American Mathematical Society Stable URL: <u>http://www.jstor.org/stable/2160352</u> Accessed: 17/06/2010 04:26

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=ams.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society.

CONVEX REAL PROJECTIVE STRUCTURES ON CLOSED SURFACES ARE CLOSED

SUHYOUNG CHOI AND WILLIAM M. GOLDMAN

(Communicated by Jonathan M. Rosenberg)

ABSTRACT. The deformation space $\mathfrak{C}(\Sigma)$ of convex $\mathbb{R}P^2$ -structures on a closed surface Σ with $\chi(\Sigma) < 0$ is closed in the space $\operatorname{Hom}(\pi, \operatorname{SL}(3, \mathbb{R}))/\operatorname{SL}(3, \mathbb{R})$ of equivalence classes of representations $\pi_1(\Sigma) \to \operatorname{SL}(3, \mathbb{R})$. Using this fact, we prove Hitchin's conjecture that the contractible "Teichmüller component" (*Lie groups and Teichmüller space*, preprint) of $\operatorname{Hom}(\pi, \operatorname{SL}(3, \mathbb{R}))/\operatorname{SL}(3, \mathbb{R})$ precisely equals $\mathfrak{C}(\Sigma)$.

Let Σ be a closed orientable surface of genus g > 1 and $\pi = \pi_1(\Sigma)$ its fundamental group. A convex $\mathbb{R}\mathbf{P}^2$ -structure on M is a representation (uniformization) of M as a quotient Ω/Γ where $\Omega \subset \mathbb{R}\mathbf{P}^2$ is a convex domain and $\Gamma \subset SL(3, \mathbb{R})$ is a discrete group of collineations of $\mathbb{R}\mathbf{P}^2$ acting properly and freely on Ω . (See [5] for basic theory of such structures.) The space of projective equivalence classes of convex $\mathbb{R}\mathbf{P}^2$ -structures embeds as an open subset in the space of equivalence classes of representations $\pi \to SL(3, \mathbb{R})$. The purpose of this note is to show that this subset is also closed.

In [7], Hitchin shows that the space of equivalence classes of representations $\pi \to SL(3, \mathbb{R})$ falls into three connected components: one component C_{-1} consisting of classes of representations for which the associated flat \mathbb{R}^3 -bundle over Σ has nonzero second Stiefel-Whitney class; a component C_0 containing the class of the trivial representation; a component C_1 diffeomorphic to a cell of dimension 16(g-1), which he calls the "Teichmüller component." While C_{-1} can be distinguished from C_0 and C_1 by a topological invariant [3, 4], no characteristic invariant distinguishes representations in the Teichmüller component from those in C_0 . The Teichmüller component is defined as follows. Using the Klein-Beltrami model of hyperbolic geometry, a hyperbolic structure on Σ is a special case of a convex $\mathbb{R}P^2$ -structure Ω/Γ where Ω is the region bounded by a conic. In this case Γ is conjugate to a cocompact lattice in $SO(2,1) \subset SL(3,\mathbb{R})$. The space $\mathfrak{T}(\Sigma)$ of hyperbolic structures ("Teichmüller

Received by the editors August 16, 1991 and, in revised form, October 9, 1991; presented at the first joint meeting of the American Mathematical Society and the London Mathematical Society in Cambridge, England, on July 1, 1992.

¹⁹⁹¹ Mathematics Subject Classification. Primary 57M50, 53A20; Secondary 53C15, 58D27.

The first author's research was partially supported by a grant from TGRC-KOSEF and the second author's research was partially supported by University of Maryland Institute of Advanced Computer Studies and National Science Foundation grant DMS-8902619.

space") is a cell of dimension 6(g-1), which is a connected component of $\operatorname{Hom}(\pi, \operatorname{SO}(2, 1))/\operatorname{SO}(2, 1)$. Regarding hyperbolic structures on Σ as convex $\mathbb{R}P^2$ -structures embeds the Teichmüller space $\mathfrak{T}(\Sigma)$ inside $\mathfrak{C}(\Sigma)$. By [5], the space $\mathfrak{C}(\Sigma)$ of convex $\mathbb{R}P^2$ -structures on a compact surface Σ is shown to be diffeomorphic to a cell of dimension 16(g-1) and $\mathfrak{T}(\Sigma)$ embeds C_1 as the space of equivalence classes of embeddings of π as discrete subgroups of $\operatorname{SO}(2, 1) \subset \operatorname{SL}(3, \mathbb{R})$. Hitchin's component C_1 can thus be characterized as the component of $\operatorname{Hom}(\pi, \operatorname{SL}(3, \mathbb{R}))/\operatorname{SL}(3, \mathbb{R})$ containing equivalence classes of discrete embeddings $\pi \to \operatorname{SO}(2, 1)$.

Theorem A. Hitchin's Teichmüller component C_1 equals the deformation space $\mathfrak{C}(\Sigma)$ of convex $\mathbb{R}\mathbf{P}^2$ -structures on Σ .

In [5, 3.3] it is shown that the deformation space $\mathfrak{C}(\Sigma)$ is an open subset of Hom $(\pi, SL(3, \mathbb{R}))/SL(3, \mathbb{R})$ containing $\mathfrak{T}(\Sigma)$ and hence an open subset of C_1 . Let

$$\Pi: \operatorname{Hom}(\pi, \operatorname{SL}(3, \mathbb{R})) \to \operatorname{Hom}(\pi, \operatorname{SL}(3, \mathbb{R}))/\operatorname{SL}(3, \mathbb{R})$$

denote the quotient map. Also by [5, 3.2], every representation in $\Pi^{-1}(\mathfrak{C}(\Sigma))$ has image Zariski-dense in either a conjugate of SO(2, 1) or SL(3, \mathbb{R}) itself, and hence by [5, 1.12] SL(3, \mathbb{R}) acts properly and freely on $\Pi^{-1}(\mathfrak{C}(\Sigma))$. In particular, the restriction

$$\Pi \colon \Pi^{-1}(\mathfrak{C}(\Sigma)) \to \mathfrak{C}(\Sigma)$$

is a locally trivial principal SL(3, \mathbb{R})-bundle. It follows that $\Pi^{-1}(\mathfrak{C}(\Sigma))$ is an open subset of Hom $(\pi, SL(3, \mathbb{R}))$. Thus Theorem A is a corollary of

Theorem B. $\Pi^{-1}(\mathfrak{C}(\Sigma))$ is a closed subset of $\operatorname{Hom}(\pi, \operatorname{SL}(3, \mathbb{R}))$.

The rest of the paper is devoted to the proof of Theorem B. Arguments similar to the proof are given at the end of the first chapter of [1] and an analogous statement when Σ is a pair-of-pants is proved in [5, §§4.4 and 4.5] (where it is used in the proof of the main theorem). We feel there is a more comprehensive result for compact surfaces with boundary, with a geometric proof.

Assume that ϕ_n is a sequence of representations in Hom $(\pi, SL(3, \mathbb{R}))$ which converges to $\phi \in Hom(\pi, SL(3, \mathbb{R}))$ and that each $\Pi(\phi_n) \in \mathfrak{C}(\Sigma)$. Thus for each *n*, there exists a convex domain $\Omega_n \subset \mathbb{R}\mathbf{P}^2$ such that $\phi_n : \pi \to SL(3, \mathbb{R})$ embeds π onto a discrete group Γ_n acting properly and freely on Ω_n . Furthermore, as discussed in [5, 3.2(1)], each Ω_n is strictly convex and has the property that the closure $\overline{\Omega_n}$ is a compact subset of an affine patch (the complement of a projective line) in $\mathbb{R}\mathbf{P}^2$.

We identify the universal covering of $\mathbb{R}\mathbf{P}^2$ with the 2-sphere S^2 of oriented directions in \mathbb{R}^3 . Denote by $p: S^2 \to \mathbb{R}\mathbf{P}^2$ the covering projection. The group

$$\operatorname{SL}_{\pm}(3, \mathbb{R}) = \{A \in \operatorname{GL}(3, \mathbb{R}) | \det(A) = \pm 1\}$$

acts on S^2 covering the action of $SL(3, \mathbb{R})$ on $\mathbb{R}P^2 = S^2/\{\pm 1\}$. A choice of positive definite inner product on \mathbb{R}^3 realizes S^2 as the unit sphere in \mathbb{R}^3 , and $d: S^2 \times S^2 \to \mathbb{R}$ denotes the distance function corresponding to the induced Riemannian metric. The geodesics in S^2 are arcs of great circles. If $\Omega \subset \mathbb{R}P^2$ has the property that there exists an affine patch $A \subset \mathbb{R}P^2$ such that $\Omega \subset A$ is convex (with respect to the affine geometry on A), then we say that Ω

is properly convex. In that case each component of $p^{-1}(\Omega)$ is convex in the corresponding elliptic geometry of S^2 and there exists a sharp convex cone in \mathbb{R}^3 whose projectivization equals Ω . We shall also refer to a component of $p^{-1}(\Omega)$ as properly convex. (A sharp convex cone in an affine space E is an open convex domain $\Omega \subset E$ invariant under positive homotheties and containing no complete affine line.)

Since an affine patch is contractible, $p^{-1}(\Omega_n)$ consists of two components each of which maps diffeomorphically to Ω_n . Choose one of the components $\Omega'_n \subset S^2$ for each n. Furthermore ϕ_n defines an effective proper action of the discrete group π on Ω'_n whose quotient is a convex $\mathbb{R}\mathbf{P}^2$ -surface homeomorphic to Σ . Moreover, since π is not virtually nilpotent and ϕ_n is a discrete embedding for each n, the limiting representation $\phi = \lim_{n \to \infty} \phi_n$ is also a discrete embedding (see, e.g., [6, Lemma 1.1]). In particular, the image Γ of ϕ is torsionfree and not virtually abelian.

Since the space of compact subsets of S^2 is compact in the Hausdorff topology, we may (after extracting a subsequence) assume that the sequence $\overline{\Omega'_n}$ converges (in the Hausdorff topology) to a compact subset $K \subset S^2$.

Lemma 1. K is invariant under the image $\Gamma = \phi(\pi)$.

Proof. Suppose that $k \in K$ and $g \in \pi$. We show that $\phi(g)k \in K$. Let $\varepsilon > 0$. Now $\phi_n(g)$ converges uniformly to $\phi(g)$ on S^2 ; thus there exists $N_1 = N_1(\varepsilon)$ such that

$$d(\phi_n(g)x, \phi(g)x) < \varepsilon/2$$

for $n > N_1$. Indeed the family $\phi_n(g)$ is uniformly Lipschitz for sufficiently large *n*—let C be a Lipschitz constant, i.e.,

$$d(\phi_n(g)x, \phi_n(g)y) \leq Cd(x, y)$$

for all $x, y \in S^2$ and *n* sufficiently large, say $n > N_2$. Since *K* is the Hausdorff limit of $\overline{\Omega_n}'$, there exist $w_n \in \overline{\Omega_n}'$ such that $w_n \to k$. Thus there exists $N_3 = N_3(\varepsilon)$ such that $d(k, w_n) < \varepsilon/(2C)$ for $n > N_3$. Putting these inequalities together, we obtain

$$d(\phi(g)k, \phi_n(g)w_n) \leq d(\phi(g)k, \phi_n(g)k) + d(\phi_n(g)k, \phi_n(g)w_n)$$

< $\varepsilon/2 + C\varepsilon/(2C) = \varepsilon$

for $n > \max(N_1, N_2, N_3)$. It follows that $\phi(g)k$ is the limit of $\phi_n(g)w_n \in \overline{\Omega_n}'$. Since the Hausdorff limit of $\overline{\Omega_n}'$ equals K, it follows that $\phi(g)k \in K$, as claimed. \Box

Furthermore each $\overline{\Omega_n}'$ is convex in S^2 . Since convex sets are closed in the Hausdorff topology, it follows that K is also convex. (See [2] for more details.) There are the following possibilities for K (compare Choi [2]):

- (1) K is properly convex with nonempty interior.
- (2) K consists of a single point.
- (3) K consists of a line segment.
- (4) K is a great disk (i.e., a closed hemisphere).

We show that only case (1) can arise. The following lemma (whose proof we defer) is used to rule out the last three cases.

Lemma 2. Suppose that F is a nonabelian free group and $h: F \to SL(2, \mathbb{R})$ is a homomorphism which embeds F onto a discrete subgroup of $SL(2, \mathbb{R})$. Then there exists $f \in F$ such that h(f) has negative trace.

In cases (2)-(4), there is either a projective line or a point in $\mathbb{R}\mathbf{P}^2$ which is invariant under the stabilizer G of K. In each of these cases G is conjugate to one of the subgroups of SL(3, \mathbb{R}) consisting of matrices

[*]	0	0]		*	*	*	
*	*	*	,	0	*	*	
*	*	* *		0	*	* * *	

In both cases, there is a homomorphism $\rho: G \to SL(2, \mathbb{R})$ such that if $g \in [G, G]$ then

$$\operatorname{tr}(g) = 1 + \operatorname{tr}(\rho(g)).$$

(We take g to lie in the commutator subgroup so as to assume that the (1,1)-matrix entry and the determinant of the (2×2) -block are both 1.)

We suppose that ϕ_n is a sequence as above converging to ϕ . Since ϕ is a discrete embedding, apply Lemma 2 to the restriction h of $\rho \circ \phi$ to $F = [\pi, \pi]$. We deduce that there exists $\gamma \in \pi$ such that $tr(\phi(\gamma)) < 1$. However, as discussed in [5, 3.2(3)], every $1 \neq \gamma \in \pi$ has the property that $\phi_n(\gamma) \in SL(3, \mathbb{R})$ has positive eigenvalues; in particular, tr $\phi_n(\gamma) > 3$. Since $\phi_n \to \phi$, it follows that tr $\phi(\gamma) \geq 3$, a contradiction.

Thus only case (1) is possible: K is properly convex with interior Ω . Then Γ acts isometrically with respect to the *Hilbert metric* on Ω . Since Γ is discrete, torsionfree, and acts properly on Ω , the quotient Ω/Γ is a closed surface. Since Γ is not virtually abelian, Ω is not a triangular region and by [8] (see also [5, 3.2]) it follows that Ω/Γ is a convex $\mathbb{R}P^2$ -manifold homeomorphic to Σ . This concludes the proof of Theorem B, assuming Lemma 2.

Proof of Lemma 2. By passing to a subgroup of F we may assume that the quotient of the hyperbolic plane by the image of h(F) under the quotient homomorphism $SL(2, \mathbb{R}) \rightarrow PSL(2, \mathbb{R})$ is a complete surface which is homeomorphic to a pair-of-pants P (a sphere minus three discs). Let f_1, f_2, f_3 be elements of $\pi_1(P) \subset F$ corresponding to the three components of ∂P . We choose elements $h(f_j) \in SL(2, \mathbb{R})$ (j = 1, 2, 3) so that $tr(h(f_j)) > 2$ (equivalently, $h(f_j)$ lies in a hyperbolic one-parameter subgroup of $SL(2, \mathbb{R})$). Now $f_1f_2f_3 = 1$ in F but

$$h(\bar{f}_1)h(\bar{f}_2)h(\bar{f}_3) = (-1)^{\chi(P)} = -1$$

(since the relative Euler class of the representation equals -1; compare the discussion in [4, §4]). Since each $h(f_i)$ is hyperbolic, an odd number of f_i must satisfy tr $(h(f_i)) < 2$; in particular, at least one $f \in F$ satisfies tr(h(f)) < 0. \Box

References

- 1. S. Choi, Real projective surfaces, Doctoral dissertation, Princeton Univ., 1988.
- 2. ____, Compact $\mathbb{R}\mathbf{P}^2$ -surfaces with convex boundary I: π -annuli and convexity (submitted).
- 3. W. Goldman, Characteristic classes and representations of discrete subgroups of Lie groups, Bull. Amer. Math. Soc. (N.S.) 16 (1982), 91-94.

- 4. ____, Topological components of spaces of representations, Invent. Math. 93 (1988), 557-607.
- 5. ____, Convex real projective structures on compact surfaces, J. Differential Geom. 31 (1990), 791-845.
- 6. W. Goldman and J. Millson, Local rigidity of discrete groups acting on complex hyperbolic space, Invent. Math. 88 (1987), 495-520.
- 7. N. J. Hitchin, Lie groups and Teichmüller space, preprint, Univ. of Warwick, 1991.
- 8. N. H. Kuiper, On convex locally projective spaces, Conf. Internat. Geom. Diff. Italy, 1954, pp. 200-213.

Topology and Geometry Research Center, Kyungpook National University, 702–701 Taegu, Korea

Department of Mathematics, University of Maryland, College Park, Maryland 20742

E-mail address: wmg@sofya.umd.edu