
Invent. math. 93, 557-607 (1988) Inventione$ 
mathematicae 
�9 Springer-Verlag 1988 

Topological components of spaces of representations 

William M. Goldman 
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Let S be a closed oriented surface of genus g > 1 and let ~r denote its fundamental 
group. Let G be a semisimple Lie group. The purpose of this paper is to investi- 
gate the global properties of the space Hom(rc, G) of all representations n ~ G ,  
when G is locally isomorphic to either PSL(2, C) or PSL(2, R). The main results 
of this paper may be summarized as follows: 

Theorem A. (i) Let G be the n-fold covering group of PSL(2, R). Then the number 
of connected components of Hom(n, G) is given by the following formula: 

2 n zg + ( 4 g  - 4)In - 1 /f n l 2 g - 2  

/f n X 2 g - 2 .  

For example Hom(n, SL(2, R)) has 22g+1-k 2 g - 3  components. 
(ii) Let G=SO(3) or PSL(2, C). Then Hom0r, G) has exactly two connected 

components. I f  G = SU(2) or SL(2, C) then Hom0r, G) is connected. 

Since rt is a finitely generated group, the space Hom0r, G) is a real analytic 
variety whenever G is a connected Lie group, and is a real affine algebraic 
variety whenever G is a linear algebraic group over R [3, 18, 27, 32]. The 
group G acts on Hom(Tr, G) by conjugation and the orbit space will be denoted 
by Horn(n, G)/G. Geometrically, the G-orbits on Hom(Tr, G) parametrize equiva- 
lence classes of fiat principal G-bundles over S and the space Hom(n, G)/G 
is the deformation space of flat G-bundles over S. The characteristic classes of 
G-bundles determine invariants of representations n ~ G. When :r is the funda- 
mental group of a closed surface and G is a connected Lie group, the only 
invariants lie in the cohomology group H2(S; lq(G))~ n~(G) (using the orienta- 
tion on S). There is an obstruction map 

o2: Horn(re, G)~  H2(S; rq(G))~-zq(G). 
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When G=PSL(2, R), this invariant equals the Euler number of the associated 
RPl-bundle over S, an integer since na (G)_---Z. The resulting map 

e: Horn(n, G)~H2(S;  Z ) - Z  

disregards the flat structure on a flat principal G-bundle yet expresses the 
isomorphism class of the principal G-bundle. Similarly, when G=PSL(2, C), 
the resulting invariant 

w2: Hom(Tr, G)~  H2(S; Z/2)_~Z/2 

is the second Stiefel-Whitney class of the associated H3-bundle over S. 

Theorem B. (i) Let G= PSL(2, R). The connected components of Horn(re, G) are 
the preimages e- ~ (n), where n is an integer satisfying t nl<<_ 2 g -  2. 

(ii) Let G= PSL(2, C) or SO(3). The connected components of Hom(rc, G) are 
the two preimages of w2: Hom(~,G)~Z/2.  I f  G=SL(2, C) or SU(2), then 
Hom(rc, G) is connected. 

The inequality te(h)l<lx(S)l is due to Wood [41], based on earlier work 
by Milnor [31], who treated the case G=SL(2, R). In particular Milnor was 
the first to notice the existence of fiat oriented 2-plane bundles over surfaces 
which are nontrivial. Theorem B can be used to deduce the following, which 
was originally proved in the author's doctoral dissertation [8] : 

Corollary C. Let q~Hom(~, PSL(2, R)). Equality holds in the Milnor-Wood in- 
equality, i.e. le(r  Ix(S)l, if and only if r is an isomorphism of rc onto a discrete 
subgroup of PSL(2, R). 

There are several directions in which Theorem B may be generalized. In 
his Maryland thesis [241 Jankins determined the components of 
Hom(zc, PSL(2, R)), where zc is an arbitrary cocompact Fuchsian group whose 
quotient is not a sphere; that exceptional case is handled in [25]. A generaliza- 
tion of Corollary C to the case when G is the group of orientation-preserving 
homeomorphisms of the circle has been given by S. Matsumoto [30] which 
builds upon work by E. Ghys [7]. For a conjecture generalizing Corollary C 
to cocompact lattices in semisimple Lie groups, see Goldman [10]. For an 
extension of Corollary C to representations into PU(n, 1), see Toledo [38]. 

The proof of Theorem B(i) involves certain decompositions of the surface 
S, and a corresponding relative version of Theorem B for compact oriented 
surfaces with boundary. Our philosophy (compare [8, 15, 16, 20, 37]) is that 
compact surfaces of Euler characteristic - 1 and - 2 are the "building blocks" 
of compact surfaces of negative Euler characteristic - every surface may be 
decomposed into subsurfaces of Euler characteristic - 1 and two adjacent sub- 
surfaces of Euler characteristic - 1  form a subsurface of Euler characteristic 
- 2 .  If S is a compact surface with nonempty boundary, then nl(S) is a free 
group of rank 1 -  x(S) and Hom (n, G)~, G 1 -x~s) is connected. Thus to nontrivial- 
ly generalize Theorem B we must impose boundary conditions on the represec~'-a- 
tions (or the bundles) involved. The most convenient method for imposi~g 
boundary conditions for representations n ~ G = P S L ( 2 ,  R) is to assume ~,~at 
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a representation ~b e Hom (re, G) maps, for each boundary component C, the corre- 
sponding element of zq(S) to a non-elliptic element of G. Since a non-elliptic 
element of G lies on a unique one-parameter subgroup of G, there is a canonical 
trivialization of the associated flat bundle over OS. Given such a representation 
~b, there is a relative Euler class e(~b) which lies in H2(S, OS; Z)'~ Z. 

Theorem D. Let S be a compact oriented surface with boundary and let W(S) 
denote the set of all representations ~beHom0r, G) such that for each boundary 
component C of S, the corresponding element of rr is mapped under d? to a hyperbol- 
ic element. Then the relative Euler class e(qS) satisfies an inequality 

e(q~)=<JZ(S)j, 

with equality holding if and only if ~p is an isomorphism of ~ onto a Fuchsian 
group F such that the quotient H2/F is homeomorphic to the interior of S. Further- 
more the connected components of W(S) are the preimages of the relative Euler 
class map 

e: W(S)---~ H2(S,(~S; Z ) ~ Z .  

The proof of (ii) in Theorem B is considerably simpler than the proof of 
(i), due to the better behavior of polynomial maps over the complex numbers. 
It seems that the following generalization of Theorem B(ii) is plausible: 

Conjecture. Suppose ~ is the fundamental group of a closed oriented surface S 
of genus g >  1. Let G be a connected complex semisimple Lie group. Then the 
connected components of Hom(Tz, G) are the preimages of the obstruction map 
02: Horn (r~, G) ~ H 2 (S; rq (G))-  ~zl (G). In particular the number of components 
of Hom(n, G) equals the order of nl(G). 

(When G is not necessarily an algebraic group (e.g. when G is the reduced 
Heisenberg group), then Horn(re, G) may have infinitely many components and 
therefore cannot be a real algebraic set (Goldman [9]).) 

Recently N. Hitchin [22], using quite different analytic techniques, has deter- 
mined the topological types of the components of Hom(~z, PSL(2, R))/PSL(2, R) 
and the Betti numbers of Hom(n, PSL(2, C))/PSL(2, C) where ~=~1(S) is the 
fundamental group of a closed orientable surface S of genus g > 1. In particular 
his results imply Theorem B above. Specifically he has shown that for 
0 < k < 2 g - 2  the component e - l ( 2 - 2 g + k )  is a complex vector bundle over 
the k-th symmetric power of the surface S. It seems quite plausible that there 
is a similar description of the components of W(S) where S is a compact surface 
with boundary. 

w 1. The Lie groups 

In this preliminary section we establish notation and collect basic facts concern- 
ing the geometry of the relevant Lie groups. We begin by discussing the complex 
groups SL(2, C) and PSL(2, C). 
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1.1. The group SL(2, C) consists of all complex 2 x 2-matrices having determi. 
nant one. Its center is the group of scalar matrices _ I. There are three conjugacy 
classes of complex algebraic subgroups of SL(2, C) other than {I}, { +I} and 
SL(2, C) itself: the complex Cartan subgroup consisting of all diagonal matrices; 
the Borel subgroup consisting of upper-triangular matrices; the parabolic one- 
parameter group consisting of unipotent upper-triangular matrices. An element 
of SL(2, C) is semisimple if it is diagonalizable over C; equivalently X~SL(2, C) 
is semisimple if and only if X = + I or tr X 4: 2. Two semisimple elements are 
conjugate if and only if they have the same trace. A parabolic element of SL(2, C) 
is one which is not semisimple; one can see that there are two conjugacy classes 
of parabolic elements tr-l(2) - {I} and t r - ~ ( - 2 ) -  { - I } .  

The symmetric space of SL(2, C) is the real hyperbolic 3-space H 3. A Cartan 
subgroup can be geometrically understood as the stabilizer of a geodesic in 
1-I 3 and the Borel subgroup is the stabilizer of an ideal point in H a. It is easy 
to see that if X, Y~SL(2, C), then the following conditions are equivalent: 

(i) X, Y fix a common ideal point on the boundary t~H3; 
(ii) X, Y generate a reducible representation on C2; 

(iii) X, Y lie in a common Borel subgroup. 
The quotient group PSL(2, C)=SL(2, C)/{+_I} acts effectively on H 3 and 

in fact equals the group of all orientation-preserving isometries of H 3. 

1.2. Next we discuss groups locally isomorphic to PSL(2, R). Recall that 
PSL(2, R) = SL(2, R)/{ _ I}. For another discussion of this material, see Kulkarni- 
Raymond [26]. 

Let G denote the group PSL(2, R). Let g denote the Lie algebra of G. We 
observe that the Killing form on g defines an indefinite quadratic function Q: 
g--*R which is invariant under the adjoint representation. Thus the adjoint 
representation embeds G in the group S0(2, 1), which for the rest of this section 
we denote by G*. Note that under this embedding G is the connected component 
of the identity in G*. 

Geometrically G* is the full group of isometries of its symmetric space, the 
hyperbolic plane H 2, which may further be identified (using the upper-half-space 
model for H 2) with the projective linear group PGL(2, R). Its identity component 
PSL(2, R) consists of the orientation-preserving isometries of X and the isotropy 
group of G acting on H 2 is the maximal compact subgroup PSO(2)cPSL(2, R) 
is the image of SO (2) c SL(2, R) under the homomorphism SL(2, R)--+ PSL(2, R). 
It follows that G acts simply transitively on the unit tangent bundle T~ X of 
the hyperbolic plane; hence topologically G is an open solid torus. 

Conjugacy classes in SL(2, R) are essentially determined by the trace function 
tr: SL(2, R)-+II. If the absolute value of the trace of A~SL(2, R) is greater than 
2, then the corresponding element of G acts as a translation along a unique 
geodesic 7. If the element translates along 3: by a distance d, then the correspond- 
ing matrix has trace _+ 2 cosh d/2. Such a transformation is said to be hyperbolic, 
and the subset of G consisting of hyperbolic elements will be denoted by Hyp. 
We shall call the distance d the displacement of A. Two hyperbolic elements 
are conjugate in G (resp. G*) if and only if their displacements are equal. If 
the absolute value of the trace of A equals 2, then A fixes a unique ideal point 
of X and translates points along the horocycles centered there. Such a transfor- 
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mation is said to be parabolic; the set of all parabolic elements of G will be 
denoted Par. All parabolic transformations are conjugate in G*, although they 
fall into two G-conjugacy classes, denoted Par +, Pa r - ,  depending on whether 
elements move ideal points in the positive or negative direction on the circle 
at infinity. The two G-conjugacy classes of parabolic elements are inverses of 
each other. If the absolute value of the trace of A is less than 2, then A fixes 
a point in H 2 about which it acts as a rotation through an angle 0, where 
the trace of A equals 2 cos 0/2; such an element is called elliptic. The subset 
of G consisting of elliptic elements is denoted by Ell. 

The adjoint representation leads to the Klein-Beltrami model of hyperbolic 
geometry as follows. Form the projective space RP 2 of lines in g. (Since lines 
in g correspond to one-parameter subgroups in G, we may just as well form 
a "projective space" of one-parameter subgroups in G.) The zero-locus of the 
homogeneous quadratic function Q is a conic C c RP 2, whose complement con- 
sists of two components. One complementary component is convex and is a 
model for the hyperbolic plane; hence we call it X c Rp2; the other component 
is homeomorphic to a M6bius band and will be called X*. (It points correspond 
to the geodesics in X, i.e. the lines in RP 2 which intersect X. Dually, the points 
of X correspond to the lines in X*.) The conic C then becomes the sphere-at- 
infinity of the hyperbolic plane X, the points of which are the ideal points 
of X. 

We shall need some notation concerning subsets of the universal covering 

group G=SL(2,  R ' ~ " )  of G. Since rCl(G)=Z, the group G is homeomorphic to 
R 3 and its center is infinite cyclic. Let Z denote the center of G, and let z~Z  
be a generator. Since the action of G on the circle C lifts to an action of 
on the universal cover we may specify z in terms of the action of d on the 
universal cover C of the circle C: we choose the generator z so that it translates 
points on ~ in the positive direction. Alternatively, let 

ex"~: g ~  

denote the exponential map for d. Then for any integer n, z n can be defined 
in terms of the exponential map by: 

We shall derive a description of the conjugacy classes in d as follows. Say 
that an element of G is hyperbolic (resp. parabolic, elliptic), if it maps to an 
element of G which is hyperbolic (resp. parabolic, elliptic). The subsets of 
consisting of hyperbolic, elliptic, and parabolic elements fall into infinitely many 
components, indexed by Z. Let Hypo denote the set of exponential hyperbolic 
elements, i.e. those hyperbolic elements of d which lie on one-parameter sub- 
groups. For  any n~Z, we define Hypn=znHypo �9 Furthermore associating to 
a hyperbolic element its invariant axis and its displacement defines a map 
Ilypn ~ X* x R +, which one sees easily is a double covering. 
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Par_* 2 Par- 1 Par_" 1 Par o Par o Par; Par~ Par~ 

Fig. 1 

Similarly we define sets Paro, Par~-, Paro to be the components of the inverse 
images of the sets Par, Par + , Par-  which meet one-parameter subgroups. More- 
over subsets Par,, Par +, Par.- are defined by Par~ = z" Paro ~, etc. 

Elliptic elements in ~ all lie on one-parameter subgroups, and every elliptic 
one-parameter subgroup contains the center Z of G. If K is an elliptic one- 
parameter subgroup, then K - Z  has infinitely many components. For example, 
consider the elliptic one-parameter subgroup consisting of all 

, - ~ 0  A(0)=exP[0 --0]=[cos0 - s in0 ]  
0 J [sin0 cos0J  

where 0~R. If O=nTr, then A(0)=z" lies in the center of ~. If n>0  we denote 
by Ell. (resp. Ell_.) the subset of all elements of ~ conjugate to A(O) (resp. 
A(--0), where (n -1 )n<Onu) .  Note that Ell o is undefined. It is easy to see 
that associating to an elliptic element its fixed point and its rotation angle 
defines a homeomorphism Ell. ,~ X x (0,2 7r). 

Thus the group G is decomposed into the following subsets: its center 
Z =  {z': neZ}, classes of hyperbolic elements Hyp., and two classes of parabolic 
elements Par, + and Par.-- where nEZ and classes of elliptic elements Ell., where 
n~Z, n~0. If u~G, then its trace is defined by t ru=tr l l (u) ,  where fl: 
~1 --. SL(2, R) is the universal covering. (Compare Fig. 1.) 

1.3. The following technical lemma will be useful in the sequel. 

Lenuna. Let G=PSL(2, R) and suppose that {~,}o~t_<l and {qt}o=<t_~ are two 
piecewise smooth paths in G - { I }  such that for each O<_t<_ 1, the elements ~t 
and qt are conjugate. Suppose that each path is transverse to the subset Par (e.g. 
if the maps t~--~ltr ~'tl and t~--~[tr ~1 have 2 as a regular value). Then there exists 
a path {Y,}o___,~l such that ~,=ytq, y7 ~. 

Proof The interval [0, 1] can be decomposed into subintervals [a, b] such that 
either ~t (and thus also ~h) is hyperbolic for all a<t<b ,  or ~, (and q,) is elliptic 
for all a < t < b ,  or ~t (resp. qt) is parabolic for exactly one t~[a,b]. Let Xo aX 
and x*~X* be arbitrary points. For each of these types of intervals, we find 
a particular type of path in G: for example, if ~, is elliptic for all a < t < b, 
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then choose a path uteG such that ut maps the unique fixed point Fix(r of 
r to xo~X.  Similarly choose a path vteG such that vt maps Fix(qt) to Xo. 
Then, since an elliptic element is determined by its conjugacy class in G and 
its fixed point, it follows that yt=u~ -~ vr conjugates ~/t to ~t as claimed. In an 
interval (a, b) where Ct and qt are hyperbolic, let Fix(~t) and Fix(~/t) denote the 
unique fixed points of Ct and qt in X* c RP 2. Two conjugate hyperbolic elements 
which have the same fixed point in X* are either identical or inverse. Thus 
u~-~vt conjugates ~h to either ~t for all t satisfying a < t < b  or to ~71 for all 
t satisfying a <  t<b .  In the former case take yt=u~ -1 vt; in the latter case let 
yt= u~-1 vt at where at is a continuous path in G consisting of elliptic elements 
of order two fixing points on the geodesic invariant under ~t- Then for all 
t~(a, b), we have ~t = Yt ~/~ Y,- 1. 

Consider next the case that (a, b) is an interval such that ~t (and hence 
q~) is parabolic for exactly one value of t. We claim that there exists a path 
ute G such that ut et u~- ~ is represented by the matrix 

[ 0 1  trT~l 

for each a < t < b where ~'t is a lift of ~t to SL(2, R). To this end consider the 
action of ~t on RPI: there exist paths xt, yt in RP 1 such that xtW-yt and such 
that ~t(xt)=yt. Choose a path w, such that w~l([1, 0] )=x,  and w~l([0, 1])=yt.  
Then wt ~t wt -1 takes [i ,  0] to [0, 1] and thus wt "(t w; -1 is represented by a matrix 

Taking 

Ut 

[b 01 trot]" 

the claim is proved. Choose a lift /'h of t h such that tr/h = tr (t- As above, we 
find a path vt such that vt ~t vt--1 is represented by the matrix 

[o 
for each a < t <  b. Since t/, and ~t are conjugate, it follows that the signs on 
u,~/t ut- 1 and vt ~t v~- 1 must be equal, and indeed ut r/t u71 = vt ~t v71. Letting Yt 
= v~- 1 ut, we have ~t = Yt rh Yi- 1. 

Thus we have found an open covering of the interval [0, 1] by intervals 
(a,b) for which there exist paths Yt such that ~t=Ytrlty1-1 for each t~(a, b). It 
remains to find a path Yt defined for all t e l0 ,  1] such that ~t=YtrhY~ -x over 
all of [0, 1]. We may assume that each point t~ [0, 1] lies in at most two intervals 
(a, b) and (a', b'), where a < a ' < b < b ' .  Furthermore we may assume that for 
te(a', b), the elements ~t, qt are either elliptic or hyperbolic. Let Yt and Y't be 
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the corresponding paths. For each te(a', b) let Ct denote the set of all y such 
that y qt Y- ~ = ~t; then the union 

Uc, 
a ' < t < b  

is a principal fibration over (a', b) for which the paths Yt and Y't are sections. 
The structure group of this fibration is the centralizer of ~t, which is connected; 
thus there exists a section 3~t which agrees with yt for a ' <  t < a ' +  e and agrees 
with Y't for b < t < b + e for some e > 0. This gives a well-defined path 37t for 0 < t__< 1 
conjugating qt to ~,. [] 

P a t h  l i f t i ng  

1.4. All of the spaces we shall be considering in this paper will be semi-analytic 
sets and therefore locally path-connected (indeed, such sets are triangulable, 
see Hironaka [21]). Thus for us the notions of connected components and path- 
connected components agree. It will sometimes be technically easier for us to 
work with path-connectedness rather than connectedness. The following general 
lemma will be useful in this regard. We shall say that a map f :  X---, Y satisfies 
the path-lifting property if for every x E X  and path {Yt}o<-t<-l, with f(x)=yo. 
there exists a nondecreasing surjective map (a reparametrization of the path) 
z: [0, 1]--*[13, 1] and a path {xs}0_<s_<l such that f(xs)=y~(~) for 0 < s < l  and 
Xo =x.  In other words, up to possibly reparametrizing the path, every path 
starting from f ( x )  and lying in the image of f can be lifted to a path starting 
from x. 

Lemma. Let X, Y be smooth manifolds and let f :  X ~ Y be a smooth map. Suppose 
that F is a group acting on X such that f~  = f  for 7~E Suppose that for each 
y~ Y, the following two conditions are satisfied: 

(a) There exists x ~ f - l ( y )  such that the differential o f f  at x is surjective; 
(b) F acts transitively on the path-components of  f - l ( y ) .  
Then f :  X ~ Y satisfies the path-lifting property. Furthermore, if Y is path- 

connected and F is trivial, then X is path-connected. 

Proof. It follows by the implicit function theorem and hypothesis (a) that for 
each te l0 ,  1], there exists Yq~f-l(yt)  and e(t)>0, and local lifts {~},_~l,~<s<~+,t,l 
such that ~tt=Y~ , and f ( s  whenever t - e ( t ) < s < t + e ( t ) .  (We extend {Y,} 
to a path on a neighborhood of [0, 1] by making it locally constant outside 
EO, 12.) 

The collection of intervals ( t -  e(t), t + e(t)) covers [13, 1], so there exists 

t o < O < t  I < . . .  < tin_ 1 < 1 < t m  

and a collection of local lifts {x]~ <s<,,_,. Choose real numbers ul . . . . .  us with 

u l~O,  tt~Ui+l ~ti+x, Um~ l. 
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Then we may define a path {x,} as follows. Since F acts transitively on the 
path components of f-~(Yo), there exists yoeF and a path from Xo to 2~oxCo ~ 
Composing this path with {yoX~~ we obtain a lifted path xo to x~,. Since 

1 2 f-l(y,,l) is path-connected, there exists h e F  and a path from x~, to hx~l. 
Compose this path with {hx~},,__<s=<=~, etc. Continuing in this way we obtain 
the desired path. 

Suppose that Y is path-connected. We claim that F acts transitively on 
the path-components of X. Given x , x ' e X ,  we shall find y e F  and a path 
{X~}o=<~_<_i in X such t h a t x o = x  and x~=~x'.  To this end join f (x )  and f(x ')  
by a path {Yt}o__<t~x; by the preceding argument there exists a nondecreasing 
surjective map r: [0, 1 ]~ [0 ,  1] and a path {xs}0___,=<l such that f ( x , ) = y , , ) f o r  
0 < s < 1 and x 0 = x. Since F acts transitively on the path components o f f -  t(Yl), 
there exists y e F  such that xl can be joined by a path inside f - l ( y t )  to yx'. 
Composing with the preceding path, we obtain a path from x to x', proving 
the claim that F acts transitively on the path components of X. If F is trivial, 
then X is path-connected. [] 

w 2. Spaces of representations 

The purpose of this section is to discuss the general structure of the spaces 
Hom(rt, G), when rc is a finitely generated group and G is a Lie group. We 
then specialize to the case when u is the fundamental group of a surface and 
G is locally isomorphic to PSL(2, R) or PSL(2, C). Invariants are given which 
distinguish connected components of the spaces Hom(u, G) in certain cases. 
The term "connected component" will always refer to connected components 
in the classical (Hausdorff) topology rather than the Zariski topology, unless 
otherwise noted. 

2.1. Let G denote a Lie group and n a finitely generated group. Suppose that 
n has a presentation 

(A1 . . . .  , A,nlRt(AL, ..., A,,,) . . . . .  I>. 

Let Hom(n, G) denote the set of all homomorphisms 7r ~ G. Then the evaluation 
map on the generators 

q~v--~(~b(A1), ..., q~ (Am)) 

defines a map Hom(u, G)~G",  which is injective since {A 1 . . . .  , An,} generates 
~t. Furthermore its image is the analytic subvariety of G" consisting of all m- 
tuples (xl . . . .  , x,,)eG m such that R~(xl . . . .  , Xm)= 1 for each relation Ri. We shall 
henceforth identify Horn (re, G) with this analytic variety. If G is a linear algebraic 
group (with entries in a field K, and defined over a field k), then Hom(rc, G) 
Is the group of K-points of an algebraic variety defined over k. In particular, 
if G is a real linear algebraic group, then Hom(rt, G) is a (not necessarily irreduc- 
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ible) real algebraic variety. Suppose that f :  G ' ~ G  is a local isomorphism of 
Lie groups. Composition with f defines a map 

f . :  Hom(n, G) ~ Hom(~r, G'). 

2.2. Lemma (Compare Culler [2]). The image of f . :  Hom(n, G)-+Hom(n,G') 
is a union of  connected components of Horn(n, G'). Let  C be a component of 
the image o f f . :  Horn(n, G ) ~ H o m ( n ,  G'). Then f , :  f , I ( C ) ~ C  is a covering map 
with covering group the abelian group Horn(n, Ker(f)).  

Proof  Clearly we may replace G by the image f (G')  and hence assume that 
f is surjective. Then f induces a map f " :  G " ~ G "  which is a regular covering 
with covering group (Ker r )  ~. Now Horn(n, G) (resp. Horn(n, G')) is identified 
with the subset of G m (resp. G TM) consisting of all m-tuples (xl . . . . .  x , )  satisfying 
the relations R i ( x l , . . . , x ~ = I  for each i. We claim that given any x' 
~ ( X l  ~ i i m  ' ..., x,,)~ G satisfying the relations Ri(x'~ . . . . .  x;,) = 1, and any continuous 
path 

x( t )  = (xl (t) . . . . .  x , . ( t ) )e  G m 

satisfying R~(xa(t) . . . . .  xm(t)) = 1, 0 < t N  1 and f ,  (x~(O))= x'i, there exists a unique 
continuous path 

t t t m  x'(t) = (xl (t) . . . .  , x .  (t)) e G 

satisfying Ri(x'l(t) . . . . .  x~,(t))= 1 with f , (x ; ( t ) )=xi ( t )  and x'i(O)=x'i. Since fro: 
G ' ' ~ G  m is a covering map, there exists a unique lift x'(t)~G 'm of x(t)EG m. 
We must prove that this lift lies in Hom0r, G'). Since 

1 = Ri(xl  ( t ) , . . . ,  x .  (t)) = f ( R ,  (x'~ (t) . . . . .  x~ (t))), 

it follows that Ri(x'l(t) , . . . ,  x'~(t)) describes a continuous path in (Ker f )  m, which 
must be constant since K e r f  is discrete. Thus for each t, 

Ri(x'l(t) , . . . ,  x~(t)) = Ri(x'l(O) . . . .  , x~,(0)) = 1 

whence the lift of a (xl(t) . . . . .  Xm(t)) is a path of homomorphisms. Suppose that 
~b': zr ~ G' is a homomorphism and that ~/: rr ~ K e r f  is a homomorphism. Since 
Ker f is central in G', there is a homomorphism t/q~': rr-- G' defined by 

r x ~ , 7 ( x )  r  

Clearly f ,  (t/ ~') = f ,  (q~'). In this way Hom(n, K e r f )  acts on Hom(lr, G') leaving 
invariant the mapping f , :  Hom(n ,G ' )~Hom(n ,G) .  Conversely, given two 
homomorphisms ~b~,~b~Hom(n, G') such that forby=forby,  there is a hor~O- 
morphism t/: r r -~Ker f  such that ~ = t / ~ .  For  each xEzc, 

t/(x) = 4)~ (x) qSi (x)-t  e Ker f 

and since Ker f is central, t 1 defines a homomorphism. []  
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2.3. Corollary. Let G be a semisimple Lie group with finite center and ~z be a 
finitely generated group. Then Hom(~z, G) has finitely many connected components. 

Remark. This is not true for groups which are not semisimple or algebraic. 
In Goldman [9] an example is given of a non-simply connected nilpotent Lie 
group G for which Hom(Tz, G) has infinitely many connected components. 

Proof If G is a real linear algebraic group, then Hom(rc, G) is a real algebraic 
variety. Any real algebraic variety has finitely many components by Whitney 
[40]. Otherwise note that the automorphism group Aut((r of the Lie algebra 
f~ of G is a linear algebraic group for which the adjoint representation Ad: 
G-~Aut(f~) is a local isomorphism with finite kernel. Now apply Lemma 2.2. []  

Obstruction classes 

2.4. Now we shall suppose that M is a closed oriented surface of genus g > 1 
with fundamental group re. Then ~ has a presentation 

< A,, B, . . . . .  A,, B, I R,(A,, B, . . . . .  A,, B,) = I>, 

where the relation Rs(A1, Bl, . . . ,A, ,  B,)=[A1, BI] ... [A,, B,] is a product of 
commutators [A, B] =ABA -~ B -1. Hence Hom(Tz, G) may be identified with the 
analytic variety 

{(al, bl . . . . .  a,, b,)eG2*: R,(al, bl, ..., a,, b,)=I}.  

When G is semisimple, it is well known (see e.g. Goldman [11]) that the rank 
of the map R,: G 2. ~ G at a point (al, bl, ..., a,, b,)e G 2. equals the codimension 
in G of the subgroup centralizing the set {at, bl, ..., a,, b,}. Thus Horn(n, G) 
is smooth at all qSeHom(n, G) such that the centralizer Z(~b) of the image ~b(Tt) 
in G is discrete. It is an interesting question for which Lie groups is this subset 
dense: for Lie groups locally isomorphic to PSL(2, R) or PSL(2, C), it is dense; 
however for SU(2, 1), it is not dense ([12], see also [17]). 

For G connected and locally isomorphic to PSL(2, R) or PSL(2, C), the condi- 
tion that a homomorphism c beHom(n,  G) satisfy dim Z(~b)> 0 is equivalent to 
the condition: ~b(Tz) is abelian and if G=PSL(2,C) then ~b(rc) is not conjugate 
to Z/2~3Z/2 ~ SO (3) c PSL(2, C). 

2.5. There is a family of invariants of representations ~beHom(n, G) which pro- 
vides the key for understanding the topology of Horn(n, G). These obstruction 
classes arise as follows. Let qbeHom(n, G), M a space with fundamental group 
7t and let X be a space upon which G acts. Then the flat (G, X)-bundle over 
M with holonomy ~ is the bundle over M having total space the quotient of 
t~•  by the action of r~ given by ?: (g, x)~-qT g, ~b(?) x). We shall denote this 
total space by X, .  Then topological invariants of (G, X)-bundles over M are 
invariants of representations ~beHom(n, G). In particular, the obstructions to 
the triviality of the bundle (i.e. to finding a section of the principal bundle) 
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are topological invariants of the bundle. (See Steenrod [35] for an account 
of obstruction theory.) For example, if G is not connected, then the first obstruc- 
tion to the existence of a section of the principal bundle (i.e. a trivialization) 
is a class ol(~b) in Hi(M; no(G))~Hom(n, no(G)) obtained by composing ~b: n~G 
with the epimorphism G~no(G ). For example, if G is GL(n,R) or O(n), then 
the two components of G are distinguished by whether they preserve or reverse 
orientation on R n. The first obstruction ol(~b) in this case is just the first Stiefel- 
Whitney class of the associated flat vector bundle R$. 

We shall usually assume that G is connected, in which case the first obstruc- 
tion is identically zero. One may say that the first obstruction is the obstruction 
to reducing the structure group of G~ from G to its identity component G ~ 
i.e. reducing the structure group by the inclusion G O ~ G. The second obstruction, 
then, may be defined as the obstruction to lifting the structure group from 
G to its universal covering ~, i.e. reducing the structure group by the homo- 
morphism ~ ~ G. The second obstruction is a class 0 2 ((~)~ H 2 (S ;  TC 1 (G)). 

Suppose that M is a closed oriented surface of genus g >  1. In that case 
the fundamental cycle on M determines an isomorphism H 2 (M, nl(G))= hi(G). 
Then the image of the second obstruction in nl(G) may be described group 
theoretically as follows: Let A1, B~ . . . . .  A 8, Bg be the generators of n in its stan- 
dard presentation. Choose lifts ~(Ai), ~(Bi) of the images q~(Ai), ~b(Bi) to G. Evalu- 
ating the relation 

Rg(~(A~), ~(B~) . . . . .  ~(A~), ~(Bg)) 

gives an element of 

Ker(~ ~ G)-~ nl (G), 

which is independent of the chosen lifts (any two lifts differ by an element 
of nl(G)c center(G)). Thus the second obstruction defines a map 

02: Hom(n, G)~nl(G) 

which expresses a topological property of a flat G-bundle. By the covering homo- 
topy property, a family of G-bundles over a contractible space must be trivial 
and hence since Horn(n, G) is locally contractible, the map 02 is locally constant 
(i.e. continuous) (compare [18], 4.5.). Thus 02 defines an invariant of the con- 
nected components of Hom(n, G). 

When G = SL(n, R), then 02 (q~) is the second Stiefel-Whitney class (resp. Euler 
class) of the associated fiat vector bundle R~ over M when n > 2 (resp. n = 2). 
For other groups, there are similar interpretations as Euler classes and second 
Stiefel-Whitney classes. If G=PSL(2, R), then o2(~b) is the Euler class of the 
associated oriented circle bundle (where the fiber O X = R P  1 has the natural 
action of G). Alternately, one may form the associated oriented 2-disc bundle 
X, ;  since the fibers are contractible, there exists a smooth section tr: M-~X,. 
The exponential map on each fiber defines a fiber diffeomorphism between the 
normal bundle to tr~X, and X, .  Thus the bundle X ,  is a (nonlinear) 2-plane 
bundle and its Euler class is the second obstruction. If G = PSL(2, C), then the 
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associated Ha-bundle is an oriented 3-disk bundle and similarly its second Stiefel- 
Whitney class may be defined, which also is a second obstruction class. In 
all of these cases, we shall write the obstruction classes as e(tk) or w2(~b ) rather 
than o2(tk). The proofs that this construction yield the claimed characteristic 
classes are standard and can be found, e.g. in Milnor 1-31] or Hirzebruch [23]. 

w 3. Surfaces with boundary 

In this section we state a generalization of theorem B to surfaces with boundary. 
We shall need to impose boundary conditions in order to define a relative 
Euler class of suitable flat bundles over surfaces with boundary. 

3.1. Let M be a compact oriented surface with boundary, and let n=nt(M) 
be its fundamental group. If G is a connected Lie group and q~eHom(n, G) 
is a homomorphism which determines a flat principal G-bundle G~ ~ M ,  then 
G~ is trivial as a principal G-bundle (the obstructions take values in the groups 
Hi(M; ni_~(G)) which are all zero). Thus there are no characteristic invariants 
of flat bundles over surfaces with boundary. One may also see this by noting 
that since n is a free group, 

Hom(~, G) ~ G k 

is already connected. Thus boundary conditions are necessary in order to obtain 
nontrivial invariants of flat bundles over surfaces with boundary. 

The most natural approach is to trivialize the bundle over the boundary 
and try to extend this trivialization over M. In other words, we fix a section 
cr of G4,1o M and consider the obstruction to extending a to a section of G~ 
over M. This obstruction, of course, will depend on the choice of trivialization 
over the boundary. Thus it will be useful to find natural conditions under which 
the flat structure determines a trivialization over the boundary. 

Suppose that C~dM is a boundary component. Choose a holonomy homo- 
rnorphism nl(C)~G for the flat bundle over C; let heG be a generator of 
the image of this homomorphism. Then using a homeomorphism C g R/Z, the 
corresponding fiat principal bundle P over C may be identified with the quotient 
of R x G by the equivalence relation 

(t, g),,~ (t + n, h"g) 

where neZ.  A trivialization of P then corresponds to a map f :  R--,G which 
is Z-equivariant in the sense that f ( t  + n)= h-"f(t) for each n~Z. We may norma- 
lize the trivialization by requiring that f ( 0 )=  I. Clearly if h = I, then the flat 
bundle is trivial as a flat bundle, and enjoys a natural trivialization. Suppose 
that h ~ I  and that ~,: R ~ G  is a one-parameter subgroup containing h; by 
a linear change of parametrization we may assume that h = ~b(1). Clearly taking 
f=  ~k we obtain a trivialization of P. We call such trivializations special. 

Suppose that G=PSL(2,R). If h~G, then there is a unique homomorphism 
if: R ~ G  with h=~b(1) if and only if h e P a r u H y p ;  thus there are preferred 
special trivializations as long as hCEll. 
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3.2. Suppose that eEHom(n,  G) is a homomorphism such that for each bound- 
ary component C c O M, the image of nl(C)c nl(M) under ~b: :rq ( M ) ~  G contains 
no elliptic elements. Then there exists a preferred special trivialization tr of 
the corresponding fiat principal G-bundle over C; the obstruction to extending 
this trivialization to a trivialization of G,  lies in the relative cohomology group 
H2(M, OM; Z) and is by definition the relative Euler class e(~b; a). 

One can describe this relative Euler class more directly in terms of the ho. 
momorphism r as follows. Since trivializing a PSL(2, R)-bundle is essentially 
equivalent to lifting the structure group to the universal covering 

PSL(2, R)--*PSL(2, R), the relative Euler class can be interpreted in terms of 
lifting homomorphisms. There is a presentation of 7t as 

<At, BI .... , Ap, Bp, C~ . . . . .  Ck ] [A~, B~] ... [Ap, Bp] C1... Ck = I>, 

where C1 .. . . .  C k correspond to the components of OM. By assumption, each 
r  and thus there is a unique lift ~(Ci) of r to the 
closure 

Hypo = {I} w Hypo w Paro} c 5. 

Choose lifts dp(Ai~), ~ i ) e G  of r r Since r is a homomorphism the 
element 

[r  r ... [~(A,), ~(B~)] ~(C0 ... ~(Ck) 

lies in the kernel of the covering homomorphism ~ ~ G and hence equals z" 
for some n~Z. It is a routine exercise (analogous to the closed case) to show 
that the relative Euler class e(r a )=  n [M], where [M] ~H 2 (M, OM) is the funda- 
mental cohomology class of M. 

The main result relating the relative Euler class to components of fiat bundles 
over surfaces which have been trivialized over their boundary is the following: 

3.3. Theorem. Let M be a compact oriented surface and let W denote the set 
of all homomorphisms q~ : rq ( M) ~ S L( 2, R) such that for each closed curve C c O M, 
the corresponding r (C) is hyperbolic. Let e: W ( M ) ~  Z denote the relative Euler 
class map as above. Then the connected components of W(M) are precisely the 
inverse images e-l(n), where In] _--<z(M). 

The proof of 3.3 will be given in w 10. There is a generalization of Corollary C 
to surfaces-with-boundary involving the relative Euler class. However, the state- 
ment is slightly more complicated, since the boundary must be taken into 
account. Suppose that M is a compact surface with nonempty boundary and 
let r n~(M)~ G be a Fuchsian representation (an isomorphism onto a discrete 
subgroup F c G). Then H2/F is a complete hyperbolic surface, which is homotopy 
equivalent to M. In general, however, H2/F and M are not homeomorphic. 
Let core(H2/F) denote the convex core of H2/E If there exists a diffeomorphism 
M~core(H2/F), we shall say that tp~Hom(~, G) is a holonomy representa~.ion 
for M. 

3.4. Theorem. Let r ~ W(M). Then le(~b) l < z(M) with equality (i.e. l e(r = X(M)) 
if and only if dp is a holonomy representation for M. 
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The proof of 3.4 will also be given in w 10. Since we shall need a few calcula- 
tions of the relative Euler class sooner, we prove the following two results pre- 
sently. 

3.5. Proposition. Let qbeW(M) be a holonomy representation for M. Then the 
relative Euler class e((9) equals z(M). 

3.6. Proposition. Let ~b~ W(M) be a representation whose image lies inside a Borel 
subgroup. Then e(~b)=0. 

Proof of 3.5. (Compare [14], Proposition 2.8.) Consider the flat H2-bundle 
H ~ M  with holonomy ~b. By hypothesis there exists a diffeomorphism f :  
M~core(H2/q~(r0) which maps each boundary component of M to a closed 
geodesic boundary component of core(HE/t~(Tz)). The induced diffeomorphism 
~: ~ ~ H 2 is equivariant with respect to the action of 7t on h4 by deck transfor- 
mations and the action of ~ on H 2 via (p. The equivariant diffeomorphism 

defines a section of the flat bundle H ~ M  which over aM restricts to the 
(fiberwise) projection of the special trivialization aM ~(PSL(2, R))§ The 
relative Euler class of (p with respect to the special trivialization may be comput- 
ed as a relative self-intersection number of a section s over M: the algebraic 
intersection number of s and a nearby section s' which coincides with s on 
dM. Since )~ is a local diffeomorphism, the relative self-intersection number 
of the section corresponding to ~ is seen to equal in absolute value the Euler 
class of the tangent bundle of M, i.e. _ x(M). [] 

Proof of 3.6. If {(~t}oz~zl is a family of representations in Hom(n, G) such that 
for no component C c aM is (p(C) hyperbolic, then by the covering homotopy 
property the Euler class of ~b t with respect to the special trivialization is constant 
in t. Suppose that (k (~) lies in a Borel subgroup B c G. Let A c B be a Cartan 
subgroup. By conjugation by the one-parameter group A one can find a path 
of representations rc ~ B joining (k to a representation z~ ~ A. Since the representa- 
tions 7t~A form a vector space, such a representation can be joined by a path 
of representations to the trivial representation in such a way that no boundary 
component is mapped to an elliptic element. Since the relative Euler class of 
the trivial representation equals zero, the result follows. [] 

The relative Euler class also enjoys a simple additivity formula, which is 
a standard fact from obstruction theory (see e.g. Steenrod 135]): 

3.7. Proposition (Additivity). Suppose that M=M1 u M2 and (keHom(n, G) has 
the property that for each boundary component C of MI or M2 the restriction 
to ~l(C)c ~ is not elliptic. 7hen 

e(q~) = e(r I~,(M,)) + e(tk I~,(M~)) 
where the relative Euler classes are computed with respect to the special trivializa- 
tions. 

3.8. Clearly 3.3 reduces to Theorem B when M is a closed surface. We first 
prove 3.3 for surfaces of Euler characteristic - 1  and - 2 ;  the general case 
will then follow fairly easily from these special cases. The reduction to these 
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special cases is based on a. simple combinatorial argument which we present 
now. Although the detailed proof  will be given in w 10, after the necessary prereq. 
uisites are developed, for the purpose of readability we give a broad outline 

m 

of the basic ideas here. We shall consider decompositions M = U Mi satisfying 

the following properties: i = 1 
(i) The M i are subsurfaces any two of which are disjoint or meet in bound- 

ary components;  
(ii) X (M~) = - 1 ; 

a t  

(iii) The graph dual to M--  U Mi is a tree. 
i = 1  

If M has genus g and b boundary components, then (i) implies that there 
are m = - z ( M )  = 2 - 2 g  + b components Mi in the decomposition. Recall that 
the dual graph has one vertex for each Mi and two vertices are joined by 
an edge if the corresponding M~ share a common boundary component. We 
refer to the simple closed curves corresponding to the edges (i.e. the boundary 
components of the Mi) as decomposition curves. Each M i is either a surface 
of genus one with one boundary component (a torus minus a disc) or a surface 
of genus zero with three boundary components (a pair-of-pants). For  each genus 
one M i there is a unique other Mj such that dMi c aMj (unless M = Mi). Unless 
M is a closed surface of genus two, Mj will be a pair-of-pants. It follows that 
the union of all the genus zero M~ is a connected surface, which has genus 
zero because of (ii). (Otherwise a nonseparating essential curve would determine 
a loop in the dual graph.) Thus exactly g of the M~ have genus one and g - 2 + b  

have genus zero. We shall call such a decomposition M =  0 Mi a maximal 
dual-tree decomposition of M. ~= 1 

It will turn out to be easier to work with the space W'(M) ~ W(M) consisting 
of representations ~b such that each tk(rCl(Mi)) is nonabelian. In 8.1 it will be 
shown that W'(M) is open and dense in W(M). Thus e - l ( n ) n  W(M) is connected 
if and only if e-1(n)c~ W'(M) is connected. Suppose that ~b, ~b~ W'(M) satisfy 
e(q~)=e(~k); we describe how to join them by a path in W'(M). In 10.1 we 
show how to deform ~b (resp. ~k) to a representation ~b' (resp. ~k') in W'(M) 
which maps each decomposition curve to a hyperbolic element. Thus 
dp', d/'e W'(M) c~ I-[ W'(Mi) and we associate to q~', ~O' the m-tuples 

i 

{e(~'l~,tM,))},= 1 ....... {e (~O'l~aM0)}, =1 ...... ~ { -- 1, 0, 1}at 

where each relative Euler class is computed with respect to the special trivializa" 
tions. Now it follows from the analysis in w 9 of Euler characteristic - 2 surfaces 
that if M 1 u M2 c M is a connected subsurface of M and 

e((9'l,au,))=e(d/J,itu,~) for j~e 1, 2 
and 

then ~b' can be deformed to ~b' in W'(M). Thus we reduce the construction 
of a path from q~' to ~b' to the following elementary combinatorial lemma: 
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3.9. Lemma. Let T be a tree and let ql denote the set of all maps f :  
vert (T) --, { - 1, 0, + 1}, where vert ( T) denotes the set of vertices of T Let 2;: ql --, Z 
be the map given by 

f~--~ ~ f(v). 
wvert(T) 

7hen the equivalence relation 

f ,,~ f ' . ~  2;(f)=2;(f') 

is generated by the relation ~ consisting of all ( f  f')e~ll x ql such that there 
exists an edge e ~ T such that 

fl~-e=f't~-~ 
and 

f (v )=  ~ f'(v). 
wvert(e) v~vert(e) 

Proof Induction on the number n of vertices of T. Clearly the statement is 
vacuous for n = 1 and is trivial for n = 2. Suppose the statement is known for 
trees with less than n vertices and let T have n vertices. Suppose that f , f ' e q l  
satisfy E ( f ) =  2;(f'). Choose a vertex revert(T).  

We claim that there exist sequences f = f l  . . . . .  fpeql and f ' = f ~  . . . . .  f ~ e ~  
with f~ ~f~ + 1 and f / ' ~  f{+ 1 such that fp(v) = f~ (v). For if 2; ( f )  > 0 (resp. 2; ( f )  < 0) 
there exists a vertex v such that f (v)= 1 (resp. f (v)= - 1). Let v = vl, v2 . . . . .  v = vp 
be the unique segment joining v and v. By interchanging f(vi) and f(vi+O one 
obtains a sequence fl  . . . . .  fp such that f i e f /+1  and fp(v)= 1 (resp. fp(v)= - 1). 
Applying the same procedure to the sequence f~ . . . . .  f~ we may assume that 
fq'(v)= 1 (resp. f~ ' (v)=-1) .  If 2 ; ( f )=0,  but there exists v, v'Evert(T) such that 
f(v),f'(v')+-O, then there exist vertices w,w' such that f (w)=f ' (w ' )= l  and the 
preceding argument can be applied. Thus it remains to consider the case that 
f - 0 .  In that case, change f on an arbitrary edge to be 1 on one vertex and 
-1 on the other vertex. Then apply the preceding construction. This proves 
the claim. 

Now each component of T-s ta r (v )  is a tree and fir-star(v) and f'lT-sta,tv) 
are equivalent functions vert(T)--, {--1, 0, 1}. Thus by the inductive hypothesis 
they can be joined by a sequence of elements whose adjacent elements are 
~-related. Such a sequence extends (by remaining constant on v) to a sequence 
in o//whose adjacent elements are A-equivalent. The proof of 3.9 is now com- 
plete. []  

w 4. Some invariant theory 

In this section we develop the necessary invariant theory which will be used 
to analyze representations of a free group of rank two into SL(2, C). For  more 
information the reader is referred to the survey article of Magnus [28]. 

Let H denote the free group with free generators X, Y. Let G be a Lie group. 
We may identify Hom(/-/, G) with G 2 by the evaluation map Hom(H, G)---,G 2 
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sending h~-*(h(X), h(Y)). Consider the action of GL(2, C) on 
HomO-/, SL(2, C))~SL(2, C) • SL(2, C) by conjugation. The following well 
known facts are essentially due to Fricke-Klein ([5], pp. 289-291): 

4.1. Proposition. Let ~: SL(2, C) • SL(2, C)--*C a be the map 

x(X, Y)= (tr(X), tr (Y), tr (XY)). 

Let to: C 3 ..-~C be the polynomial 

x(x, y, z) =x z + yZ + z z - x  y z - 2 .  

7hen: 
(i) X is GL(2, C)-invariant and surjective ; 

(ii) x(z(X, Y))=tr[X, I,']; 
(iii) ~c(z(X , Y))= 2 /f and only if there exists a line in C 2 invariant under 

X, Y (i.e. the linear representation generated by X and Y is reducible). 
(iv) I f  u e C  s, ~(u)4:2, then x-l(u) consists of a single GL(2, C)-orbit. If 

x(u)=2, then there exists a unique G-orbit ouc )~-l(u) consisting of completely 
reducible representations such that Z- ~ (u) consist of G L(2, C)-orbits whose closures 
contain o,. 

(v) 7ko representations c~, q~'~Hom(rc, SL(2, C)) are GL(2, C)-conjugate if and 
only if they are SL(2, C)-conjugate. 

(Since the trace of any word w(X, Y) in matrices X, YeSL(2, C) may be 
deduced from the traces of X, Y, and X Y  (see Magnus [28], or Culler-Shalen 
[3] 1.4.1), we shall refer to z(X, Y) as the character of the representation deter- 
mined by (X, Y).) 

Proof (i) Let P~GL(2, C). Since 

tr(PXP-X)=tr(X),  tr(PYP-1)=tr(Y),  t r (PXYP-I)=tr(XY) ,  

X is GL(2, C)-invariant. 
Next we prove that X is surjective. If (x,y,z)eC a, choose ~,6~C such that 

~2 = x 2 _ 4 and 62 = x(x, y, z ) -  2. If x 4: _+ 2, then 

xl x- 012 ' +22 o x t �89162 

satisfies z(X, Y) = (x, y, z). Similar formulas suffice when y 4: + 2 and z 4: _+ 2. Sup- 
pose that x, y, z = __+ 2. If an even number of x, y, z equal + 2, then 

,x y,) 
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satisfies Z (X, Y) = (x, y, z). Otherwise 

satisfies z(X, Y) =(x, y, z). 
(ii)-(iii) See, for example, Magnus [28], 2.1, Culler-Shalen [-3], 1.5.2, 1.5.5. 
(iv) If x(u):# 2, then the result follows from Magnus [28], 2.1 or Culler-Shalen 

[3], 1.5.2. Otherwise there exists (X, Y)~X-I(u) which acts reducibly on C 2, 
so by conjugation we may assume that X and Y are upper-triangular. For 
any upper-triangular matrix U, let U ~s) denote its semisimple part, i.e. if 

then its semisimple part equals 

Then the GL(2, C)-orbit ou of (X (s), y(s)) is an orbit with the desired properties. 
(v) Clearly if ~b, ~b' are SL(2, C)-conjugate, then they are GL(2, C)-conjugate. 

Conversely, suppose that 7EGL(2, C) conjugates ~b to q~'. Choose a complex 
number 6 satisfying 6 -2 = det g; then (6I) 7~SL(2, C) conjugates ~b to ~b'. []  

4.2. The real analogue of Proposition 4.1 is considerably more subtle. One diffi- 
culty is that not every real character of a representation into SL(2, C) corre- 
sponds to a representation into SL(2, R). Rather, a triple (x, y, z)~R 3 corresponds 
to a representation into SL(2, C) which is conjugate to a representation taking 
values in one of the two real forms of SL(2, C), namely SL(2, R) or SU(2). To 
determine whether a real character corresponds to a representation in SL(2, R) 
or SU(2) we shall use the identification of the adjoint group of SL(2, C) with 
the orthogonal group SO (3, C). 

Recall that the adjoint representation of a semisimple Lie group G on its 
Lie algebra g always preserves the nondegenerate symmetric bilinear form (the 
Killing form) defined by B(~, fl)=tr(ad(~)ad(fl)). Let G=SL(2, C) and choose 
an orthonormal basis of the Lie algebra ~1(2, C), so that we identify d(2, C) 
with complex Euclidean 3-space, as a three-dimensional complex inner product 
space. The adjoint representation defines a local isomorphism 
SL(2,C)~SO(3, C) whose kernel is the center { •  of SL(2, C). We give an 
alternate construction of a representation in SL(2, C) with a given character, 
with the eventual goal of constructing representations into SL(2, R) with given 
real character. 

Let (x, y, z)eC 3 satisfy x(x, y, z)~= 2. Consider the symmetric matrix 

B =  2 

x 
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which has determinant det B=2(2-x(x,y,z))4=O. (Compare the discussion of 
triangle groups in [16].) Thus B determines a nondegenerate symmetric bilinear 
form on C a. Let p~, P2, Pa be the B-orthogonal reflections fixing the coordinate 
vectors, i.e. 

z :!] [o~176 1 p~ = 1 , P2= z - 1  , P3 = 1 0 . 

0 0 y - x  - 1  

Then p l ,p2 ,P3 are involutions o n  C 3 which preserve the symmetric bilinear 
form B. Let ~=PlP2,  ~=P2P3 ,  whence zgx~'=plp3. Since B is nondegenerate, 
the group of unimodular isometries of C a with respect to B is conjugate inside 
SL(3, C) to S0(3, C). We henceforth implicitly identify these two conjugate sub- 
groups with each other as well as with the adjoint group of SL(2, C). Choose 
lifts X, YeSL(2, C) of ~ ,  l?" under the map Ad: SL(2, C)--*SO(3, C); a simple 
calculation shows that 

t r ( X ) = x 2 - 1 ,  t r ( Y ) = y 2 - 1 ,  t r (XY)=z2-1 .  

Furthermore for any matrix UeSL(2, C), we have t r (Ad(U))= (tr(U)) 2 -1 .  Thus 

t r (X)=  + x ,  t r (Y)= _ y ,  t r (XY)= +z .  

By multiplying X and Y by ___ I, we can change our choice of lifts X, Y to 
assume that tr X = x and that tr Y= y. If any of x, y, z are zero, then there are 
at least two choices, and at least one choice will guarantee that trXY=z. If 
none of x, y, z are zero, then the lifts X, Y satisfying tr X = x, tr Y= y are uniquely 
determined. Furthermore there is a unique lift ZeSL(2, C) of (XY) -1 such that 
t r (Z)=z .  In particular X Y Z  is a lift of the identity in S0(3,C) under Ad: 
SL(2, C) ~ SO (3, C) and equals + I. We claim it equals I. For  we have constructed 
a continuous map from 

f~={(x,y,z)~C31xyz+O, ~(x,y,z)+2} 

into {-t-I}. But t2 is connected, so this locally constant map is constant. Thus 
it suffices to check that X Y Z  equals I for a single (x, y, z)et2; the explicit example 
given for ( - 2 ,  - 2 ,  - 2 )  discussed earlier in the proof of 4.1 (i) will suffice. Thus 
we have found elements X, YeSL(2, C) such that t r (X)=x ,  t r (Y)=y and 
tr(XY)=z. (This gives an alternate proof  of the surjectivity in 4.1 (i).) 

We shall use the preceding construction to determine the set of characters 
of representations in SL(2, R). 

4.3. Theorem. Let (x, y, z)eR a. 7hen there exists (X, Y)eSL(2, R) x SL(2, R) with 
z(X, Y)=(x,y,z) if and only if either K(x,y,z)~2 or one of Ix[, [Y], Izl is 2 2. 
In that case, unless K(x,y ,z)=2,  the inverse image Z-l(x,y,z) consists of one 
GL(2, R)-orbit, which is the union of two SL(2, R)-orbits. I f  all of K(x,Y, z)' 
Ix[, lY[, [z[ are <2,  there exists (X, Y)eSU(2)• SU(2) with z(X, Y)=(x, y, z). All 
such pairs (X, Y) are SU(2)-conjugate. 
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Remark. It is a general fact that a character of a representation of a finitely 
generated group in SL(2, C) is real if and only if it is the character of a representa- 
tion in one of the real forms SL(2, R) or SU(2). For an elegant proof of this 
fact, the reader is referred to Morgan-Shalen [32], Proposition III.1.1. 

Proof We first recall basic facts about the adjoint representations of SL(2, R) 
and SU(2). Suppose that FeSL(2, R). Then clearly the adjoint representation 
restricted to F stabilizes the Lie algebra ~1(2, R) of SL(2, R). The restriction 
of the Killing form on ~I(2, C) to ~1(2, R) is nondegenerate and indefinite. With 
respect to a suitable basis of ~I(2, R), the adjoint representation defines a local 
isomorphism SL(2, R ) ~  SO (1, 2) ~ Indeed, the stabilizer of any indefinite totally 
real subspace is conjugate in SL(2, C) to SL(2, R). On the other hand, any sub- 
group of SU(2) stabilizes the Lie algebra ~u(2), which is a totally real subspace 
to which the restriction of the bilinear form is definite. Any subgroup of SL(2, C) 
which stabilizes a totally real definite subspace of C 3 is conjugate to a subgroup 
of SU(2). 

Suppose (x, y, z)~R a. By 4.1(i), there exists (X, Y)~SL(2, C) • SL(2, C) such 
that z(X, Y)=(x,y,z). Using the above criteria for subgroups to be conjugate 
to SL(2, R) or SU(2), we shall determine when (x, y, z) is the character of SL(2, R)- 
representation. 

Consider the symmetric bilinear form B as above. Since B is real, the real 
subspace R 3 c C 3 is invariant under X, Y. Assume that x(x, y, z) 4: 2. Then 

det B = 2 (2 - x (x, y, z)) 4:0 

so the bilinear form is nondegenerate. Since the restriction of B to each coordi- 
nate line is positive, B cannot be negative definite. The restriction of B to the 

[~ z] which is positive definite first coordinate plane is given by the matrix 2 ' 

if and only if Izl <2. Thus necessary conditions that B be positive definite are 
that Lxl, tYl, [zl are all <2. A further necessary condition is that det B>0,  i.e. 
that x(x, y, z)<2. We claim these necessary conditions are sufficient. For if B 
is indefinite, either there exists a two-dimensional subspace of R 3 which is definite 
or there does not. If there does, then det B<0,  whence x(x,y, z)>2. If there 
does not exist a two-dimensional definite subspace, then no coordinate plane 
is definite, whence none of Ixl, lyl, Jzl are <2. Thus B is positive definite if 
and only ifx(x,y,z)<2, Ixl<2, lYl<2 and [zl<2. 

It follows that A d X  and Ad Y are conjugate to SO(1,2) (resp. S0(3)) if 
and only if X and Y are conjugate to SL(2, R) (resp. SU(2)) if and only if one 
of x(x, y, z), Ixl, lyl, Izl is > 2  (resp. x(x,y,z)<2, Ix[<2, lyl<2, and Izl<2). 

If x(x, y, z)= 2, then (x,y,z) is the character of a reducible representation, 
whose semisimple part is a representation lying on a one-parameter subgroup. 
Any such character is the character of a representation in SL(2, R). Furthermore 
if all of Ixl, lyl, Izl are < 2  (this will be the case if just one of Ixl, lyl, Izl is<2) 
then there will be a representation in SU(2) as well having this character. 

Suppose that (X, Y), (X', Y')eSL(2, R) x SL(2, R) satisfy x(X, Y)=x(X', Y'). 
Suppose furthermore that r(x(X, Y))4: 2. Then X and Y generate an irreducible 
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representation o n  R 2, as do X' and Y'. By 4.1(iv) there exists 7eGL(2, C) such 
that 7X7-* =X '  and 7 Y7 -x = Y'- Since X and Y act irreducibly, the Burnside 
lemma implies that the R-algebra they generate is the full algebra M2(R) of 
real matrices, and similarly for X' and Y'. Thus 7 normalizes the algebra of 
real matrices and thus AdTePGL(2,R).  We may replace 7 by a real matrix 
of determinant _+ 1 determining the same inner automorphism Ad 7- It follows 
that (X, Y) and (X', Y') are PGL(2, R)-conjugate. If det 7= 1, then (X, Y) and 
(X', Y') are conjugate in SL(2, R). Suppose then that det 7 = - 1 ;  we claim that 
(X, Y) and (X', Y') cannot be conjugate in SL(2, R). Otherwise there would exist 
7, q~GL(2, R) such that det q=  1, det 7= - -  1 but the composition Ad t/oAd~, 
conjugates (X, Y) to itself, i.e., q~ commutes with X, Y Since de tqoT=- l ,  
it follows that there exists a decomposition of R 2 as the direct sum of two 
lines, one of which is fixed pointwise by t/o 7, and the other upon which q~, 
acts by - 1. Since X and Y commute with q~ it follows that X and Y must 
leave invariant each of these lines, contradicting x(z(X, Y)):~ 2. 

Finally suppose that (X,Y) , (X' ,Y ' )eSU(2)•  satisfies x(X,Y)= 
x(X', Y'). Then by 4.1 (iv), (X, Y) and (X', Y') are GL(2, C)-conjugate. If (X, Y) 
determines an irreducible representation, then the conjugating element must 
preserve (up to scaling) the Hermitian structure invariant under X and Y. It 
follows as above that (X, Y) and (X', Y') are U(2)-conjugate, and by the same 
argument as in 4.1(v), are SU(2)-conjugate. If (X, Y) and (X', Y') satisfy x=2, 
then a separate argument shows that they are SU(2)-conjugate as well. The 
proof of Theorem 4.3 is now complete. [] 

4.4. Proposition. Let (X, Y)~SL(2,C)x SL(2,C). Then dx(x,r) is surjective if and 
only if X and Y do not commute. 

Proof Let 4, ~/~1(2, C). Then an elementary calculation gives 

dx(x, r)(~, q) = (tr (X Z), tr (Yr/), tr (X q) + tr (Y~)). 

We show that either X, Y commute or dim Ker dxtx, y)= 3. If UeSL(2, C), then 
the set of all v~l(2,  C) such that tr(U v)=0 has dimension two, unless U= _+I. 
Suppose that (~, ~/)e Ker dxtx, y). Then tr(X 4)= tr(Yq)= 0 and tr(X q)+ tr(Y~)=0. 
If either X or Y equals _+ I, then Ker dxtx, y) has dimension at least four. Further- 
more X and Y commute. If X, Y4: _+ I, then the set X • of all ~ such that tr(X ~) 
= 0  has dimension two and the map X •  given by ~-~tr(Y~) is nonzero 
unless X, Y commute. Similarly Y• has dimension two and Y• t/w+tr(X q) 
is nonzero unless X, Ycommute. Thus the set consisting of(l ,  ~/)eX • x YZ which 
satisfy tr(X q)= -tr(Y~) has dimension three unless X, Y commute. [] 

4.5. Corollary. (a) Let 

Qc = {(X, Y)eSL(2, C) x SL(2, C) I [X, Y] 4:I}. 

Then Z: Oc--, C a satisfies the path-lifting property. 
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(b) Let 
f2 a = {(X, Y)~SL(2, R) x SL(2, R)I [X, g]  :61}. 

Then 
Z: OR "-*R3-( [ -2 ,  2] 3 ~ x-~([-2, 2])) 

satisfies the path-lifting property. 

Proof of (a). Let F = Z / 2  act on f2 c by (X, Y )~ , (X  -1, y - l ) ;  clearly ~: f 2 c ~ C  3 
is F-invariant. By Lemma 3.9, it suffices to show that F acts transitively on 
the path-components of each preimage of Z: f2c ~C3.  If g(x, y, z)+ 2, then the 
preimage Z-~(x,y,z) is a SL(2, C)-orbit and is hence path-connected. If 
x(x, y, z)=2, then Z-a(x, y, z) contains a nonabelian representation if and only 
if not all of x, y, z equal _ 2; thus the image of X: [2c ~ C 3 equals the connected 
set C 3 - J  where 

J = {(2, 2, 2), (2, - 2, - 2), ( -  2, 2, - 2), ( -  2, - 2, 2)}. 

It suffices to show that if (x ,y ,z)~J and •(x, y, z)= 2, then F permutes the 
path-components of ~c n z- l (x,  y, z). Consider the commutator map 

RI : f2cn Z-l(x, y,z)-'* SL(2, C) 

defined by (X, Y)~-~[X, Y ] = X Y X - t Y - ~ ;  since tr[X, Y ] = 2  but [X, Y ] # I  it 
follows that X, Y can be conjugated to upper-triangular matrices. The image 
of R 1 : f2 c c~ Z- 1 (x, y, z) ~ SL(2, C) consists of all elements of SL(2, C) - {I} which 
have trace 2; all such elements of SL(2, C) are conjugate. This map is SL(2, C)- 
equivariant and hence is a fibration; we shall show that F permutes the two 
components of each fiber. To this end, represent X and Y respectively by matrices 

[; a~-l]and[b 0 bq_ll where (a, b)6C" x C" is one of the two solutions of 

a + a - l = x ,  b+b-X =y, ab+(ab)- l=z .  

The fiber R11 ~ 11~ is then easily seen to be the set of solutions of 

a(1-b2) ~ - b ( 1 - a 2 ) q =  l 

Which is clearly a connected set, for fixed a, b. Since there are two choices 
of (a, b) which are permuted under F, the result follows. []  

Proof of (b). The proof of (b) follows similar lines, although it is slightly 
more complicated. Let F=Z/2 x PGL(2, R), where Z/2 acts as above and 
PGL(2, R) acts by conjugation. The image X(~?R) equals the complement in R 3 
of [ - 2 ,  2] 3 c~ x -x [ - 2 ,  2]. Given these modifications, the proof follows that of 
part (a). []  

The previous discussion of representations of a free group of rank two into 
SL(2, R) easily gives a proof of the simplest nontrivial case of Theorem 3.3. 
Let M be a pair-of-pants with boundary components A, B, C and let the corre- 



580 W.M. Goldman 

sponding elements of ~r -=-zq(M) also be denoted A, B, C so that ~ has a presenta- 
tion of the form 

<A, B, C IABC = I>. 

Let G = PSL(2, R). Let W(M) be the subset of Hom (n, G) consisting of representa- 
tions 4) such that 4)(A), r q6(C) are hyperbolic. Let e: W(M)~Z be the 
relative Euler class map. 

4.6. Proposition. The components of W(M) are the inverse images e-l(n) where 
n = - 1 , 0 ,  1. Furthermore the evaluation map evc: W ( M ) ~ H y p  defined by 49~ 
q5 (C) satisfies the path-lifting property. 

Proof We may find unique lifts ~(A), ~(B) of q6(A), q~(B) to H y p o c G .  Then 
c~(C) = ~(B)-I~(A) - leHyp. where n = e(~b). We shall assume that every repre- 
sentation in W(M) has been so lifted; in particular note that the character 
of such a representation lies in (2, ~ )  x (2, oo) x ( ( -  ~ ,  - 2 )  u (2, ~)). 

Suppose that ~beW(M) has character Z(~b)~(2, oo) 3, i.e. ~(C)~Hyp2,,.  We 
shall show that e(~b)=0 and that the set of all such q~ is connected. Suppose 
first that the image of q6 does not lie in a Borel subgroup, so that K(Z(qS))#2. 
Choose (x~, yl,  zl)~(2, oo) 3 such that K(x~,yl, z~)=2. Then by 4.5 there exists 
a path {~bt} o_<t_< l from ~b = q~o to a representation ~l such that Z (~bl) = (xl, Yl, zl) 
and such that r  W(M) has nonabelian image for each t. Since ~:(xa, Yl, zl) =2 
the image of r lies in a Borel subgroup and by 3.6 e(q~)=0. We next show 
that e-l(0) is connected: by the preceding argument it suffices to show that 
W(M) c~(xoZ)-l(2) is connected. To this end, note that every 4h e W(M) whose 
image is nonabelian yet lies in a Borel subgroup has the property that there 
exists an abelian representation ~b~ and a one-parameter subgroup {ht}tER such 
that h,q~--,~b~ as t - - , ~ .  In particular one can join q~ to ~b] by a path Dying 
in Z-~(Z(q~)). Thus it suffices to show that the subspace of abelian representa- 
tions in W(M) is connected. Since every abelian representation is PSL(2, R)- 
conjugate to a representation whose image lies in a fixed hyperbolic one-parame- 
ter group H and since PSL(2, R) and Hom(r~, H ) ~ R  2 are both connected, the 
result follows. 

Next suppose that q~ ~ W(M) satisfies tr ~ ( C ) < -  2, i.e. that ~(C)~ Hyp2m+t. 
We shall show that e(~b)= + 1 and for n =  _+ 1, the inverse image e-~(n) is con- 
nected. To this end, choose e > 0 and consider the path {(a, b t, G)}o__<, ~ where 

a t = t r  ~(A), hi=try(B), c~=(1-t)tr~(C)+t(2+e). 

Then (after a possible reparametrization) there exists a path {~bt}o__<,__<~ such 
that 

z(4,,) =(a,, b .  c,), r = ~. 

By the preceding paragraph, ~b~(C)r Since the set of t such that 
~bt(C)r is connected, it follows that ~bl(C)~Hyp• Conjugating by an 
element of PGL(2, R) not in PSL(2, R) (if necessary) we may assume that 
q~(C)r Suppose that ~k~ W(M) satisfies e(~O)= 1. Then there exists a path 
in (2, ~ ) x ( 2 ,  o o ) x ( - - ~ , - 2 )  from Z(~b) to Z(r which can be lifted to a path 
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from ~ to r We claim that ~b and ~O' are PSL(2, R)-conjugate, and 
(since PSL(2, R) is connected) can be joined by a path inside a PSL(2, R)-orbit, 
and hence inside e-~(1). For by 4.3 they are conjugate by an element of 
PGL(2, R). Since the component of PGL(2, R) not equal to PSL(2, R) conjugates 
e-~(n) to e-1(--n), it follows that ~k and ~k' are PSL(2, R)-conjugate. 

Finally we show that evc satisfies the path-lifting property. Since evc is a 
submersion (it is the restriction to the open set W(M)~Hyp x H y p ~  G • G of 
the multiplication map (A, B)~-*AB, which is evidently a submersion), it suffices 
to show that each inverse image of 

1 

eVc: W(M)-~ U Hypl 
i= -1  

is path-connected. Given c~,OeW(M) with ~b(C)=~k(C), we must construct a 
path from ~b to ~ inside the fiber of evo If e(qS)=e(O)=0, then one can join 
~b and ~O to abelian representations as above (simply lift paths from X(~b) and 
Z(O) to (c 2 -  2, c, c) where c = tr ~(C)) and use the fact that the abelian representa- 
tions in W(M) are path-connected. If e(4)=e(~b)= +1, then lift a path from 
Z(~) to X(ff) as above to join the representations. [] 

4.7. Remark. These results on the relative Euler class were proved in [8] using 
another interpretation of representations of a free group. We say that a represen- 
tation ~beHom(~, G) is "stable" if its image is neither abelian nor lies in a 
Borel subgroup and that q~ is "semistable" if either it is stable or its image 
lies in a hyperbolic or an elliptic one-parameter subgroup. It is shown in [8], 
Theorem 5.2, by a geometric argument that a semistable representation ~b: ~t -* G 
extends to a representation ~b*: re* ~ PGL(2, R) where r~* ~ Z/2* Z/2* Z/2 is the 
two-fold extension of n ~ Z * Z. The embedding of rc in 

p2, p31p = =I) 
is given by 

A=p2P3, B=papl, C=p~P2. 

The fixed points of ~(Pl), q~(P2), ~(P3) in RP 2 (using the Klein projective model 
for H 2) define a triangle, which completely determines the representation ~b. 
(If ~b is stable, then this triangle is unique). The triangles satisfy certain properties 
(such as no side being tangent to the conic OH 2) and by deforming the allowable 
triangles, one can produce deformations just as by using trace coordinates. 
See [8] for details. (See Magnus [29], Lemma 2.1 for an algebraic proof that 
any semistable representation rcoPSL(2, C) extends to a representation 
~*~SL(2, C).) The present approach using trace coordinates is also taken in 
Jankins-Neumann [25]. 

w 5. The complex case 

In this section we compute the components of the space of representations 
of a surface group rc into groups locally isomorphic to SL(2, C). Throughout 
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this section G will denote PSL(2, C) and G will denote the double cover SL(2, C). 
Our goal is to prove the following result, stated in the introduction as part 
(ii) of Theorem B: 

5.1. Theorem. Let n be the fundamental group of  a closed oriented surface of 
genus g > l .  Then Hom(n ,~)  is connected. The connected components of 
Hom(n, G) are the two preimages of  the Stiefel-Whitney map w2: Hom(rq G)~ Z/2. 

The standard presentation of ~ is 

x = <A,, B1,...  , Ae, Be l Re(A1, B 1 . . . . .  As, Be) = I> 
where 

Re(A1, B1 . . . . .  Ae, B e) = EA1, B1] ... E A e, 13,]. 

For C ~ ,  let X e ( C ) = ~  2. denote  the inverse image R~-I(C) so that Horn(n, ~) 
=Xe(I  ). Let Rx: G•  G ~ G  denote the canonical lift of the commutator map 
R 1 : G • G ~ G, and l e t / I :  ~ ~ G denote the covering projection. Define 

~e: G 2 g ~  

(A1, B1, .. ., A e, Be)~-~ RI (A1, BI) .. . RI (Ae, Be). 

For u ~ Z/2 the fiber w~-t (u)~ Horn (~, G) is identified with 

(/~e)-x ((_ i).) = /7 (X e ((_ i).)). 

If X , ( ( - I ) "  ) is known to be connected, then so is its continuous image 
/ I  (X e (( - I)U)) = (/~e)- 1 (( _ I)"). Thus Theorem 5.1 is a special case of the following 
result: 

5.2. Proposition. Let Cr  Then Xe(C ) is connected. 

The proof will proceed most smoothly if we restrict attention to a dense 
open subset of Xe(C). For each 1 < i < j < g ,  (i , j)#(1, g), let 

f(~.j)(A1, B1, ..., Ae, Be) = EAt, Bi] ... [Aj, Bj]. 

Let X'g(C) denote the subset of X , ( C  ) consisting of all (51, fix,-.., ae, fls) such 
that if 1 < i < j < g ,  ( i , j )+ (1, g), then 

f ( i , j ) (~ l '  Pl . . . . .  AS' f ie)#/ .  

Proposition 5.2 follows from the next two lemmas. 

5.3. Lemma. X's(C ) is a dense open subset of Xs(C) for every g> 1 and C~G. 

5.4. Lemma. X's(C ) is connected for every g> 1 and C e ~  and for g >  1 the map 
f t ,  g- 1): X'g(C) ~ ~ -  {I} satisfies the path-lifting property. 

Proof o f  5.3. The map f,,j): X , ( C ) ~  is clearly a polynomial map from the 
algebraic set X g ( C ) -  d;  thus -1 f~i, jg(/) is closed. Now 

X, (C) '=  [,.) f ( , J ) (~-{I})  
( i , . / )* O,e)  
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is evidently open and it suffices to show that for each (i,j), f~,)~({~,-{I}) is 
dense. To this end, suppose that (0q, fia . . . . .  ag, fi~)eX.(C) satisfies 

f~i,~)(oq, fi~ . . . . .  ~g, fig)=I. 

Since the/-fold commutator map R~: ~2i...~ ~ is a polynomial map on the irreduc- 
ible variety G x d whose differential is surjective on the Zariski dense subset 
consisting of all (~1, fil . . . . .  0% fii) such that ax, fl~ . . . . .  ai, fi~ do not commute, 
it follows that there is an open set f2(~,~_l)=dz, whose closure contains 
(~1, fil . . . .  , ~., fig) which is mapped submersively under fo.i-l~ to an open subset 
in (~- {I} whose closure contains 

f . ,  ~-1~(~1, fi, . . . . .  a , .  fi,). 

Similarly there exist open sets O(i.j) and g2u+L, ~ whose closure contains 
(cq, fil . . . .  ,~g, fig) which are mapped submersively under fti, j) and ftj+l,~)- Thus 
there are points 

! ! 
("~. fi~ . . . . .  %.  fi,) e 0 , .  ~_ 1) c~ 0 , .  j> c~ f2 u + 1.,~ 

arbitrarily close to (al, fil . . . . .  ag, fig) for which 

and 

It follows that 

f~ ( '  fi' ' f i ; ) + l  i, J3 0{1~ 1 , ' " ~ g ~  

t t t i 
R,(al, fil . . . . .  as, fi,)= C. 

h,-,~(~- {I}) c~ x , ( c )  

is open and dense and thus the finite intersection of open dense sets X'~(C) 
is also open and dense. [] 

Next we prove 5.4. The initial case g = 1 will be proved separately: 

5.5. Proposition. Let C e ~. Then X1 (C) = {(~, fl) ~ ~ x ~ [ [a, fl] = C} is nonempty 
and connected. 

Proof of 5.4 assuming 5.5. Induction on g. The initial case g = 1 of 5.4 is precisely 
5.5. Suppose inductively that n >  1 and that 5.4 has been proved for all C e ~  
and for g<n. We show that for Ced,  X'~(C) is nonempty and connected. The 
fiber of the map 

f . , . _ , ) :  X ' ( C ) + ~ - { I }  
is 

- 1  f . , . _ . ( v )=  X'_l(V) x Xl(v -1 C), 

which by the induction hypothesis is connected. Furthermore since ftl , ,-~) is 
a submersion, it follows from 3.9 that ftl . .-1) satisfies the path-lifting property 
and X',(C) is connected. [] 
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Proof of 5.5. For teC, let 

and 

R(t)= U R;~(C) 
tr (C) = t 

C(t) = {CeG I t r(C)= t}. 

The map R~: R(t)~ C(t) is clearly equivariant with respect to the natural actions 
of G by conjugation. 

Suppose t 4= 2. Then the representation determined by any (a,/3)eR(t) is irre- 
ducible, and by 5.1 G acts properly and freely on the set R(t). By 4.1 the quotient 
space R (t)/G may be identified with the cubic surface 

St= ((x, y, z)~C 3 Ix 2 _[_y2 _[_Z2 --X yz= t+2} 

under the map R ( t)~ St given by 

(~,/3) ~--' (tr (~), tr (/3), tr(~/3)). 

Clearly the polynomial x2-k-y2-bz2--xyz-- t - -2  is irreducible, whence St is an 
irreducible complex affine algebraic surface and is thus connected. 

Suppose further that t#: - 2 .  Then G acts transitively on C(t) with isotropy 
group a maximal torus G1 of G. Since G is connected and R (t)/G ~ S t is connected, 
it follows from the exact homotopy sequence of the fibration G~R(t)~R(t)/6 
that R(t) is connected. Since G acts transitively on C(t), the G-equivariant map 
R~: R(t)~C(t) is a fibration. Since C(t)~G/G~ is simply connected, the exact 
homotopy sequence of the fibration R?~(C)~R(t)~C(t) implies that R?I(C) 
is connected whenever tr(C)= t ~= 2. 

Suppose next that t = - 2 .  In that case there are two G-orbits on C(t), one 
consisting of the single point - I  and the other consisting of parabolic elements. 
We show that R?~(C) is connected in each case. First suppose that C = - I .  
If R1 (~, 13) = - I, then ~/3 ~- 1/3-1 = _ I, whence 

~/3~-1=_/3, ~/3=_/3~, /3~-1/3-1=_~-~. 

By taking traces we obtain that t r(~)=tr(f l)=tr(~fl)=0,  and hence by 4.1 the 
fiber R1-1 ( _  I) consists of a single G-orbit. Thus R1-1 (C) is connected. 

Now G acts transitively on R ( - 2 ) - { - 1 }  and the quotient ( R ( - 2 ) - { - I } ) /  
G is identified with the set 

{(x, y, z)~C 3 Ix 2 q_y2 _1_ Z2 - - x y z = 0 ,  (X, y, Z)~  (0, 0, 0)}. 

The origin is the only singularity in the surface S_ 2, and the defining equation 
for S_ 2 has nondegenerate quadratic leading term. Thus the link of the singular 
point is connected (it is homeomorphic to a 2-torus) and it follows (by a Mayer- 
Vietoris argument) that the complement of the origin in the connected cubic 
surface S-2 is also connected. Applying the homotopy exact sequence as in 
the previous case, we conclude that R11(C) is connected whenever tr(C)= -2.  

It remains to consider the case tr(C)=2. As before, C(t) splits into two 
orbits, namely {I} and an orbit of parabolic elements. Clearly Ril(1) consists 
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of all pairs (~, f l )ed x (~ such that ~ and fl commute, and it is easy to see that 
two elements of (~ which commute must belong to a common abelian subgroup 
of the form { + I} .  U, where U is either a parabolic one-parameter subgroup 
or to a common Cartan subgroup. In the former case we can easily find a 
path starting at (~, fl) lying within ({ + l } .  U)x ({_I} .  U)cR?I(I) ending at a 
point in { ___ I} • { + I}. Such a point lies in some (in fact every) Cartan subgroup. 
If ~, fl lie in a common Cartan subgroup G1, then (since Ga is connected) there 
exists a path from (~,fl) to (I,I) which lies in Rs Hence every point in 
R(I(I) can be connected by a path in R(~(I) to (I, I) and it follows that Rs 
is path-connected. 

Finally we show that R~-x(C) is connected when tr(C)=2, C#:I. Applying 
an inner automorphism of G we may assume that C is represented by the 
matrix 

[10 
from which it follows that any ~, fleSL(2, C) such that [~, fl] = C will be repre- 
sented by upper-triangular matrices. Writing 

o -d, ;-,] 
with a, b e C*, 4, r/e C, we see that [~,/3] = ~ fl ~- 1 fl- 1 is represented by the matrix 

[10 a(1-b2)~-b(1-a2)q] 

Hence Ri-1(C) may be identified with 

X =  {(a, b, 4, q)eC41 a, b~=O, a(1 - b  2) ~-b(1  - a  2) q=  1}, 

which is easily seen to be connected: the map (a, b): X---~C 2 is a submersion 
onto C*x  C*- ({  + 1} x {+ 1}), which is connected, and its fibers are complex 
lines. Thus by Lemma 1.4 X is connected. [] 

w 6. The topology of 

6.1. In this section we discuss the topology of the polynomial function x(x, y, z) 
x2+ y2+ z 2 - x y z - 2  which arises in our setting as the trace of a commutator 

of a pair of elements of SL(2, R) or SL(2, C). We are particularly interested 
in the real algebraic surfaces St in R 3 defined by the equations x(x, y, z)=t, 
for t~R. Observe that the group of orthogonal transformations leaving x invar- 
iant is generated by the symmetric group on {x, y, z} and the subgroup A consist- 
ing of diagonal matrices 

01 ~2 0 , 

0 ~3 
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ei = -+ 1 having determinant el e2 e3 = 1. We shall see that: 
(a) If t < - 2 ,  then St is homeomorphic to the disjoint union of four discs, 

which are permuted by A; 
(b) S-z  is homeomorphic to the disjoint union of four discs permuted by 

A and the origin; 
(c) If - 2 < t < 2 ,  St is homeomorphic to the disjoint union of four discs 

permuted by A and a 2-sphere contained in [ - 2 ,  2] 3 (this compact component 
consists of characters of representations in SU(2)); 

(d) $2 is homeomorphic to the union of four disjoint discs (freely permuted 
by A) and a 2-sphere which meets each of the discs in one of the four points 

(2, 2, 2), (2, --2, -2 ) ,  ( - 2 ,  2, -2 ) ,  ( - 2 ,  - 2 ,  2); 

(e) For t > 2, St is homeomorphic to a 2-sphere minus four discs. 
The case (d) is special. The four singular points are the characters of 

representations o f / I  into the center { ___ I} of SL(2, R). The complex points have 
a rational parametrization: 

C *  • C*  - ,  C 3 

(,~, ~ ) ~ ( 2  +2-1,  ~ + ~ - 1 ,  2 ~ + 2 - 1 ~ - 1 ) .  

Taking 2,/~ER, one obtains rational parametrizations of four pieces of $2 corre- 
sponding to characters of abelian representations consisting of hyperbolic ele- 
ments; taking 2,/~eC, 121=1/~1=1, one obtains a rational parametrization of 
the bounded piece of $2 consisting of characters of abelian representations con- 
sisting of elliptic elements. (Compare Fig. 2.) 

To understand the topology of S~, we shall decompose St into the level 
sets St(z) of the coordinate function z: S t ~ R .  Thus we shall rewrite the defining 
equation 

x2 + y2 + z 2 - x  y z = t  + 2 
as follows: 

2 - z  2 + z  2 - -~ - (x - -  y)2 +---4--(x + y ) = 2 + t - - z  2. 

One can therefore see that each level set is a (possibly degenerate) conic in 
a plane z = constant. There are the following possibilities: 

(i) St(z) is a nondegenerate hyperbola. This occurs whenever the coefficients 

of the quadratic terms 2 -  z 2 +  z 4 - '  4 are nonzero and have opposite signs (i e. 

when I zl > 2) and the constant term 2 + t -  z 2 4: 0; 
(ii) St(z) is a nondegenerate ellipse. This occurs whenever the coefficients 

2 - z  2 + z  
of the quadratic terms T '  T are both positive (i.e. when Izl<2) and ~he 

constant term 2 + t--  z 2 > 0. 
(iii) St(z)is empty. This occurs when Izl < 2  and 2 + t - z  2 <0. 
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Fig. 2 

(iv) St(z) is a union of two parallel lines. This occurs when one of the coeffi- 
cients of the quadratic terms vanishes (i.e. when Jz]=2) but the constant term 
2 + t - - z 2 > 0 .  

(v) S,(z) is a union of intersecting lines. This occurs when )z}>2 but 2 + t  
- Z  z =0.  

(vi) St (z) is a single line. This occurs when )z)= 2 and 2 + t -  z Z= 0. 
(vii) St(z) is a single point. This occurs when I z l<  2 and 2 + t - z  z=  0. 
The degenerate cases therefore occur only when 

z =  +2, + ] / / ~  t. 

The cases (i), (ii), (iii) are nondegenerate (although (iii) includes a degenerate 
case as well). By analyzing these various cases and how the level curves bifurcate, 
we determine the topological type of St. 

6,2. Suppose that t>2 .  For z>2 ,  St(z) is a hyperbola, except at the degenerate 

case z=  2 ~ - t ,  where z: S,-}R has a saddle point. For z---2, the level set is 
two parallel lines, which is a limiting case of hyperbolas with coalescing asymp- 
totes. For - 2 < z < 2 ,  the level sets are ellipses, whose eccentricities become 
Unbounded as t ,," 2. From the preceding discussion, we see that the part of 
S, with t >  0 is homeomorphic to a pair of pants, with one boundary component 
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Fig. 3 

the circle z = 0 .  The level sets for z < 0  are arranged similarly, and it is seen 
that St is homeomorphic to a sphere minus four discs. (Compare Fig. 3.) 

Now suppose - 2 < t < 2 .  Then St(z) is a hyperbola for Izl >2, is empty for 

2 > l z l > ~ ,  and is an ellipse for [z[< 2 [ / ~  (and a point for Izl= 2~) .  
Thus the portion of St with z > 2 is a union of two discs, and the portion 
with - 2 < z < 2 is a 2-sphere. (Compare Fig. 4.) 

The case when t < - 2  is similar, except that no point of St satisfies [z[<2. 
One can prove that if t < - 2 ,  each point in Sr is the character of a holonomy 
representation for a torus minus a disc. If t = -  2, then each point of St is 
the character of a faithful representation of H onto a discrete subgroup of 
SL(2, R) such that the quotient surface is complete, has finite area, and is horneo- 
morphic to a torus-minus-a-disc. 

w 7. Commutators in SL(2, R) 

The purpose of this section is to analyze the lifted commutator  map /~: G 
x G ~ 5, where G = PSL(2, R). We shall compute its image and show that its 

preimages are connected. 
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Fig. 4 

7.1. Theorem. (i) The image of the lifted commutator map/~x: G x G-~ ~ equals 
the set 

= {I} w Ell• w Paro ~ w Hypo u Par~l u Hyp• 1 . 

(ii) For each C ~ G, the preimage (/~t)-i (C) is connected. 

Remark. Theorem 7.1(i) is not new; see Milnor [31], Wood [41], and Eisenbud- 
Hirsch-Neumann [-4] for proofs using different ideas than those presented here. 

Proof The image of/~t is clearly a connected subset of ~, which is invariant 
both under conjugation and inversion (since Rt(B,A)=RI(A,B)-~). Further- 
more,/~1 is submersive at any (A, B) such that [A, B] ~eI and is open at (I, I), 
so that the image of Ra is an open subset of ~. 

Let x and Z be as in w 4. Then the following diagram 

R! 
SL(2, R) x SL(2, R) , SL(2, R) 

R 3 , R 
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commutes. Furthermore the image of X consists of the complement in R 3 of 
the set of all (x,y,z)e[--2, 2] 3 such that x(x,y,z)<2, and if k(x,y,z)4:2, then 
Z- 1( x, Y, z) consists of a single GL(2, R)-orbit. 

7.2. Lemma. The image 3 of R1 : G x G ~ ~ intersects 

U (HyP2m u Par2m) 
meZ 

in Hypo u Par o. 

Proof. Let C~Hyp2,,uPar2,, and X, Y~G satisfy Rt(X, Y)=C. Then trC>2. 
Suppose first that tr C=2. Then by 4.1(iii), either C=I or X, Y lie in a solvable 
subgroup, and there exists a one-parameter group {0ulu~R} such that 

O, RI(X, Y) O~ 1 ~ I  

as u~oo .  It follows that /2x(X, Y)~Paro. Now suppose that t rC>2 ;  by the 
path-lifting property for ~coZ, there exists a path {(Xs, Ys)}o_<s_<l such that X1 = X, 
Y~ = Y, with 

tr/~l(Xs, Y~)=2+s(tr C-2) .  

In particular {J~l(Xs, Ys)}l >-s>--O determines a path from/~I(X, Y) to Paro which 
never meets Ell. It follows that /~(X, Y)~Hypo. 

It remains to show that Hypo w Paroclmage/~ 1. To this end we note that 
if X, Y are noncommuting elements of a Borel subgroup, then/~I(X, Y)ePar0. 
Since the image o f / ~  is invariant under PGL(2, R), which acts transitively on 
Par o, we have Paro c Image/~1. Since the image of lco Z: SL(2, R) x SL(2, R)-* R 
contains (2, oo) and Image/~l is invariant under conjugation, it follows that 
the image/~x contains Hypo. [] 

7.3. We claim that for each CeHypo the preimage RZI(C)~G x G is connected. 
To prove this, we shall use the description of the level sets of x obtained in 
w 6. First note that the natural homomorphism SL(2, R)x SL(2, R)~  G x G is 
a covering map with covering group Z/2 x Z/2. We shall first show that the 
set of all pairs (X, Y)eSL(2,R)x SL(2, R) such that [X, Y] = C  is connected. 
This in turn will be deduced from the fact that the set of PGL(2, R)-conjugacy 
classes of such pairs is connected. 

Let t = tr C and let Hypo(0 = Hypo n tr-1 (t); recall that the set of PGL(2, R)- 
conjugacy classes of pairs (X, Y)eSL(2, R)x SL(2, R) such that tr[X, Y] = t may 
be identified with the cubic surface x-1 (t), which is connected (it is homeomor~h- 
ic to a sphere minus four discs). Furthermore the evaluation map Rt: 
(trRO-l(t)-.Hypo(t) given by (X, Y)~-*[X, Y] is equivariant with respect to 
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the actions of SL(2, R) by conjugat ion;  the action on  Hypo( t  ) is clearly transitive. 
Thus there are fibrations 

PGL(2, R) 

R?I(C) , ( t r R  )- l ( t )  R, ,Hypo( t )  

x 

~-i(t) 

The vertical f ibration determines an exact sequence 

n 1 (x -  1 (t)) ~ n o (PGL(2, R)) ~ no ((tr R1)- 1(0 ) ~ n o ( x -  t (t)) 

so that to prove that  (tr R0-~( t )  is connected it will suffice to prove  

7.4. Lemma.  The connecting homomorphism 

nl (~-  i (t)) --* n o (PGL(2, R)) 

is surjective. 

Proof. Since PGL(2, R) has two components ,  it suffices to construct  a path  from 
a point (Xo, Yo) to p(X o, Yo) in ( t rRt) - t ( t ) ,  where pePGL(2, R) does not  lie 
in the identity componen t  PSL(2, R) of PGL(2, R), which covers a closed loop 
in x-t( t ) .  To  this end, we let 

~ Xo[  ol] 
where u 2 + u -  2 = t. Then  our  choice of p satisfies p Xo p -  1 = _ Xo, p I70 P -  a = 
-Yo- We define a cont inuous path {(Xs, Ys)}o_<~l in ( t rR0-1 ( t )  as follows. 
For 0=<s<�89 let 

X~ = Xo 

E [ c o s 2 s n  - s i n 2 s n ]  
Y~ ~  c o s 2 s n  J" 

Then X~ = X o and Y�89 = - Yo. Fo r  �89 < s < I, let 

[ c o s ( 2 s -  1) n -usin(2s-1)n]  
X, = X  o [u_ 1 s i n ( 2 s -  1) n c o s ( 2 s -  1) zr 

Y, = Y~. 

Note that the c o m m u t a t o r  [X~, Y~] remains constant  th roughout  this deforma- 
tion. Moreove r  X t = - X o = p Xo p- x and Y1 = - Yo = P Yo P -  ~ as desired. Finally 
the path {(X~, Y~)}o_~,~l covers a closed loop in r - l ( t )  (a union of two semicir- 
cle0. Thus the p roof  of  Lemma 7.4 is complete. [ ]  
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Remark. Each of the two segments of the path of representations constructed 
above is a trajectory of a natural kind of flow on the spaces Hom(7[, G), extensive- 
ly discussed in [13]. The particular representations which occur in this example 
are solvable representations generated by two elliptic involutions. The particular 
path discussed above may also be found in [24], p. 64. 

We have so far proved that (trR1)-I(t)=SL(2, R)• R) is connected. 
To show that R?I(C) is connected, consider the homotopy exact sequence of 
the horizontal fibration: 

7[ l ( ( t r  R1)- 1 (t)) ~ 7q (Hypo (t)) ~ 7[0 (R11 (C))-o 7[0 ((tr R1)- l(t)) �9 

The fundamental group of Hypo(t) is generated by the homotopy class of 
a loop of the form {0~Co0~-1}o<_~<=1, where {0~}o_<~1 is an elliptic one- 
parameter subgroup and CoeHypo( t  ). Choose (Xo, Yo)eR;l(Co). Then 
{(O~Xo07 l, O~ Yo 0~-l)}o_<,_<l defines a closed loop in (trR1)-l(t) which maps to 
{O~CoOZ1}o~<_l. It follows that 7[l((trR1)-l(t))~rq(Hypo(t)) is surjective, 
whence 711 (Hypo (t)) ~ 7[0 (R~- 1 (C)) is zero. Since (tr R 1)- 1(0 is connected, it follows 
that R~ 1 (C) c SL(2, R) x SL(2, R) is connected. 

Now (/~1)-1(C) C G x G is the continuous image of R~- 1(C) under the covering 
map SL(2, R) x SL(2, R) ~ G x G, and is therefore itself connected. 

7.5. We next discuss pairs (X, Y)eSL(2, R)x  SL(2, R) with tr[X, Y] =2. By 7.2, 
this implies that either X and Y commute or IX, Y] �9 

Two elements of G = PSL(2, R) commute if and only if they lie on a common 
one-parameter subgroup S. Thus given any (X, Y)�9 G x G with IX, Y] = I, there 
exists a path in S x S from (X, Y) to (1, I). 

Next suppose that C � 9  o. If (X, Y)eGxG satisfy ~X, Y]=C, then any 
two lifts )~, ~" of X, Y to SL(2, R) satisfy tr [.(', ~'] = 2. It follows that .~, ~" norma- 
lize the one-parameter subgroup of G containing C. Conjugating by an element 

of GL(2, R, we may represent C by the matrix [~ i]. It follows from 4.1 (iii' 

that X and Y must also be represented by upper-triangular matrices. As in 
the proof of 5.5, we may identify the set of upper-triangular matrices 
(X, Y)eSL(2, R) x SL(2, R) with [X, Y] = C with 

{(a, b, ~, q)eR41 a, bJe0, a(1 - b  2) ( - b ( 1  - a  2) q = 1}. 

By multiplying X and Y by ___I, we obtain the different lifts of (X, Y) to 
SL(2,R) x SL(2,R). It follows that / ~ - I ( C ) c G  x G may be identified with the 
set 

{(a, b, ~, r/)eR4 [ a, b>0 ,  a(1 - b  2) C - b ( 1  - a  2) r/= 1}, 

which by an argument similar to 5.5 is connected. 

7.6. Now suppose that CeEII. We show that if X, YeG, RI(X, Y)=C, then 
CeEll  1 wEll_ 1 and that the set of all such pairs (X, Y) forms a connected set. 
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For the first assertion, we use the path-lifting property as above to find a path 
{(Ss, Y~)}o_<s_<l such that 

X~=X,  Y~=Y, tr/~I(X~, Y~)=2+s(tr C - 2 ) .  

Since /~I(X,, Y,) is elliptic for every s >0, and for s = 0  lies in {I} u Par o, we 
see that/~1 (X, Y) e Ell • 1. 

Now we show that /~-~(C) is connected. By conjugation by an element 
of PGL(2, R), we may suppose that CeElll .  Let t = t r C .  The set Ella(t) 
={ueEl l l l t ru=t  } equals the set of G-conjugates of C, and is homeomorphic 
to a disc; the set Ell(t)= {u~Ellltr u=t} is then the disjoint union of two discs. 
Thus the fibration 

/~11 (C) ~ (tr/~t)- ~(t) ~ Ell (t) 

is trivial, whence/~-I(C) is connected if and only if ( t r /~)- l ( t )  has two compo- 
nents. In particular it suffices to show that the set of PGL(2, R)-conjugacy classes 
of pairs (X, Y)eG • G such that t rR l (X ,  Y)=t  is connected. By 4.1 the set 

{(X, ~')~SL(2, R) x SL(2, R) ltr R~ ()7, ~') = t}/PGL(2, R) 

may be identified with the union of the four noncompact components of the 
cubic surface x-l(t). Each noncompact component is a 2-disc, and they are 
freely permuted by the covering group A of the covering space 
SL(2, R) x SL(2, R) ~ G x G; thus the quotient 

{(X, Y)eG x G ltr RI()~, ~')= t}/PGL(2, R) 

is homeomorphic to a disc and thus connected as claimed. [] 

7.7. The case that CeHyp2m+l is analogous to the preceding case. By a path- 
lifting argument, one can see that if C =/~1 (X, Y), then CeHyp•  1. By considering 
fibrations one can see t h a t / ~ - l ( c ) e  G x G is connected if and only if 

{(X, Y)e G x G I tr/~1 (X, Y) = tr C}/PGL(2, R) 

is connected if and only if the quotient x -  1 (tr C)/A is connected. Since x -  1 (tr C) 
consists of four discs freely permuted by A, the result follows as above. 

The last remaining case is that of C e Par2m § 1, when tr C = - 2; path-lifting 
gives that if C=RI(X,  Y), then CePar~.  The fact that Image/~l is open and 
meets Hyp in the set HypowHyp•  implies that in fact CePar~.  The rest of 
the argument is as above. 

This concludes the proof of Theorem 7.1. [] 

7.8. Corollary. Let M be a surface homeomorphic to a toms-minus-a-disc. Let 
C denote both the boundary of M and the corresponding element of ~1 (M). Then 
the components of W(M) are the inverse images e- 1 (n) where n = - 1, O, 1. Further- 
more the evaluation map evc: W(M)~  Hyp defined by q~ ~ dp (C) satisfies the path- 
lifting property. 
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Proof. As each ~b~ W(M) has nonabelian image (~b(C) is hyperbolic), the differen- 
tial of evc is surjective. Let eVc: W ( M ) ~ d  denote the canonical lift of evc, 
i.e. evc(~b ) =/~(C) for any lift ~: 7t ~ ~ of q~. Then for each n = _ 1, 0, the preimage 
e-l(n)=(evc)-~(Hyp,). By 7.1, the inverse images of ev c are path-connected; 
now apply 1.4 and the result follows. [] 

7.9. An easier application of the analysis in w 6 deals with representations of 
surface groups in SU(2) and SO(3). One needs only apply the techniques of 
the proof of Theorem 5.1 to representations in SO(2) and SO(3). All that is 
needed is that the set of pairs (A, B)eSU(2)x SU(2) such that [A, B] = C is con- 
nected for each C~SU(2); this follows from the identification of the set of conju- 
gacy classes of pairs (A, B) with tr [A, B] = t with ~c- 1 (t) n [--- 2, 2] 3. If t > - 2, 
then this set is homeomorphic to a 2-sphere; for t = - 2 ,  it is a single point. 
In either case it is connected, and by similar arguments to w 5, it can be shown 
that for a closed surface group re, the space Hom(rr, SU(2)) is connected and 
the space Hom(n, SO(3)) has two components, distinguished by the Stiefel-Whit- 
hey map w2: Hom(lr, SO(3))~Z/2. For more information on these spaces of 
representations, the reader is referred to Newstead [33]. For an interesting appli- 
cation of the map x and the relation of SU(2)-representations to dynamical 
systems, see Fried [-6]. 

w 8. Generic properties 

In this section we discuss several properties which describe open and dense 
subsets of spaces of representations. 

The proofs will be simplified by working in these open and dense subsets. 
The result we shall use is the following: 

8.1. Lemma. Let G=PSL(2, R) or PSL(2, C) and M be a compact surface of 
negative Euler characteristic. Suppose W(M) is as in Theorem 3.3. Suppose that 

2 g - 2 + b  

M= U Mi is a decomposition of M into Euler characteristic - 1  subsurfaces. 
i=l 

Let W'(M) denote the subset of W(M) consisting of representations q~: ~zl (M)~ G 
such that for each M i, the image of the representation 

zq (Mi) -o 7q (M) ~ G 

is nonabelian. Then W'(M) is an open dense subset of W(M). 

Proof. We shall show that for each Mi, the set of representations ~be W(M) 
such that the image of the representation 

~1 (Mi) -"} ~ I (M)  , G 
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is abelian is a proper closed subvariety of Hom(n~(M), G). To this end, choose 
A~,Bien~(M~)'--,n~(M) which generate rq(Mi) and consider the map C~: 
Horn (nl (M), G)~  G defined by 

C ( r  [,4,, B,]. 

Clearly Ci is a polynomial map and either Ci-l(I) is a proper closed subvariety 
or contains an irreducible component of Hom(rq (M), G). 

Consider first the case that M has nonempty boundary. Then rq(M) is a 
free group on 1 -  ~((M) generators and Hom(rq(M), G)~ G 1- x(u). In particular 
Hom(n~(M), G) is a connected smooth manifold, and therefore an irreducible 
variety. For each integer n>  0, there exists a faithful representation of a free 
group of rank n into G; since [Ai, B.d4:l in nl(M), it follows that Ci is not 
identically L Thus C~-1(I) is a proper closed subvariety and hence nowhere 
dense. The union of all C~-1 (I) over Mi is also a proper closed subvariety and 
is nowhere dense; thus the set U of all CeHom(rq(M), G) such that r 
is nonabelian is open and dense. Since W(M) is an open subset of Hom(nl(M), G), 
it follows that W'(M)= W(M)c~ U is open and dense in W(M). 

Next consider the case that M is a closed surface. By 4.1 the irreducible 
components of Hom(rq(M), G) are the two preimages of the Stiefel-Whitney 

2 g - 2  

map w 2 :Hom (n I (M), G) ~ Z/2. Thus to show that U C/- 1 (I) is a proper closed 
i = 1  

subvariety, it suffices to exhibit one representation in each of the two irreducible 
components for which C~4:I. This is accomplished as follows. For each g >  1 
there exists a Fuchsian representation ~b which necessarily satisfies w2(r 
(since e (r  + ( 2 - 2  g)); thus w2 ~ (0) contains an injective representation. In par- 
ticular C~(r = I. In the other component we shall take a representation which 
has Euler class 3 - 2 g ;  that this suffices is an immediate consequence of the 
following: 

8.2. Lemma. For every integer g > 1 let M be a closed surface of genus g and 
let M o c M be a subsurface with X(Mo)= - 1 .  Then there exists a representation 
~: rq ( M)~PSL(2 ,  R) with e(d#)= 3 -  2 g such that the composition 

q, 
nl(Mo) ~ n~ ( M) ~ PSL(2, R) 

is injective. 

Proof. Write M as the union M1 u T where M 1 ~ M o has Euler characteristic 
3 -2g  and T has Euler characteristic - 1 .  Choose a Fuchsian representation 
~.1: nl (M1)-* PSL(2, R) which corresponds to a finite-volume complete hyperbol- 
Ic structure on M~; necessarily for each boundary component C ~ M~, the image 
of 

~1 (C) ~ 7t I (M1) --* PSL(2, R) 

is parabolic; the Euler class of r with respect to the standard trivializations 
OVer dM 1 equals z ( M 1 ) = 3 - 2 g .  Choose a solvable representation Cr: rq(T) 
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~PSL(2, R) such that for each boundary component C of dM~, the correspond- 
ing element of n~(T) is mapped to a conjugate of ~b~(C). Since 

n l (M)= ~l(M1) H 7q(T), 
1 (C) 

there exists a representation tk: nl(M)~PSL(2,R) such that q~ restricts to ~b~ 
on n~(M~) and restricts to a conjugate of ~b T on rq(T). It follows that 

e(~b) = e(q~,) + e(q~r) = (3 - 2 g) + 0 = 3 - 2 g 

as claimed. Since ~b I is injective, its restriction to n~(Mo) is injective as 
claimed. [] 

The proof of Lemma 8.1 is now complete. [ ]  

Remark. The results we have stated are only as strong as they are needed for 
this paper. Stronger results are available concerning the density of injective 
representations using the Baire category theorem; such a result is the following, 
proved in [8]. Since there exists a faithful representation of a closed surface 
group n in SL(2, C), it follows that faithful representations are dense in 
Hom(n, SL(2, C)) and Hom(n,  SL(2, R)). We do not know, however, if there exists 
a faithful representation in the w 2 ~: 0 component. If such a representation exists, 
then it follows that faithful representations are dense in all of Hom(lt, PSL(2, C)) 
as well as in Hom(zt, PSL(2, R)). Riley [34] and Sullivan [36] have shown that 
for any finitely generated group F, either a representation ~ e Horn (~t, PSL(2, C)) 
is in the closure of the set of non-faithful representations or is an isomorphism 
onto a geometrically finite discrete group containing no parabolic elements. 

w 9. Surfaces of Euler characteristic - 2 

In this section we prove Theorem B for surfaces of Euler characteristic -2.  
There are three topological types of such surfaces: the closed surface of genus 
two; the surface of genus one with two boundary components;  the surface of 
genus zero with four boundary components. In addition to proving Theorem B, 
we shall prove Lemma 9.3, which will be an essential step in the proof for 
the general case. In this section G will denote PSL(2, R) and 0 will denote 

its universal covering SL(2, R). 
We begin with the special case when M is a closed genus two surface: 

9.1. Theorem. Let rc be the fundamental group of a surface of genus two. 7~en 
the connected components of Hom(rt, G) are the inverse images e-l(n), where 
n=0 ,  4-1, +__2 and e: Horn(n, G)o Z is the Euler class map. 

Proof We identify Hom(r~, G) with the set of all (A1, B1, A2, B2)eG 4 satisfying 

[A1, BI] = [B2, A2]. 
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The inverse image e-l(n) is the set of (A 1 , B 1 , A2, B2)6 G 4 satisfying 

/~l (A1, B1)= zn/~2(B2, A2). 

Since 3 n z" 3 is nonempty for only n = 0, + 1, _ 2, the image of e: Horn (n, G)--* Z 
equals {0, _+ 1, ___2}. By 8.1, the set W' of (A1, B1, A2, B2)~Hom(n, G) satisfying 
[A1, B1] ~ I  is open and dense in Hom(n, G); thus it suffices to show that for 
each n, W'c~ e-l(n) is connected. Consider the lifted commutator map /~1: G 
x G~tT;  since 

/~1 : /~? I( G -  {I}) ~ ( G -  {I)) 

is a submersion, it suffices (by 1.4 and 7.1) to show that for each ne{0, __+ 1,+2}, 
the set 3 n z"~ is connected. Since 3 is connected, it readily follows that e-1(0) 
is connected. Since 

3 n z .~= Hypo w Par ~ wEll 1 u P a r (  wHyp l  

is a connected set, e - l (1 ) i s  connected. Since ~ n z 2 ~ = H y p x  is connected, it 
follows that e-1(2) is connected. Since the component of PGL(2, R) not contain- 
ing the identity element interchanges e-l(n) and e - 1 ( _  n) for n 4= 0, it follows 
that e - l ( -  1) and e - 1 ( _  2) are likewise connected. []  

9.2. Proposition. Let M be a surface of genus one with two boundary components 
A and B. Let A and B also denote the corresponding elements of n = n l ( M  ). 
Let W(M) be the subset of Hom(n, G) consisting of representations 49 such that 
c~(A) and 49(B) are hyperbolic. Let e: W ( M ) ~ Z  be the relative Euler class. Then 
the components of W(M) are the preimages e- 1 (n) where n = _+ 2, _+ 1, 0. I f  ~, fl c G 
are two hyperbolic conjugacy classes and W(M ; o~, fl) denotes the subset of W(M) 
for which 49(A)~o~ and 49(B)efl, then the connected components of W(M; ct, fl) 
are the sets e-  a (n) n W(M; ct, fl). 

The proof will be based on the following lemma: 

9.3. Lemma. Let M be a surface of genus one with two boundary components 
and let ~ and A, B be as above. Let C c M be a separating simple closed curve 
which represents the element (also denoted C) ABort. Let P c  M be the pair-of- 
pants bounded by A, B, C and let T c  M be the torus-minus-disc bounded by C. 
Suppose 49~Hom(n, G) is such that 49(nl(P)) and 49(nl(T)) are nonabelian. Then 
there exists a path {49t}o=<t=<l in Hom(n, G) such that: 

(i) 490 = 49; 
(ii) 49r(A) is conjugate to 49(A) and 49t(B) is conjugate to 49(B) for all 0 <_ t < 1 ; 

(iii) 491(C) is hyperbolic. 
Furthermore if 49(A) and 49(B) are both hyperbolic, such a path exists such that 
the relative Euler class of 491 restricted to P equals +_ 1. 

Proof of 9.3. Choose a lift of the representation q~: n-",d. Let a= t r~ (A) ,  
b=tr  ~(B), c = t r  ~(C). If ~b(C) is already hyperbolic, there is nothing to prove. 
Thus - 2 < c < 2 .  For e>0,  consider the path {(at, bt, ct)}o~t_~l, defined by 

at=a, bt=b, c , = t ( 2 + e ) + ( 1 - t ) c .  
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If (at, bt, G) never meets the set 

[-- 2, 233 c~ ~:-x((- 2, 2)) 

then by 4.5 (after possibly reparametrizing {(a, bt, c,)}) there exists a path 
(At, B,)EO x 5 such that 

[A,,Bt]4=I, Ao=~;(a) ,  Bo=~(B)  and x(A,,Bt)=(at,  bt, c,). 

If (a t, bt, c,) does meet [ - 2, 2] 3 c~ x-  1 (( _ 2, 2)), then - 2 < a, b < 2 and 

a b  _ / ( 4  - a e) ( 4 -  b 2) 
_< c 
- 2  2 

In that case the alternate path {(at, bt, ct)}o_<t_<x defined by 

at=a,  bt=b,  c t = t ( - 2 - e ) + ( 1 - t ) c  

can be lifted to {(At, Bt)}o_<t_<l ~ 5 • G such that 

EAt, Bt] 4 = I, A o = ~ (A), B o = ~ (B), z(At, Bt) = (at, bt, ct). 

Since tr At and tr Bt are constant and A t and Bt are never equal to + I (otherwise 
A t and Bt commute), it follows that At is conjugate to A o and Bt is conjugate 
to B o for all t. Let Ct= AtB t. Let X, Y ~  represent nonseparating simple loops 
which satisfy the relation [X, Y ] = C ,  and let Xo=~b(X ), Yo=~b(Y). Any path 
? t~6 which begins in Ell• such that 7t is elliptic only when vtEEll• lies 
completely within ~. By 7.7 there exists a path (Xt, Yt)~GxG such that 
I~t (Xt, Yt) = Cr Since 

z c = ( A , B , X ,  Y, C [ A B = C = [ X ,  Y]) 

it follows that {(At, Bt, X,, Yt)}o~t_<t defines a path of representations with the 
desired properties. 

Suppose now that ~b(A) and ~b(B) are both hyperbolic. If ~b(C) is hyperbolic 
and the relative Euler class of ~b over P is nonzero, there is nothing to prove. If 
4~(C) is not hyperbolic then since the line {a} x {b} x R misses [ - 2 ,  2] 3n x-t((-2,  2)) 
both of the above paths {(at, b,, G)} can be lifted to paths in 5 x G. In particular, 
ca may be chosen to either be positive or negative. If an even number of a, b, ct 
are negative, the corresponding representation is Fuchsian and the relative Euler 
class equals + 1 as claimed. Consider finally the case that ~b(C) is hyperbolic 
and the relative Euler class of ~b over P is zero. Then, choosing lifts A,/] of 
~b(A), ~b(B) to HyPo, the product ~ = A / ] e H y p o .  In that case there is a path 
{a,  b,, C,}o~t~ 1 in R 3 - ( [ - 2 ,  2] a c~ x-  x((- 2, 2))) with 

a, = tr ~(A), b, = tr ~(B), c o = tr ~(C), cl = - Co. 

By 4.5 such a path can be lifted to a path in 5 x G. As above, a path {(X, ~;)} 
exists determining a path {~bt}o__,__x in W(M). Since the relative Euler class 
of 4~ over P is zero, an odd number of a, b, c are positive. Thus an even number 
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of tr ~ba (A), tr ~bl(B), tr q~x(C) are positive, whence the relative Euler class of q~ 
over P is nonzero. [] 

Proof of 9.2. Let ~b, ,peW(M) satisfy e(q~)=e(q/). We shall find a path in W(M) 
joining ~b and ~. By 9.3 ~b can be deformed to ~b I such that ~bl(C ) is hyperbolic 
and the relative Euler class of ~bl over P is nonzero. Similarly deform $ and 
~1 so that ~bl(C ) is hyperbolic and the relative Euler class of ~1 over P is 
nonzero. Let T = M - P  be the torus-minus-disc bounded by C. Suppose that 
e(q~ [~, (p)) = e (~0 [-l(e))- Then since 

e (q~l) = e(q~) = e(~O) = e(~l) 
and 

e ( ~ t )  ---- e(t~ll~,(e)) + e ((~11~tl (T)) e ( ~ l )  = e ( ~ l  I~,(P)) + e ( ~ l  [~t i iT)), 

it follows that e(c~[~,(r))=e(~l[.,tr) ). That (p and ~ can be joined by a path 
in W'(M) is a consequence of the following general fact: 

-z(M) 
9.4. Proposition. Let M be a compact surface and let M = [.) M~ be a maximal 

i=1 
dual-tree decomposition. Let W'(M) denote the subset of W(M) consisting of repre- 
sentations q~ such that for each Mi, the image of the representation 

~1 (M/) ~ ~1 (M) , G 

is nonabelian. Suppose that c~, ~b ~ W'(M) satisfy the condition that for each Mi 
the relative Euler class of q6 over Mi equals the relative Euler class of ~b over 
M i. Then there exists a path in W'(M)joining d? to ~k. 

Proof. Let M 1 be a subsurface in the decomposition such that M ' = M - M  1 
is connected. By the induction hypothesis the restrictions of ~b and ~b to ~t(M') 
lie in the same path-component of W'(M'). Let C = ~M1 r~ 0M' be the common 
boundary component of these two subsurfaces, and let C also denote the corre- 
sponding elements of rq(M0, rq(M'), hi(M). Let {~b't}o__<t<t denote a path in 
W'(M') joining ~b[~ltM, ) and ~'I~1tM'). By the path-lifting properties 4.6 and 7.8, 
there exists a path {r/t} o_<t_<l of representations in W'(MO such that r/t(C)= ~bt(C) 
and ~/0=tPl~aM1). Thus the pair of paths of representations defines a path of 
representations in W'(M)joining ~b and ~. []  

It remains to consider the case that the relative Euler class of ~b on P equals 
the negative of the relative Euler class of ~, on P. In that case necessarily e(q~) 
=e(~b) = 0 so that there exist lifts ~, ~: ~r ~ G with ~(A), ~(B), ~(A), ~(B)eHypo.  
We shall deform tpl to a representation ~b2~ W(M) such that the relative Euler 
classes of ~b 2 and ~1 agree on each of T, P. Suppose that the relative Euler 
class of q61 on P equals 1; then it follows that ~ l (C)eHypl .  There exists a 
path {Ct}l_<t~2 lying completely in 3 such that Co=~I(C)  and C leHyp-~ .  
By the path-lifting properties 4.6 and 7.8 there exists a path {~bl}l_~t~2 with 
~tiA), q6t(B)eHypo such that ~I(C)=Ct.  Thus we may assume that e(~b[~,p)) 
-- e(~b [~(e)) and e (q5 I~(r)) = e (r [~l(r)), the case which has already been treated. 
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For the last assertion, simply observe that in all of the above deformations, 
the traces of got(A) and got(B) can be arranged to be constant. Thus we may 
fix the conjugacy class of the image of each boundary component throughout 
the deformation. 

This concludes the proof of 9.2. []  

9.5. Proposition. Let M be a surface of genus zero with four boundary components 
A, B, C, D and denote the corresponding elements of 7r = 7Zl(M ) also by A, B, C,D. 
Let W(M) be the subset of  Hom(zr, G) consisting of  representations go such that 

go(A), go(BB), go(C), go(D) 

are each hyperbolic. Let e: W ( M ) ~  Z be the relative Euler class. Then the compo- 
nents of W(M) are the preimages e-l(n) where n=  +2,  +1,0 .  Furthermore if 
~, fl, 7, 6 are hyperbolic conjugacy classes in G, and 

W(M; ~, fl, 7, 6)= {go ~ W(M) Igo(A)~, go(B)~fl, go(C)~y, go(D)~fi}, 

then the components of W ( M  ; a, fl, 7, b) are the sets e- X(n)c~ W(M ; a, fl, y, 6). 

A crucial step in the proof is the following: 

9.6. Lemma. Let M, n=rq(M),  A,B, C,D be as above and let X c M  be a simple 
closed curve which separates M into two pair-of-pants P~,P2 such that OPt 
= A L) 13 u X and dP2 = X u C u D. Choose elements (also denoted A, 13, C, D, X) 
of n corresponding to the curves A, B, C, D, X satisfying the relations A B = X  
=(CD) -I. Suppose goEHom(x, G) is such that go(xl(P1) ) and go(rq(P2)) are nonabe- 
lian. Suppose furthermore that go(A) is hyperbolic. Then there exists a path 
{go,}o6t-<l in Hom(Tr, G) such that: 

(i) go0=go; 
(ii) go,(A) is conjugate to go(A), go,(B) is conjugate to go(B), go,(C) is conjugate 

to go(C) and go,(D) is conjugate to go(D)for all O< t< 1; 
(iii) gox (X) is hyperbolic. 

Furthermore if in addition go(B), go(C), go(D) are all hyperbolic, such a path exists 
such that the relative Euler class of gox restricted to Px equals +_ 1. 

Proof o f  9.6. The proof is similar to that of 9.3. If go(X) is already hyperbolic, 
there is nothing to prove. Lift the representation go to/~: rc ~ ~. Let 

a = tr ~(A), b = tr ~(B), c = tr ~ (C), d = tr ~(D), x = tr go (X). 

As in the proof of 9.3, there exists a linear path {(ct, dr, xr)}o___t=<l such that 
ct = c and d, = d remain constant, I xxl> 2 and 

(ct, at, x t ) r  2] 3 ~ ~:-~([- 2, 2])). 

There exists a path {(Ct,Dt)}o<_t<_~ in ~ •  d such that C0=qS(C), Do=~(O) , 
[ C .  Ot] 4= I and x(Ct, DO = (et, d~, x,). Next consider the path {(at, b .  x,)}os,5~, 
where at = a and bt = b remain constant. Since l a l>  2, the path completely misses 

[--2,21a n ~-1([--2,  2]) 
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and therefore there exists a path {(At, Bt)}o<_t<~ in (~ • (~ such that 

6Ol 

A o = c~(A), B o = q~ (B), FAt, Bt] :4 = I, Z (At, B,)= (a,, b,, xt). 

By 1.3 there exists a path {U~}o<t_< t in G such that AtB,= UtXt Ut -1. The desired 
path in Hom0r, (~) is given b y : -  - 

q~,(a) = A,, q~,(B) = B,, q~,(C) = U, C, U,- ' ,  4,,(0) = U, O, E - ' .  

Now suppose that ~b(B), ~b(C), ~b(D) are all hyperbolic. By lifting a path (as 
above) in {a} • {b} • R and a corresponding path in {c} x {d} • R we see that 
t r~(X)  can be made to be greater than 2 as well as less than - 2 .  Thus we 
may arrange that an odd number of tr~l(A), tr~l(B), tr~l(C) are negative, 
whence the relative Euler class of q~l over P1 equals -4- 1. [] 

Proof of 9.5. By 8.1, W'(M) is open and dense in W(M). It suffices to show 
that if q~, ~,e W'(M) satisfy e(q~)= e(~,), then there exists a path in W'(M)joining 
them. The proof follows the exact same lines as that of 9.2 and will be abbreviat- 
ed: First deform ~b and @ so that X becomes hyperbolic; if the relative Euler 
classes of ~b and r on Pt and P2 agree, then by 9.4 the representations lie in 
the same path-component of W'(M). Otherwise a similar deformation argument 
to that of 9.2 constructs a path ending at a representation where the relative 
Euler classes all agree. All of the deformations involved can be arranged so 
that the trace of each boundary component remains constant, whence the last 
claim follows. [] 

9.7. Remark. Lemma 9.6 may fail if none of ~b(A), q~(B), ~b(C), ~b(D) are hyperbol- 
ic. Indeed, for some choices of elliptic conjugacy classes ~, fl, y,6 in G, the space 
of conjugacy classes of quadruples (A, B, C, D)e G 4 such that ABCD = I and A e ~, 
B ~ ,  CEy, De,5 has a compact component in which AB will never be hyperbolic. 
Such a case arises, for example, when the traces a=tr(A), b=tr(B), c=tr(C), 
d= tr(D) satisfy the inequality 

a b + ] / ( 4 -  a 2) ( 4 -  b 2) < c d - r  c 2) ( 4 -  d2). 

w 10. The general case 

Using the results of the previous sections, we conclude the proofs of Theorems 
3.3, 3.4, and Theorem A. In this section G will denote PSL(2, R), d will denote 
its universal cover, M will denote a compact surface of genus g with b boundary 
COmponents such that z ( M ) = 2 - 2 g + b < - 2  and Ir=rh(M). As usual W(M) 
denotes the space of homomorphisms ~b e Hom (Tr, G) such that for each boundary 
COmponent C c 0M the image ~b (C) is hyperbolic where C also denotes (as usual) 
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a corresponding generator of nt(C)'--,r~. Let e: W ( M ) ~ Z  denote the relative 
Euler class map. Choose a maximal dual-tree decomposition (as in 3.8) 

M = M 1 q )  . . . L)  M -  z ( M ) .  

Let W'(M) denote the subset of W(M) consisting of representations which, for 
each Mi restrict to a nonabelian representation on n~(Mi)~ 7q (M). By 8.1 W'(M) 
is open and dense in W(M); hence to prove that e-X(n) is connected it suffices 
to show that e-~(n)n W'(M) is connected. Our first goal is to prove the general- 
ization of 9.3 and 9.5 to all surfaces: 

10.1. Lemma. Let q~W'(M). Then there exists a path in W'(M) from q~ to 
q~'e W'(M) such that for each Mi, the restriction of qY to each component C~dMi 
is hyperbolic. 

Proof. We prove this result by induction on z(M); the case z ( M ) - - - 1 , - 2  
has already been treated in w After possibly reindexing the M~, assume that 
M~, M 2 are subsurfaces in the given decomposition satisfying the following prop- 
erties: 

(1) If aM 4:0, then aM~ contains at least one component of 8M; 

(2) M 1 u M2 is a connected subsurface M' of M. 

The subsurface ~ M i has either one or two connected components Nj. Let 
i > 2  

C~ denote the curve  t3M 2 ~ ~Nj and let C'= ~M~ r~ ~Mz. Then q5 restricted to 
rq(M') satisfies the hypotheses of 9.3 or 9.6, so there exists a path {c~t}o<_,s~ 
in W'(M') from qb0=tkl~,(M,) to a representation q51 in W'(M') such that each 
q51(C' ) is hyperbolic and for given C~, ~t(Cj) remains conjugate to qS(Cj) for 
all t. Let {U,O~}o__<t__<~ be a path such that 

r  = u?~ r (ups)-  ~. 

Extend ~b t from zq (M') to rq (M) by requiring that 

r  = ~ '  r (u,~J~) -1 

for 7~nl(Nj). This defines a path {~bt}o_<~_~ a of representations in W'(M) such 
that t#l(C') is hyperbolic. Thus the restriction of ~b to nl( U Mi) lies in W'( U Mi). 

i > l  i>1 

By the induction hypothesis, there exists a path in W'( U M~) from this represen- 

tation to one which maps each component of OM~ (where i>  1) to a hyperbolic 
element. Furthermore by the path-lifting property 4.6 for representations of 
fundamental groups of Euler characteristic - 1  surfaces, this path may be 
extended to a path in 

(W'(M1) x W'((..) Mi))~ W'(M). 
i > 1  

Such a path now has the desired properties. [] 
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10.2. Suppose that 4), ~ke W'(M). By 10.1 both 4), ~b may be deformed to represen- 
- x (M)  

tations which lie in l-~ W'(Mi). Let 
i = 1  

- z ( M )  

e: I-I W'(MI) ~z-x(~t )  
i = l  

be given by 
~(a 1 . . . . .  a_ X(M)) = (e (ffl) . . . . .  e (o'_ z (M)) ) "  

According to 9.4, if ~(4))= ~(~k) the representations 4) and ~ lie in the same 
path-component of W'(M). Next suppose that Mx and M2 are two adjacent 
subsurfaces and that the relative Euler classes of 4) and ~b restricted to M~ u M2 
are equal. By 9.2 and 9.5, there exists a path joining 4)l~,(Mium~) and ~hl~,(M1u~) 
such that the restriction to the fundamental group of the boundary components 
of M1 u M2 stay in a fixed conjugacy class. It follows that this path extends 
to a path of representations in W'(M)joining 4) and ~h. Thus two such representa- 
tions lie in the same component of W'(M). 

Theorem 3.3 now follows immediately from the preceding remarks and Lem- 
ma 3.9 by taking T to be the tree dual to the decomposition of M, f=~(4)) 
and f ' =  ~(~h). 

10.3. Proof of 3.4. The fact that if ch: n-* G is a holonomy representation for 
M then e(4))= i x ( M )  has been proved in 3.5. Thus it remains to show that 
if e(ch)= i x ( M )  then ch is a holonomy representation for M. 

We begin by assuming that M is a closed surface. In that case 4) is a holonomy 
representation for M if and only if 4) is Fuchsian, i.e., if it is discrete and faithful; 
necessarily the image of such a 4) is a cocompact discrete subgroup of G. It 
follows from Weil [39J that the set of such representations is open inside 
Horn(u, G). On the other hand, it follows from Chuckrow [1] (see also [32, 
18]) that this set is also closed inside Hom(u, G). Thus the set of holonomy 
representations is a union of connected components of Hom(u, G). By 3.5 this 
set is contained in the union e -  I(z(M)) • e-  1 ( _  ;((M)). Since there exist Fuchsian 
representations in both e-I(z(M)) and e - I ( - z (M) ) ,  it follows that the set of 
Fuchsian representations equals e -  I(z(M)) w e-  1(_ X (M)). 

We can reduce the case of a surface with boundary to the closed case by 
a doubling construction. This is most succinctly stated in the language of orbi- 
folds (see e.g. [19] or [36]). Suppose that M is a surface with boundary and 
that cheW(M). Let h4 denote the orbifold whose underlying topological space 
is M with singular set tOM and whose fundamental group is generated by nt(M) 
together with one reflection Pc for each boundary component C c tOM and sat- 
isfying the relations that p2 = I and Pc C Pc = C (where, as usual, we abuse nota- 
tion by letting C also denote a generator of the fundamental group of the 
boundary component C). This orbifold h4 has a double covering which is the 
double 2 M  of M; thus h4 is the quotient orbifold of 2M by the involution 
z which fixes OM with fundamental domain M. 

Now suppose that 4)eW(M) satisfies e(4))= +z(M).  Let I-I~ denote the flat 
lt2"bundle over M with holonomy 4)- By the above construction, there exists 
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a fiat H2-bundle f l  2 over the orbifold M. By passing to a double covering 
one obtains a flat H2-bundle 2(H z) over 2 M  which restricts to Hart over M 
and to l* (H~) over t (M). Let 2 49: u~ (2 M) ~ G denote the holonomy representa- 
tion of 2(H~). By the additivity property 3.7 we have 

e (2 4)) = e (qS) + e (z, o 49~ p,(c)) = 2 e (4)) = ___ 2 X (M) = ___ X (2 M) 

(where C is any boundary component of M). By the closed case of 3.4, 2q~ 
is a holonomy representation for 2M, whose restriction 49 to nx(M) is necessarily 
a holonomy representation for M. The proof of 3.4 is now complete. [] 

10.4. Proof of Theorem A(i) .  We must show that if G (") denotes the n-fold 
covering group of G, then the number of connected components of Hom0t,  G (")) 
is given by the formula 

2n2g + ( 4 g - 4 ) / n -  1 if n [ 2 g - 2  

if n J ' 2 g - 2 .  

The proof will be based on the following lemma. Let f :  G(")~ G denote 
the covering projection and let f , :  Horn (u, G (")) ~ Hom (n, G) denote the induced 
map (as in 2.2). Recall that a Fuchsian representation is a homomorphism (~: 

~ G which maps ~ isomorphically onto a discrete (necessarily cocompact) sub- 
group of G. Theorem 3.4 asserts, when u is the fundamental group of a closed 
surface that the Fuchsian representations comprise the two connected compo- 
nents e - l (+_(2g-2) )  of Horn(re, G). 

10.5. I, emma. Suppose that 49,~b'eHom(n, G t")) are such that f,(49)=f,(~b')is 
not a Fuchsian representation ~ G. Then 49 and 49' lie in the same connected 
component of  Horn (re, Gt")). 

Assuming 10.5, the proof of Theorem A(i) proceeds as follows. As the 
obstruction to lifting a representation 4): rc ~ G to rt ~ G (") is the reduction modu- 
lo n of the Euler class, the image of f , :  Hom(r~, G("))~Hom(r:, G) consists of 
all ~beHom(n,G (")) such that nle(49). Let keZ,  J n k l < 2 g - 2 ;  then e-l(nk)is 
a connected component of Hom(rc, G). By 2.2, f , :  f~l(e- l (nk))~e-~(nk)  is a 
covering map and it follows by 10.5 that f , l ( e - ~  (n k)) is a connected component 
of Hom(rc, G(")). 

If n X 2 g - 2  then every component  of Horn(u, G (")) is of this form; thus corre- 

to the 2 1 2 g ~ ] + 1  integers k such that Ink[=<2g-2 are the sponding 
k ,~ _1 

2 1 ~ ] + 1  components of Hom(rt, G(")). Suppose next that n 1 2 g - 2 ;  then 

there are ( 4 g - 4 ) / n - 1  connected components of representations which map 
under f ,  to non-Fuchsian representations. By 3.4, there are two components 
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of Fuchsian representat ions in Hom(lt ,  G), namely e - ~ ( 2 - 2 g )  and e -X(2g -2 ) .  
Let ~ denote  one of these components .  By 2.2, the map f . :  f , ~ ( cg )~cg  is a 
covering space with covering group Horn (n, Ker  f )  ~ H ~ (S; Z/n). Fur the rmore  
the action of Hom(r~, K e r f )  on Hom(rt,  G (n)) commutes  with the action of  G (~) 
by conjugat ion and hence f .  induces a covering space f,x(cg)/G(~)~Cg/G with 
covering group Hom(r~, K e r f ) .  Since ~/G is the Teichmfiller space of $ which 
is simply connected,  Hom(rc, K e r f )  acts simply transitively on the components  
of f ,x(~)/G and hence also on the components  of f , x ( ~ ) .  Since Hi(S;  Z/n) 
has n 2g elements, it follows that  f.-l(cg) has n 2. components .  Since there are 
two such components  cg consisting of Fuchsian representations,  there are 2n 2. 
components of Hom(rt ,  G (")) consisting of Fuchsian representations. As there 
are ( 4 g - 4 ) / n - 1  components  of  non-Fuchsian representations, there is a total 
of2n2*+(4g-4)/n - 1 components  of Hom(zc, G(~)). [ ]  

Proof of 10.5. Since f . :  Hom(Tz, G("))~Hom(r~, G) is a covering space onto  its 
image whose covering group is Hom(zc, K e r f ) ,  it suffices to show that  for a 
fixed generating set A for Hom(Tt, K e r f ) ,  there exists a path in Hom(rc, G t~)) 
joining ~b and ~ q~ for each ~ A .  We denote by z a generator  of  the center 
of G ("). Let  Ax,B x . . . . .  Ag, Bg denote  a s tandard set of generators  for re; then 
there is a generating set A consisting of cq, fl~ . . . . .  ~t,, fig such that  

~,(aj)  = z~,J, ~,(nj) = / 

/~,(Bj)=I ,  B,(Bj)=z~',.  

To join ~b and ~ ~ where ~ = cq, for example, we proceed as follows. By 
[12], p. 104, there exists a path tr in Hom(zc, G) joining f .  ~b to ~k, where ~(fll) 
is elliptic. As on [121  p. 104, there is a path  {~kt}o_<t_< 1 of representations in 
I-Iota(n, G (~)) joining ~k = ~'o to ~ ~k = ~k 1 defined by 

r = ~0 (~x) r 

~lt(O~i)=l~(O~i) if i >  1 

~b,(flj) = ~O (//i) i f j > l  

where {(t} o_<,_< x is the elliptic one-parameter  subgroup in G (n) centralizing ~k (fix), 
normalized so that  ~o = I and (1 = z. Then ~t = V ~k as claimed and the composi-  
tion of paths t r .  {~kt} *tr -x is a path joining ~b to 7~b as desired. Similar paths 
can be constructed joining q~ to ~ ~ for the other  7eA. [ ]  
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