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Abstract. This historical survey reports on the theory of locally
homogeneous geometric structures as initiated in Ehresmann’s 1936
paper Sur les espaces localement homogènes. Beginning with Eu-
clidean geometry, we describe some highlights of this subject and
threads of its evolution. In particular, we discuss the relationship
to the subject of discrete subgroups of Lie groups. We emphasize
the classification of geometric structures from the point of view of
fiber spaces and the later work of Ehresmann on infinitesimal con-
nections. The holonomy principle, first isolated by W. Thurston
in the late 1970’s, relates the classification with the representa-
tion variety Hom

(
π1(Σ), G

)
. We briefly survey recent results in

flat affine, projective, and conformal structures, in particular the
tameness of developing maps and uniqueness of structures with
given holonomy.
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Introduction

On 23 October 1935, at the Geneva conference “Quelques questions
de Geométrie et de Topologie,” Charles Ehresmann [57] initiated the
study of geometric structures modeled on a homogeneous space (X,G),
or locally homogeneous geometric structures on manifolds. Here G is
a Lie group and X a homogeneous space, representing a geometry in
the sense of Klein’s Erlanger program. A geometric structure is de-
fined by an atlas of coordinate charts mapping into X with coordinate
changes locally defined by transformations in G. We call such a struc-
ture a (G,X)-structure, and a manifold equipped with such a structure
a (G,X)-manifold. A (G,X)-manifold M inherits all of the local ge-
ometry of X invariant under G.

These ideas were heavily influenced by Sophus Lie, Felix Klein, Henri
Poincaré and Élie Cartan among others. Lie and Klein recognized how
a group-theoretic viewpoint unified the disparate classical geometries:
for them, a geometry consists of the properties of a space X upon which
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a group G acts transitively by symmetries of that geometry. Transitiv-
ity of the action means that the local geometries at any pair of points
are equivalent. For example for Euclidean geometry, X is Euclidean
space En and G is its group of isometries. Poincaré introduced the fun-
damental group π1(Σ, x0) of a topological space Σ, consisting of loops
based at a fixed (but arbitrary) base point x0 ∈ Σ. Cartan introduced a
general notion of development along paths, which corresponds to par-
allel transport of infinitesimal objects (for example, tangent vectors
and frames) along paths. Development for an Ehresmann structure M
modeled on a geometry (G,X) defines a homomorphism π1(M) −→ G

compatible with a local homeomorphism M̃ −→ X.
Ehresmann begins with Riemannian manifolds of constant curva-

ture, which he calls Clifford-Klein space forms. Such manifolds are
locally modeled on Euclidean space En, the sphere Sn, or hyperbolic
space Hn, depending on whether the curvature is zero, positive or neg-
ative, respectively. Indeed, for these geometries, a (G,X)-structure
is completely equivalent to a Riemannian metric of constant sectional
curvature. The key property upon which he focuses is that any two
points in such a space possess open neighborhoods which are isomet-
ric, that is, they have the same local geometries. He considers the more
general situation of a manifold X with a transitive left action of a Lie
group G; choosing a point x ∈ X,

G −→ X

g 7−→ g(x)

maps G (with its simply transitive group of left-multiplications) G-
equivariantly to X. Furthermore this map passes down to a isomor-
phism of left G-spaces Stab(G, x)\G −→ X, where

Stab(G, x) := {g ∈ G | g(x) = x}

is the stabilizer of x in G. In modern parlance, X is a homogeneous
space of G.

He then defines a locally homogeneous space to be a manifold M
(having the same dimension as X) which is locally modeled on the
G-invariant geometry of X. Specifically, M is covered by open neigh-
borhoods, coordinate patches, U (which Ehresmann calls “elementary
neighborhoods”) equipped with homeomorphisms, coordinate charts,

U
ψ−−→ X. The coordinate charts transfer the local G-invariant geom-

etry of X to U .
Coordinate patches U and U ′ with corresponding charts ψ and ψ′

respectively define possibly competing geometries on the intersection
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U ∩U ′. Thus we require that ψ and ψ′ define the same local geometry
on U ∩ U ′: that is, each p ∈ U ∩ U ′ possesses an open neighborhood
V ⊂ U∩U ′ such that ψ′|V = g◦ψ|V for some g ∈ G. If we require thatG
acts effectively on X, then g will be uniquely determined. Furthermore
g only depends on the connected component of U ∩ U ′ containing p.

This is what he calls a locally homogeneous space of Lie, to distin-
guish it from a homogeneous space of Lie, and he observes that every
homogeneous space is locally homogeneous. The main question ad-
dressed in the paper is to what extent the converse holds.

He begins with the observation that a locally homogeneous space is a
real analytic manifold. Although at the time, the global notion of a Lie
group had not been popularized (Chevalley’s book [36] would not be
published for at least another decade), Ehresmann spends some time
clarifying the relation between local groups of transformations on X.

In [57], Ehresmann calls M a Clifford form of X.
Ehresmann structures modeled on a Lie group G and its group of

left-translations arise from discrete subgroups of G, at least under the
assumption that the developing map is a covering space. Certainly
when M is compact, such a (G,X)-structure corresponds to a discrete
subgroup Γ̃ ⊂ G̃ and an isomorphism M ∼= Γ̃\G̃. (For more informa-
tion see [78].)

In the literature, “locally homogeneous spaces” sometimes refer to
biquotients Γ\G/H, since “homogeneous space” may refer to the quo-
tient G/H. (Here Γ ⊂ G is a discrete subgroup and H ⊂ G is a closed
subgroup, so that G/H is Hausdorff. Furthermore Γ is assumed to
act properly on G/H, which, unless H is compact, is a nontrivial as-
sumption on Γ.) If, in addition, Γ is asssumed to act freely on G/H,
then the double coset space Γ\G/H admits the natural structure of a
(G,X)-manifold M , where X = G/H. Under various completeness as-
sumptions (see below), “locally homogeneous” in our sense will imply
that the geometric manifold is indeed a double coset space.

The case when H is compact implies that X carries a G-invariant
Riemannian metric which is necessarily geodesically complete, and the
Hopf-Rinow theorem implies that a closed (G,X)-manifold is a double
coset space in the above sense. These basic examples are particularly
tame, although nonetheless extremely rich.

Acknowledgement
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1. Euclidean manifolds

The most familiar geometry is Euclidean geometry. Euclidean ge-
ometry includes relations between points, lines, planes, and measure-
ments such as distance, angle, area and volume. A more sophisticated
aspect of Euclidean geometry is the theory of harmonic functions and
Laplace’s equation. The key property is that these objects, and the
relations between them, are invariant under the transitive action of the
isometry group G = Isom(En) of Euclidean space En.

The model space X = En is defined as the vector space Rn (or more
accurately the affine space An, where the special significance of the
additive identity 0 ∈ Rn is removed). The isometry group is generated
by the group of translations (identified as the vector space Rn), and
the group O(n) of orthogonal linear automorphisms of Rn. Thus G ∼=
Rn o O(n) and X = En identifies with the homogeneous space G/H
where H := Stab(G,0) = O(n) is the stabilizer of the origin 0 ∈ Rn.

1.1. Riemannian geometry. Euclidean structures are flat Riemann-
ian structures, that is, Riemannian structures whose curvature tensor
vanishes. We adopt the viewpoint that the Riemannian structure is the
geometry defined by a Riemannian metric (tensor), which then leads to
notions of speed and length of smooth curves, and finally the structure
of a metric space.

The key point is that for X = En, a positive innner product on the
associated vector space V = Rn extends to a G = Isom(En)-invariant
metric tensor on X. (The G-invariant tensor is uniquely determined up
to scaling by a nonzero constant.) This infinitesimal structure makes
X into a metric space upon which G acts isometrically.

If M is a manifold, then an Ehresmann structure on M modeled
on Euclidean geometry is essentially equivalent to a metric space lo-
cally isometric to a Euclidean structure. (We say “essentially” because
the distance function is determined up to scaling by positive constant.)
Equivalently, this is just a Riemannian metric which is flat, that is, one
whose Riemann curvature tensor vanishes. Other Ehresmann struc-
tures can be defined in a similar way, using an infinitesimal form (Car-
tan connections) such that an object generalizing the curvature tensor
vanishes. (Compare Sharpe [132].)

However, the theory of Euclidean manifolds really goes back much
earlier, to crystallography and the theory of regular tilings of Euclidean
space. Once the abstract notion of a group of transformations was
formulated, late nineteenth-century crystallographers such as Schoen-
flies and Fedorov classified crystallographic groups, namely symmetry
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groups of tilings of E3 by compact polyhedra. These are the mathe-
matical abstractions of crystals . In arbitrary dimension a Euclidean
crystallographic group is a subgroup Γ ⊂ Isom(En) acting properly dis-
continuously on En with compact quotient (equivalently, a compact
fundamental domain).

A compact flat Riemannian manifold M (that is, a Euclidean man-
ifold) determines a crystallographic group. The Hopf-Rinow theorem

(see §5 below) implies that the universal covering space M̃ is isometric
to En, and the group π1(M) of deck transformations acts properly and
isometrically on En. Conversely, if Γ ⊂ Isom(En) is discrete, then it
acts properly and isometrically on En. If, furthermore, Γ is torsion-
free, it acts freely on En and the quotient M := Γ\En is a manifold.
In particular M identifies with a double coset space Γ\G/H. Since
H = O(n) is compact, the homogeneous space Γ\G is compact if and
only if the locally homogeneous space Γ\G/H is compact. Crystallo-
graphic groups, then, are just discrete subgroups Γ ⊂ Isom(En) which
are cocompact, that is, when Γ\Isom(En) is compact. In the case that
G = Isom(En), this is equivalent to Γ being a lattice in G, namely a
discrete subgroup such that Γ\G has finite Haar measure. Thus the
classification of crystallographic groups is equivalent to the classifica-
tion of lattices in Isom(En). (See Milnor [123] and the references cited
there for an excellent exposition of these ideas and their histroical mo-
tivation.)

1.2. The Bieberbach theorems. In 1911, Bieberbach proved a Struc-
ture Theorem for crystallographic groups. Namely, the linear holo-

nomy Γ
L−−→ O(n) defined by the (constant) derivative of the isometry

γ ∈ Γ has finite image. Its kernel consists of all translations in Γ,
and Ker(L) = Γ ∩ Rn is a lattice Λ in Rn (the additive group spanned
by a basis of Rn). The geometric version is that a compact Euclidean
manifold admits a finite covering space whose total space is a flat torus
Rn/Λ.

He also proved a Rigidity Theorem and a Finiteness Theorem for
Euclidean manifolds. Euclidean manifolds are rigid in the following
sense: Every isomorphism Γ1 → Γ2 of crystallographic groups extends
to an affine automorphism of En conjugating Γ1 to Γ2. Observe that
the rigidity is up to affine equivalence, not Euclidean isometry. While
isometry classes of marked Euclidean n-manifolds comprise a defor-
mation space with rich geometry

(
identifying with GL(R2)/O(2)

)
, the

deformation space of affine equivalence classes of marked Euclidean
n-manifolds is a point.
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Finally any n admits finitely many isomorphism classes of crystal-
lographic subgroups Γ ⊂ Isom(En). For n = 2, only the torus and
Klein bottle have Euclidean structures. For n = 3 only six orientable
3-manifolds admit Euclidean structures.

These three theorems provide a satisfactory qualitative picture of
Euclidean structures on closed manifolds. Compare Wolf [148], Raghu-
nathan [129], and Thurston [138].

By the Rigidity Theorem above, it seems natural to consider more
general affine crystallographic groups, namely discrete subgroups Γ ⊂
Aff(An) such that Γ acts properly on An, and the quotient Γ\An is com-
pact. (Our notation emphasizes context: An denotes the affine space
underlying En: that is, An “is” En, but without the special structure
defined by the Euclidean inner product. Similarly An “is” Rn, but
without the special structure given by the additive identity 0 ∈ Rn.)

1.3. Affine crystallographic groups. In dimension three, all three
of Bieberbach’s theorem fail for affine crystallographic groups: the im-
age of the linear holonomy is generally infinite, there are generally in-
finitely many affine isomorphism types in a given topological type, and
there are infinitely many topological types (Auslander [7]). Auslan-
der and Markus [6] construct 3-dimensional flat Lorentzian manifolds
which are geodesically complete: these are quotients M := Γ\An by
discrete subgroups Γ ⊂ G = Aff(An) which act properly on An with
compact quotient. The situation is now much more tricky, since M
is a biquotient Γ\G/H, where G = Aff(An). However, since H =
Stab(G,0) = GL(Rn) is nocompact, generally discrete subgroups of G
will not act properly on X = An.

A structure theorem analogous to the Bieberbach’s theorem may
hold in this context, but presently is not known in general. This is the
famous “Auslander Conjecture,” since it was erroneously claimed in
Auslander [8]. The assertion is that the fundamental group (or affine
holonomy group) Γ is necessarily virtually solvable. This was proved in
dimension three by Fried-Goldman[66], and Abels–Margulis–Soifer [2]
have proved this in all dimensions < 6.

The Auslander Conjecture implies the following Structure Theorem:
If Γ ⊂ Aff(An) is an affine crystallographic group, then there exists a
subgroup G ⊂ Aff(An) such that

• G has finitely many connected components; Γ ⊂ G is a lattice;
• The identity component G0 acts simply transitively on An.

The last condition means that G inherits a left-invariant complete affine
structure, and a finite-sheeted covering space of the complete affine
manifold M = An/Γ identifies with the homogeneous space Γ\G0. The
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group G replaces the group of translations in the Euclidean (Bieber-
bach) case. For details, see the first section of [66]; we call Γ a crystal-
lographic hull, but generally is not unique.

When M is not required to be compact, then many examples are now
known where Γ is not virtually solvable. The first ones were constructed
in the late 1970’s by Margulis [118, 117], where Γ is a nonabelian free
group, and n = 3. For more information, see Abels [1], Charette-
Drumm-Goldman-Morrill [32], Fried-Goldman [66], Milnor [126] and
[79].

The three-dimensional examples found by Auslander [7] and Auslander-
Markus [6] have special significance. Such a 3–manifold M3 is a 2-torus
bundle over S1, and is a mapping torus of a linear automorphism of
a flat torus T 2. We can identify T 2 as R2/Z2, and the automorphism
corresponds to A ∈ GL(2,Z). The monodromy A is periodic if and only
if M3 is a Euclidean manifold, in which case the fundamental group Γ
is a classical crystallographic group. When A is parablolic, then Γ is
nilpotent and nonabelian, its crystallographic hull is the 3-dimensional
Heisenberg group Nil, and M3 is a nilmanifold.

The most interesting case arises when A is hyperbolic. In that case,
the crystallographic hull G is the semidirect product R2 n R where R
acts on R2 by the hyperbolic one-parameter group

R −→ GL(R2)

t 7−→
[
et 0
0 e−t

]
.

Γ is a cocompact lattice in G, and the quotient M3 = Γ\G is a 3-
dimensional solvmanifold. We denote this group by Sol. Geometrically
G is the identity component of the group of Lorentzian isometries of
flat Minsowski 2-space, and this interpretation easily yields the flat
Lorentzian structure on M .

2. Geometrization of 3-manifolds

Ehresmann’s viewpoint set the context for Thurston’s geometrization
program for 3-manifolds, and revolutionized the subject.

Every closed 2-manifold Σ admits a Riemannian metric of constant
curvature, and hence a (G,X)-structure where X is a model space of
constant curvature (the 2-sphere S2, Euclidean space E2, or the hy-
perbolic plane H2) and G = Isom(X). Which geometry is supported
arises from the topology of Σ: if χ(Σ) < 0

(
respectively χ(Σ) = 0,

χ(Σ) > 0
)
, then Σ admits hyperbolic structures (respectively, Eu-

clidean structures, spherical structures). The deformation spaces of
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these structures (equivalent to the Teichmüller spaces of Σ) are a pow-
erful tool for understanding the topology of Σ.

In 1976, Thurston proposed that 3-manifolds possess a suggestive
natural structure in terms of canonical decompositions into pieces which
have locally homogeneous Riemannian structures. There are eight local
models for such Riemannian structures, including the three constant
curvature geometries (spherical, Euclidean and hyperbolic) as well as
certain product and local-product geometries (such as S2×S1, H2×S1,
the Heisenberg group and the solvable group Isom(R1,1) and the unit
tangent bundle T1(H2) ∼= PSL(2,R)). As these are metric structures,
the Hopf-Rinow theorem implies that the developing maps are tame,
so (at least when one passes to a simply-connected model space X) the
structures are all quotient structures by discrete subgroups of G.

The tools for the decomposition existed at the time, due to ear-
lier work of Seifert, Dehn, Kneser, Milnor, Haken, Waldhausen, Jaco,
Shalen, Johannsen and many others; Thurston realized that these topo-
logical results gave an intimate and suggestive relationship between
topology and differential geometry, in dimension three. The impor-
tance of these insights cannot be overestimated. See Scott [131], Bona-
hon [26] and Thurston [138] for further details.

Three of the geometries correspond to the Euclidean manifolds, nil-
manifolds and solvmanifolds above. Namely, Euclidean geometry lives
on quotients of flat 3-tori by finite groups. Nilgeometry lives on quo-
tients of the Heisenberg nilpotent, and is defined as the geometry of a
left-invariant metric on the Heisenberg group Nil. Solvgeometry lives on
quotients of the solvable Lie group Sol described above, and is defined
as the geometry of a left-invariant metric on Sol.

3. Ehresmann structures

Now we return to Ehresmann’s vision, as outlined in his paper [57]
and the later paper [58], in the context of locally homogeneous struc-
tures which are not necessarily Riemannian.

In the later paper [58], he associates to a (G,X)-structure on M a
fiber bundle with structure group G, fiber X and a section correspond-
ing to the developing map. More generally, this structure corresponds
to what is now called a Cartan connection on M , and the locally ho-
mogeneous structures described in [57] are precisely those Cartan con-
nections which are flat. A flat Cartan connection is one for which the
curvature vanishes. Sharpe [132] is a particularly readable exposition
of this general theory. He calls a Cartan geometry a Cartan connection,
and a flat one Klein geometry.
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The local triviality of these structures implies that the study of such
structures is essentially topological, and in particular closely related to
the fundamental group and the universal covering space. Specifically,
suppose M is a connected (G,X)=manifold with basepoint p0 ∈ M .
Let U ⊂ M a coordinate patch containing p0, with a coordinate chart

U
ψ−→ X. Let M̃

Π−−→ M denote the corresponding universal cover-
ing space with covering group π = π1(M, p0). Then ψ extends to a

unique map M̃
dev−−−→ X which is compatible with the (G,X)-atlas; it

is a (G,X)-map, a morphism in the category whose objects are (G,X)-
manifolds. As the restrictions of dev to coordinate patches are locally
compositions of coordinate charts with transformations from G, the
developing map dev is a local real-analytic diffeomorphism. (Since the
action of G on X is real-analytic, a (G,X)-atlas determines a unique
real-analytic structure.) Furthermore the group π of deck transfor-
mations acts by (G,X)-automorphisms of M̃ , and therefore defines a

homomorphism π
ρ−−→ G such that

M̃ −−−→ Xy y
M̃ −−−→ X

commutes.
This process of development originated with Élie Cartan and gen-

eralizes the notion of a developable surface in E3. If S ↪→ E3 is an
embedded surface of zero Gaussian curvature, then for each p ∈ S, the
exponential map at p defines an isometry of a neighborhood of 0 in
the tangent plane TpS, and corresponds to rolling the tangent plane
Ap(S) on S without slipping. In particular every curve in S starting at
p lifts to a curve in TpS starting at 0 ∈ TpS. For a Euclidean manifold,

this globalizes to a local isometry of the universal covering S̃ −→ E2,
called by Élie Cartan the development of the surface (along the curve).
The metric structure is actually subordinate to the affine connection,
as this notion of development really only involves the construction of
parallel transport.

Later this was incorporated into the notion of a fiber space, as dis-
cussed in the 1950 conference [136]. The collection of coordinate changes
of a (G,X)-manifold M defines a fiber bundle EM −→ M with fiber
X and structure group G. The fiber over p ∈ M of the associated
principal bundle

PM
ΠP−−−→M
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consists of all possible germs of (G,X)-coordinate charts at p. The fiber
over p ∈ M of EM consists of all possible values of (G,X)-coordinate

charts at p. Assigning to the germ at p of a coordinate chart U
ψ−−→ X

its value
x = ψ(p) ∈ X

defines a mapping
(PM)p −→ (EM)p.

Working in a local chart, the fiber over a point in (EM)p corresponding
to x ∈ X consists of all the different germs of coordinate charts ψ taking
p ∈ M to x ∈ X. This mapping identifies with the quotient mapping
of the natural action of the stabilizer Stab(G, x) ⊂ G of x ∈ X on the
set of germs.

For Euclidean manifolds, (PM)p consists of all affine orthonormal
frames, that is, pairs (x, F ) where x ∈ En is a point and F is an
orthonormal basis of the tangent space TxEn ∼= Rn. For an affine
manifold, (PM)p consists of all affine frames: pairs (x, F ) where now
F is any basis of Rn.

The coordinate atlas/developing map defines a section of EM → M
which is transverse to the two complementary foliations of EM :

• As a section, it is necessarily transverse to the foliation of EM
by fibers;
• The nonsingularity of the coordinate charts/developing map im-

plies this section is transverse to the horizontal foliation FM of
EM defining the flat structure.

The differential of this section is the solder form of the corresponding
Cartan connection.

3.1. Properties of the developing map. Ehresmann [57] proves
several basic facts about the development/holonomy pair:

Suppose that M is compact and π1(M) is finite.

• X must be compact and π1(X) is finite.
• The universal covering M̃ of M is (G,X)-isomorphic to the

universal covering of X.

He defines a structure to be normal if and only if the developing map
is a covering space. Structures on closed manifolds with finite funda-
mental group are normal.

3.2. Hierarchy of structures. One may pass between different local
models. We may define a category of homogeneous spaces, whose ob-
jects are pairs (G,X) where G is a Lie group and X is a manifold with
a transitive action of G. A morphism (G,X) −→ (G′, X ′) is defined
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by a pair of maps h : G −→ G′ and f : X −→ X ′, where h is a homo-
morphism and f is a local diffeomorphism which is h-equivariant, that
is, for all g ∈ G,

X
f−−−→ X ′

g

y yh(g)

X
f−−−→ X ′

commutes. Such a morphism induces a mapping from (G,X)-manifolds
to (G′, X ′)-manifolds.

Particularly interesting is the case when h is a local isomorphism
of Lie groups. In this case the pseudogroups defined by (G,X) and
(G′, X ′) are identical, and the two categories of locally homogeneous
structures identify. In this case Ehresmann calls X ′ a Klein form of
X.

Here is another point of view concerning morphisms (G,X) −→
(G′, X ′). There is a unique (G′, X ′)-structure on X such that X

f−→ X ′

is a (G′, X ′)-map. Since the transformations of X defined by G are
f -related to transformations of G′, the action of G on X preserves
this structure. In particular, for a given homogeneous space (G,X), a
morphism (G,X) −→ (G′, X ′) is equivalent to a G-invariant (G′, X ′)-
structure on X.

In the special case that X is a Lie group and G is the group of left-
multiplications, we see that a left-invariant (G′, X ′)-structure on G is
equivalent to a representation G −→ G′, together with an open orbit
in X ′ which has discrete isotropy.

In many cases, the classification of geometric structures on a fixed
topology proceeds by showing that the structures can be refined to
certain subgeometries.

A particularly interesting and nontrivial example is Fried’s classi-
fication of similarity structures on closed manifolds [63], whereby a
compact manifold modeled on Euclidean similarity geometry is either
a Euclidean manifold, or a finite quotient of a Hopf manifold. (See
also Reischer-Vaisman [141] for a much different proof of the classi-
fication of closed similarity manifolds. This was first announced by
Kuiper [106], but he implicitly assumed that the developing map was
a covering-space onto its image.)

3.3. The Ehresmann-Weil-Thurston holonomy principle.
Fundamental in the deformation theory of locally homogeneous (Ehres-
mann) structures is the following principle, first observed in this gen-
erality by Thurston [137]:
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Theorfem 3.1. Let X be a manifold upon which a Lie group G acts
transitively. Let M be a compact (G,X)-manifold with holonomy rep-

resentation π1(M)
ρ−−→ G.

(1) Suppose that ρ′ is sufficiently near ρ in the representation va-
riety Hom(π1(M), G). Then there exists a (nearby) (G,X)-
structure on M with holonomy representation ρ′.

(2) If M ′ is a (G,X)-manifold near M having the same holonomy
ρ, then M ′ is isomorphic to M by an isomorphism isotopic to
the identity.

Here the topology on marked (G,X)-manifolds is defined in terms of
the atlases of coordinate charts, or equivalently in terms of developing
maps, or developing sections. In particular one can define a deforma-
tion space Def(G,X)(Σ) whose points correspond to equivalence classes
of marked (G,X)-structures on Σ. One might like to say the holonomy
map

Def(G,X)(Σ)
hol−−→ Hom

(
π1(Σ), G

)
/Inn(G)

is a local homeomorphism, with respect to the quotient topology on
Hom

(
π1(Σ), G

)
/Inn(G) induced from the classical topology on the R-

analytic set Hom
(
π1(Σ), G

)
. In many cases this is true (see below)

but misstated in [78]. However, Kapovich [92] and Baues [13] observed
that this is not quite true, because local isotropy groups acting on
Hom

(
π1(Σ), G

)
may not fix marked structures in the corresponding

fibers.
In any case, these ideas have an important consequence:

Corollary 3.2. Let M be a closed manifold. The set of holonomy
representations of (G,X)-structures on M is open in Hom(π1(M), G)
(with respect to the classical topology).

One can define a space of flat (G,X)-bundles (defined by a fiber bun-
dle EM having X as fiber and G as structure group) and the foliation
F transverse to the fibration EM −→ M . The foliation F is equiva-
lent to a reduction of the structure group of the bundle from G with
the classical topology to G with the discrete topology. This set of flat
(G,X)-bundles over Σ identifies with the quotient of the R-analytic
set Hom(π1(Σ), G) by the action of the group Inn(G) of inner automor-
phisms action by left-composition on homomorphisms π1(Σ)→ G.

Conversely, if two nearby structures on a compact manifold M have
the same holonomy, they are equivalent. The (G,X)-structures are
topologized as follows. Let Σ −→ M be a marked (G,X)-manifold,
that is, a diffeomorphism from a fixed model manifold Σ to a (G,X)-

manifold M . Fix a universal covering Σ̃ −→ Σ and let π = π1(Σ) be
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its group of deck transformations. Choose a holonomy homomorphism

π
ρ−−→ G and a developing map Σ̃

dev−−−→ X.
In the nicest cases, this means that under the natural topology on

flat (G,X)-bundles (Xρ,Fρ) over M , the holonomy map hol is a local
homeomorphism. Indeed, for many important cases such as hyperbolic
geometry (or when the structures correspond to geodesically complete
affine connections), hol is actually an embedding.

3.4. Historical remarks. Thurston’s holonomy principle has a long
and interesting history.

The first application is the theorem of Weil [147] that the set of
discrete embeddings of the fundamental group π = π1(Σ) of a closed
surface Σ in G = PSL(2,R) is open in the quotient space Hom(π,G)/G.
Indeed, a discrete embedding π ↪→ G is exactly a holonomy represen-
tation of a hyperbolic structure on Σ. The corresponding subset of
Hom(π,G)/G is called the Fricke space F(Σ) of Σ, and will be dis-
cussed more fully in §6.3. Weil’s results are clearly and carefully ex-
pounded in Raghunathan [129], (see Theorem 6.19), and extended in
Bergeron-Gelander [25].

In the context of CP1-structures, this is due to Hejhal [85, 84]; see
also Earle [56] and Hubbard [88]. This venerable subject originated
with conformal mapping and the work of Schwarz, and closely relates
to the theory of second order (Schwarzian) differential equations on
Riemann surfaces. In this case, where X = CP1 and G = PSL(2,C),
we denote the deformation space Def(G,X)(Σ) simply by CP1(Σ). See
Dumas [53] and §7.1 below.

Thurston sketches the intuitive ideas for Theorem 3.1 in his notes [137].
The first detailed proofs of this fact are Lok [115], Canary-Epstein-
Green [30], and Goldman [76] (the proof in [76] was worked out with
M. Hirsch, and were independently found by A. Haefliger). The ideas
in these proofs may be traced to Ehresmann [58], although he didn’t
express them in terms of moduli of structures. Corollary 3.2 was noted
by Koszul [103], Chapter IV, §3, Theorem 3; compare also the discus-
sion in Kapovich [93], Theorem 7.2.

4. Example: One real dimension

We illustrate these ideas in dimension 1. One-dimensional geom-
etry (in our narrow locally homogeneous sense) reduces to projective
geometry (where X = RP1 and G = PGL(2,R)). Let Σ be a compact
connected 1-manifold (that is, a circle). Denote the deformation space
Def(G,X)(Σ) of PGL(2,R)-equivalence classes of marked RP1-structures
on Σ by RP1(Σ). Denote the universal covering group of SL(2,R) by
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˜SL(2,R)); say that two elements a, b ∈ ˜SL(2,R)) are equivalent if a is
conjugate to b or b−1.

The classification of RP1-manifolds is due to Kuiper [109] and the
following succinct description is due to Goldman [72].

Theorfem 4.1. The deformation space RP1(Σ) identifies with the space
of equivalence classes of nontrivial elements of the universal covering

group ˜SL(2,R)).

In other words,

RP1(Σ) =

(
˜SL(2,R)) \ {1}

)
/ ∼ .

This space is a non-Hausdorff space containing several copies of R, one
corresponding to the lifts of an elliptic one-parameter subgroup, and
others corresponding to cosets of a hyperbolic one-parameter subgroup.
We describe the corresponding structures in detail below in §4.2.

4.1. Noncompact manifolds. Let X be a 1-dimensional homoge-
neous space, and G its transitive group of automorphisms. A con-
nected 1-manifold M is homeomorphic to either R or S1 ≈ R/Z. If
M ≈ R, then it is simply connected, and a structure modeled on X
is just an immersion M # X. If X is not already simply connected,
replace it by its universal cover X̃. Since X̃ ≈ R, then a structure on
M is an immersion, which must be an embedding. Such an embedding
corresponds to a monotone function R −→ R. By choosing compatible
orientations on M and X, we may assume that this monotone function
is increasing. Such an increasing function is determined (up to the ap-
propriate relation of isotopy) by the endpoints of the closure, that is a
pair (a, b) where

−∞ ≤ a < b ≤ ∞.

4.2. Compact manifolds. Now consider the case M is compact. In
that case M ≈ S1, which we realize topologically as the quotient space
of a closed interval [a, b] ⊂ R by the equivalence relation defined by
identifying its two endpoints a, b. Denote the common image of the

endpoints by p0 ∈ M . The total space for the universal covering M̃ is
the quotient space of [a, b]× Z by the equivalence relation defined by:

(b, n) ∼ (a, n+ 1)
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for n ∈ Z. The group π1(M) is the cyclic group 〈µ〉 ∼= Z acting on M̃
by:

[a, b]× Z µm−−−→ [a, b]× Z
(u, n) 7−→ (u, n+m)

where u ∈ [a, b] and µ denotes the generator of π1(M).

Now we construct a developing map M̃
dev−−−→ X. The developing

map is determined by two pieces of information:

• Its restriction to [a, b] ⊂ M̃ (corresponding to the subset [a, b]×
{0} ⊂ [a, b]× Z), which is an immersion

[a, b]
f
# X;

• A holonomy transformation η = ρ(µ) : X → X such that
ηf(b) = f(a).

Then f extends to the developing map by defining:

dev(u, n) := ηnf(u)

for an arbitrary element [(u, n)] ∈ M̃ .
As above, it is convenient to lift f to the universal covering X̃ ≈

R and using a diffeomorphism M̃ ≈ R, identify f with a monotone
function R −→ R.

4.3. Euclidean manifolds. The first example arises when f is the
embedding of [a, b] as the unit interval [0, 1] ⊂ E1 and η is unit trans-
lation. Then M identifies naturally with the quotient R/Z. Its natural
structure is that of a compact flat Riemannian manifold of total length
1.

More generally, for any l > 0, the quotient R/lZ (where η is trans-
lation by l) is a Euclidean manifold of length l. Different values of
l give non-isometric Euclidean structures, but homotheties define iso-
morphisms as affine manifolds:

R/Z
∼=−−→ R/lZ

[x] 7−→ [lx]

Also observe that these structures are homogeneous: the group of
translations acts transitively on M . Indeed, this defines a bi-invariant
(Euclidean) geometric structure on the circle group.
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4.4. Incomplete affine structures. Any λ > 1 generates a lattice
inside the multiplicative group R+, which acts affinely on A1. The
quotient R+/〈λ〉 also defines an affine structure on M , which is not a
Euclidean structure since dilation by λ is not an isometry. Explcitly,
take f to be a diffeomorphism onto the interval [1, λ] ⊂ R ≈ A1, so

that dev is a diffeomorphism of M̃ onto (0,∞) = R+ ⊂ A1.
Like the preceding example, this affine structure is also bi-invariant

with respect to the natural Lie group structure on R+/〈λ〉.
Observe that, since the exponential map

R −→ R+

x 7−→ ex

converts addition (translation) to multiplication (dilation), it defines a
diffeomorphism between two quotients

R/lZ −→ R+/〈λ〉
where l := log(λ). This map also defines a (non-affine) analytic iso-
morphism between the corresponding Lie groups.

These structures are geodesically incomplete, and in fact model in-
complete closed geodesics on affine manifolds. Namely, the geodesic on
A1 defined by

t 7−→ 1 + t(λ−1 − 1)

begins at 1 and in time

t∞ := 1 + λ−1 + λ−2 + · · · = (1− λ−1)−1 > 0

reaches 0. It defines a closed incomplete closed geodesic p(t) on M
starting at p(0) = p0. The lift

(−∞, t∞)
p̃−−→ M̃

satisfies

devp̃(t) = 1 + t(λ−1 − 1),

which uniquely specifies the geodesic p(t) onM . It is a geodesic since its
velocity p′(t) = (λ−1 − 1)∂x is constant (parallel). However p(tn) = p0

for

tn :=
1− λ−n

1− λ−1
= 1 + λ−1 + · · ·+ λ1−n

and as viewed in M , seems to go “faster and faster” through each
cycle. By time t∞ = limn→∞ tn, it seems to “run off the manifold:” the
geodesic is only defined for t < t∞. The apparent paradox is that p(t)
has zero acceleration: it would have “constant speed” if “speed” were
only defined.
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The model space X is the real projective line RP1 and the struc-
ture group G is the group PGL(2,R) of collineations of RP1. The fixed
reference topology Σ is the circle, which we understand as a the iden-
tification space of a closed interval [a, b] with its two endpoints a, b

identified. We identify the universal covering Σ̃ −→ Σ as the quotient
of the Cartesian product [a, b]× Z, with identifications

(b, n) ∼ (a, n+ 1)

for n ∈ Z. The group π1(Σ) ∼= Z of deck transformations acts by:

(x, n) 7−→ (x, n+m)

for m ∈ Z. An RP1-structure on Σ is defined by the restriction dev|[a,b].
Choose a transformation γ ∈ G to serve as the generator of the

holonomy group. Specifically, define the presumptive holonomy homo-
morphism ρ by:

Z ∼= π1(Σ)
ρ−−→ G

m 7−→ γm

Any immersion f : [a, b] # X such that f(b) = γf(a) extends to a

ρ-equivariant immersion Σ̃ −→ X.
IfG ∼= R, left-invariant structures form three equivalence classes, cor-

responding to the three conjugacy classes of one-parameter subgroups
in G′:

• An elliptic one-parameter subgroup acts simply transitively on
all of X ′. The deck transformation τ is a discrete subgroup of
this one-parameter group.
• A parabolic one-parameter subgroup acts simply transitively on

the open interval between a point x′ ∈ X ′ and its image τ(x′).
• A hyperbolic one-parameter subgroup acts simply transitively

on the open interval between two points x′, y′ ∈ X ′.
Of these structures, the last two are affine structures, since X \ {x′} is
an affine line and its stabilizer in G′ is the affine group. For example,
taking x′, y′ to be lifts of 0,∞ ∈ RP1 and g to be scalar multiplication
by λ > 1, we obtain a structure, which we call a Hopf structure

(4.1) R+/λ
n | n ∈ Z

since it is a special case of the construction of Hopf manifolds below.
In 1953, Kuiper [109] classified all such structures. In particular he

found structures which are not homogeneous. These occur only if the
holonomy group is parabolic or hyperbolic. Let g ∈ G be either par-
abolic or hyperbolic, and let τ be the postive generator of the center
of G′ as above. Let n > 0. Choose a point x ∈ X not fixed under g.
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Let J ⊂ X ′ be a positively oriented interval going from x to τng(x).

A homeomorphism [0, 1]
h−→ J extends to the Z-equivariant homeomor-

phism defined by:

R h̃−−→ X ′

t 7−→ τnh(t− n),

(where n = btc), which is a developing map for an RP1-structure on
the closed 1-manifold R/Z.

Kuiper [109] showed these comprise all the equivalence classes of
structures. In particular the developing map is always a homeomor-
phism of the universal covering M̃ to either:

• all of X ′ (any structure with trivial or elliptic holonomy, or
an inhomogeneous structure with parabolic or hyperbolic holo-
nomy);
• the lift of the complement of one point (homogeneous structures

with parabolic holonomy);
• the lift of the complement of two points (homogeneous struc-

tures with hyperbolic holonomy).

5. Geodesics on affine manifolds

5.1. Geodesic completeness. The next examples we discuss are affine
structures. In this case the affine group G′ preserves the Euclidean con-
nection on affine space (although not the Euclidean metric). A smooth
vector field along a smooth curve γ has a well-defined covariant deriv-
ative, which is another vector field along γ. The acceleration γ′′ of γ
is the covariant derivative of the veclocity vector field γ′, and γ is a
geodesic if it has zero acceleration. If M is a manifold with an affine
structure, and (x, v) ∈ TM is a tangent vector, then there exists ε > 0,
and a unique geodesic γ : (−ε, ε) −→M with γ(0) = x and γ′(0) = v.

If M is a Euclidean manifold with its underlying affine structure
(or more generally if (M, g) is a Riemannian manifold with its Levi-
Civita connection), then geodesic completeness is equivalent to the
more intuitive notion of metric completeness of the associated metric
space. This is the Hopf-Rinow theorem, and plays a fundamental role
in controlling the developing map of flat structures.

As compact metric spaces are complete, a compact Riemannian man-
ifold is geodesically complete. This also follows from the fact that the
geodesic local flow of a compact Riemannian manifold reduces to local
flows on the energy hypersurfaces

ER(M) := {(v, x) ∈ TM ×M | v ∈ TxM, g(v, v) = R},
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which are compact. The complete integrability of these vector fields
on ER(M) (for R > 0) implies geodesic completeness of (M, g).

5.2. Hopf manifolds. In 1948, H. Hopf [87] constructed a compact
complex manifold which is not Kähler. His construction also yields
compact affine manifolds which are geodesically incomplete. Indeed,
the examples in §4.4 above are the simplest case of Hopf’s construction.

An affine manifold is complete if it is geodesically complete in the
above sense, that is, for every initial location and velocity (x, v) there

is a geodesic R γ−−→ M with γ(0) = x and γ′(0) = v. Auslander and
Markus [5] showed that completeness is equivalent to bijectivity of the
developing map. That is, a complete affine manifold is affinely isomor-
phic to a quotient of Rm by a discrete group of affine transformations
acting freely and properly.

6. Surfaces and 3-manifolds

6.1. Affine structures on surfaces. For a detailed survey of this
subject, see Baues [15]. The first results are due to Kuiper [110], who
listed the affine structures on 2-dimensional tori which are convex, that
is, the developing map is an embedding onto a convex domain Ω ⊂ A2.
Either the structure is complete (which Kuiper also calls “normal”), in
which case Ω = A2, or Ω is either a half-plane or a quadrant.

The classification was completed in the 1970’s by, independently,
Nagano-Yagi [127] and Arrowsmith-Furness [67] (see also the classifi-
cation of Klein bottles in [4]). In the remaining (nonconvex ) cases after
Kuiper, M is a quotient of the complement of a point in A2. These are
special cases of radiant affine structures, which we now describe.

6.1.1. Radiant affine structures. Affine manifolds which are quotients
of the complement of a point p ∈ An have special properties, which
deserve special attention. Necessarily p is fixed under the affine ho-
lonomy group Γ ⊂ Aff(An). By applying a translation, we may con-
veniently assume that p is the origin 0 ∈ Rn. Since the stabilizer
Stab

(
Aff(An),0

)
= GL(Rn), the affine holonomy group is actually lin-

ear. Such affine structures are called radiant in [65], since they are
characterized by the existence of a radiant vector field which generates
a homothetic flow (that is, scalar multiplications on the vector space
R2).

Nagano-Yagi [127] observed that on a closed radiant affine manifold

M , the developing image dev(M̃) is disjoint from the set Fix(Γ) of fixed
points of Γ. Thus every radiant vector field on M is nonsingular. A
purely topological consequence is that χ(M) = 0. Another topological
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consequence is that M cannot have parallel volume (see §7.3.1 below),
and therefore the first Betti number β(M) ≥ 1.

In his 1960 unpublished lecture notes, L. Markus observed that the
known examples of compact affine manifolds which are geodesically
complete are precisely the known examples of compact affine manifolds
with parallel volume.

These manifolds can be understood by a suspension construction
of mapping tori of automorphisms of the compact RP1-manifolds dis-
cussed in §4. This is due to Benzécri [24], who proved that, any RPn-

manifold M admits a double covering M̂ such that the Cartesian prod-
uct M̂ ×S1 admits a radiant affine structure, where the radiant flow is
the flow in the S1-factor.

For example, all radiant affine 2-manifolds arise in this way. Fur-
thermore the affine holonomy group contains a linear expansion of R2.
The simplest example is the Hopf manifold described above.

A radiant affine manifold (M, ξ) is a radiant suspension if and only
if the flow ρ admits a cross-section. David Fried [62, 64] constructed
a closed affine 6-manifold with diagonal holonomy whose radiant flow
admits no cross-section. Choi [41] (using work of Barbot [12]) proves
that every radiant affine 3-manifold is a radiant suspension, and there-
fore is either a Seifert 3-manifold covered by a product F × S1, where
F is a closed surface, a nilmanifold or a hyperbolic torus bundle.

In dimensions 1 and 2 all closed radiant manifolds are radiant suspen-
sions. Together with Kuiper’s list of convex structures, these comprise
all closed affine 2-manifolds, since a closed surface M admits an affine
structure if and only if χ(M) = 0 (Benzécri [23]). That is, either M
is diffeomorphic to a Klein bottle (in which case its orientable double
covering is diffeomorphic to a torus) or M is diffeomorphic to a torus.
(Benzécri’s theorem inspired Milnor’s generalization [124] to flat ori-
ented rank two vector bundles over surfaces; see [79] for a more detailed
account of these developments.)

6.2. Complete affine structures. The complete structures on T 2 are
all affine Lie groups, that is, an affine structure on a Lie group invariant
under both left- and right-multiplications. For example, the Euclidean
structures are all quotients R2/Λ, where Λ ⊂ R2 is a lattice. The
other structures are obtained by polynomial deformations of Euclidean
structures, namely the diffeomorphism

R2 Fε−−→ R2

(x, y) 7−→ (x+ εy2, y)
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Figure 1. Incomplete complex-affine structures on the
2-torus are radiant suspensions. The two examples de-
picted are suspensions of rotations (isometries) of the
circle.

Figure 2. Complete affine structures on the 2-torus

conjugates translation by (s, t) to the affine transformation

(x, y) 7−→ (x+ 2εyt+ (s+ ε2t2), y + t)

and the quotient space

M = R2/FεΛF
−1
ε

is a non-Euclidean complete affine torus. Figure 6.2 illustrates a Eu-
clidean torus and a polynomial deformation.

Baues [14] showed that the deformation space of complete affine
structures on T 2 is homeomorphic to R2 (see also Baues-Goldman [16]),
with the origin (0, 0) corresponding to the single equivalence class cor-
responding to Euclidean structures. The action of Mod(T 2) = GL(2,Z)
on this deformation space identifies with the usual linear action of
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GL(2,Z) on R2. This action is highly chaotic: it is topologically mix-
ing, and every continuous invariant function is constant.

Complete affine structures on compact 3-manifolds were classified
by Fried–Goldman [66]. A closed 3-manifold admits a complete affine
structure if and only if it is finitely covered by a 2-torus bundle over
the circle; in other words, it is Euclidean, Heisenberg, or Sol in the
Thurston geometrization [131, 26, 138]. For more information, see
Abels [1], Baues [14, 13] and Goldman [78, 79].

Noncompact complete affine 3-manifolds are considerably more com-
plicated, due to Margulis’s discovery [118] of proper isometric actions
of nonabelian free groups on Minkowski 2 + 1-space. The structure is
much better understood now, and they all arise from a Schottky-group
construction using crooked planes invented by Drumm [51, 52]. We
refer to [35, 27, 34, 33, 42, 50, 49] for more current information.

6.3. Hyperbolic structures on surfaces. A paradigm for this the-
ory is the classification of hyperbolic structures on surfaces.

The Fricke space F(Σ) embeds in Hom(Γ, G)/G, where

G = Isom(H2) ∼= SO(2, 1),

and indeed defines a connected component in this space. As noted
above, openness follows from Corollary 3.2.

Closedness is more special. If Γ is not virtually nilpotent and G
is semisimple, then the discrete embeddings Γ ↪→ G form a closed
subset of Hom(Γ, G) in the classical topology. (A proof of this well-
known statement can be found in Goldman-Millson [80], although it
was known much earlier.) In this special case, it is originally due to
Chuckrow [46]. In general closedness follows from Kazhdan-Margulis
uniform discreteness [95], see Chapter VIII of [129] , §4.12 of Kapovich [93],
or §4.1 of Thurston [138].

It remains to see that Fricke space F(Σ) is connected. In general
the discrete embeddings Γ ↪→ G fall into many connected components.
Counting the components is an interesting and difficult general prob-
lem. In this particular case, one can use the direct hyperbolic-geometry
parametrization of F(Σ) by Fenchel-Nielsen coordinates, whereby

F(Σ) ≈ R6g−6+3b

is connected, completing the proof that F(Σ) is a connected compo-
nent of Hom(Γ, G)/G. (See, for example, Buser [29], Abikoff [3], Rat-
cliffe [130], Theorem 9.7.4, §4.6 of Thurston [138], or Wolpert [150] for
accessible accounts of the Fenchel-Nielsen parametrization of F(Σ).
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Another proof uses the Uniformization Theorem. First identify F(Σ)
with the Teichmüller space T(Σ) of Σ (uniformization). Now apply Te-
ichmüller’s theorem to identify T(Σ) with the unit ball in the vector
space Q(M) of holomorphic quadratic differentials on a Riemann sur-
face M homeomorphic to Σ. (For details see Hubbard [89], Theorem
7.2.1.) Alternatively, following Wolf [149], identify T(Σ) with all of
Q(M) using the Hopf differentials of harmonic maps from M to an
arbitrary Riemann surface homeomorphic to Σ.

The components of Hom(π,G)/G were classified in [77] in terms of
the Euler class. In particular F(Σ) identifies with the component [77]
maximizing this characteristic class. In terms of the foliated (G,X)-
bundle Xρ associated to a representation ρ, this result means that the
necessary topological conditions for Xρ to admit a transverse section
are sufficient. See Goldman [78, 79] for further details and discussion.

Toledo [140] considered surface group representations when G acts
on a Hermitian symmetric space X. He defined a characteristic number
which includes the Euler class of flat PSL(2,R)-bundes when X = H2.
In particular Toledo’s invariant is bounded by topological invariants of
M . Representations maximizing Toledo’s invariant have many proper-
ties of Fuchsian representations , in particular forming connected com-
ponents consisting entirely of discrete embeddings. In a diffrerent di-
rection, when G is a split R-form, Hitchin [86] found components which
naturally contain compositions of Fuchsian SL(2,R)-representations
with the Kostant principal representation SL(2,R) → G. When G =
PGL(3,R), the component identifies with the deformation space of con-
vex RP2-surfaces [43] , as discussed in §7.2 below. Hitchin proved that
these components are topologically open cells. Labourie [113] charac-
terized Hitchin’s representations dynamically, and proved that they are
all quasi-isometric (and hence discrete) embeddings. (From a some-
what different viewpoint, these representations were also studied by
Fock-Goncharov [61, 60] who found coordinates on these compoents.)
This subject, sometimes called “higher Teichmüller theory,” is sur-
veyed in Burger-Iozzi-Wienhard [28] (with background expounded in
Labourie [114]), to which we refer for turther details.

7. Projective and conformal structures

Finally we discuss Ehresmann structures modeled on compact homo-
geneous spaces, such as the sphere and projective space. Although this
subject dates back to the nineteenth century, in the context of second
order linear differential equations on Riemann surfaces and conformal
mapping, many mysteries remain, and the subject is fundamental in



GEOMETRIC STRUCTURES 25

the broader hierarchy of geometries. We then discuss real-projective
structures on surfaces, for which a complete classification is known [43].
We then briefly discuss several results about flat conformal structures
and real-projective structures in higher dimensions.

7.1. Projective structures on Riemann surfaces. This rich sub-
ject promises to be fundamental in the theory of Ehresmann locally
homogeneous structures. I find it rather striking that although the al-
gebraic theory of the character variety is less pathological, the geomet-
ric theory is exceedingly profound and difficult. The parametrization
of the deformation space CP1(Σ) as an affine bundle whose underlying
vector bundle is T ∗T(Σ) is the (holomorphic) cotangent bundle of the
Teichmüller space T(Σ) is rather “soft” but the geometric theory of
CP1-manifolds is extremely subtle, involving some of the most techni-
cally difficult aspects of the “modern” theory of hyperbolic 3-manifolds
and Kleinian groups (see Marden [116]). We only concentrate on the
properties of the holonomy mapping, referring to the excellent survey
article [53] by David Dumas. See also Gunning [81, 82] for background.

Gallo-Kapovich-Marden [68] answered a question first raised by Gun-
ning [83]:

Theorem. Let Σ be a closed orientable surface of χ(Σ) < 0. Denote
the deformation space of marked CP1-structures on Σ by CP1(Σ). The
image of the holonomy mapping

CP1(Σ)
hol−−−→ Hom

(
π1(Σ)

consists of equivalence classes of representations ρ for which:

• ρ lifts to a representation π1(Σ)
ρ̃−−→ SL(2,C);

• the image Γ of ρ fixes no point on hyperbolic space H3, fixes no
point in the boundary ∂H3, and leaves invariant no geodesic in
H3.

The first condition means that ρ lies in the connected component of
Hom

(
π1(Σ), G

)
containing the trivial representation (Goldman [77]).

The second condition means that ρ is nonelementary, and is equivalent
to numerous other conditions. For example, it is equivalent to the real
Zariski closure of Γ being PSL(2,C) or conjugate to PGL(2,R). An-
other equivalent condition is that the image of ρ is unbounded (having
noncompact closure) and non-solvable. Yet another condition is that
the holonomy group Γ is not amenable.

Although W. Thurston announced this and communicated the out-
line of the proof to the author in the late 1970’s, many details were
missing. The full proof (following Thurston’s outline) was completed
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by Gallo-Kapovich-Marden [68]. (An incorrect proof, but with an ex-
tremely interesting approach, can be found in [94].) See also Kamishima-
Tan [91].

The injectivity of the holonomy mapping is also quite fundamental
and mysterious. Goldman [75], using ideas inspired by the Thurston
parametrization (see §7.4 below), computed the inverse image hol−1(FΣ)
in terms of a grafting construction, first developed by Hejhal [85] and
Maskit [121] (Theorem 5) and Sullivan-Thurston [135].

The main result is that, over the inverse image of the quasi-Fuchsian
subset of Hom

(
π1(Σ), G

)
, the holonomy map hol is a covering space and

the fiber admits an explicit topological description in terms of grafting.
In this case, X decomposes into two subdomains Ω+ and Ω− along their
common boundary which is the limit set of the holonomy group Γ. The
geometric manifold M with this holonomy then admits a corresponding
decomposition M = M+ ∪ M−, and under the assumption that the

holonomy homomorphism is an isomorphism π1(M)
∼=−−→ Γ, one of M±

is a union of annuli.
However, as pointed out by M. Kapovich and S. Choi, the proof

of a key lemma (Theorem 2.2) of Goldman [75] is flawed. (A similar
problem can be found in Faltings [59]). See Choi-Lee [45] for a cor-
rected proof and extensive discussion. One would like to control the
developing map by decomposing the geometric manifold into open sub-
manifolds modeled on holonomy-invariant subdomains Ω ⊂ X where
the holonomy Γ preserves a complete Riemannian structure gΩ. How-
ever, even if M is compact, the induced metric on dev−1(Ω) may be
incomplete. One needs a sharper argument involving the asymptotics of
Γ, as in Kuiper [108]. (Indeed, the Sullivan-Thurston-Smillie examples
discussed in §7.2 and depicted in Figure 7.1 provide counterexamples
to Theorem 2.2 of [75].)

Shinpei Baba’s work [11, 10, 9] describes CP1-structures with Schot-
tky holonomy in terms of a similar grafting construction. Although
developing maps for general CP1-structures are intractable, under the
assumption of Schottky holonomy, Baba obtains sharp results on de-
composing the developing map into basic pieces.

7.2. Real-projective structures on surfaces. When X = RP2 and

G = Aut(X) ∼= PGL(3,R) ∼= SL(3,R)

is its group of collineations, we denote the deformation space Def(G,X)(Σ)
simply by RP2(Σ). Curiously, the case when χ(Σ) = 0 has a much more
complicated general picture than when χ(Σ) < 0.
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Figure 3. Developing maps of RP2-structures which
are not covering spaces of their images, due to Sullivan-
Thurston and Smillie.

When χ(Σ) = 0, then Σ admits affine structures, discussed in §6.1.
The remaining RP2-structures on T 2 (and the Klein bottle) were clas-
sified in [71]. The new examples involve a surgery construction (due to
Sullivan-Thurston [135] and independently Smillie [134]) analogous to
the CP1-grafting construction of Hejhal [85], Maskit [121] and Sullivan-
Thurston [135].

Here one starts with a collineation γ of RP2 described by a diag-
onal 3 × 3-matrix with distinct positive eigenvalues. The coordinate
axes define the three fixed points of γ on RP2, which lie outside the
developing image. The coordinate planes define invariant lines, whose
complements are γ-invariant affine patches in RP2. Corresponding to
the maximum (respectively minimum) eigenvalue are two affine patches
in which γ acts by a linear expansion (respectively linear contraction).
There corresponds two Hopf manifolds with RP2-structures, which can
be glued together along closed geodesics (corresponding to the coordi-
nate plane with the middle eigenvalue) to form new RP2-surfaces with
the “same” holonomy representation. (See [135, 75] for details.) The
Sullivan-Thurston-Smillie example is illustrated in Figure 7.1.

About ten years later, the combined work [43] of the author [69] and
Suhyoung Choi’s dissertation [38, 39] (and its extensions in [40, 41])
completely described the deformation space RP2(Σ). Choi shows that if
Σ is closed and χ(Σ) < 0, then any RP2-surface decomposes canonically
into annuli bounded by closed geodesics and convex surfaces with to-
tally geodesic boundary. RP2(Σ) is a countable disjoint union of copies
of the deformation space of convex RP2-structures (shown in [69] to
be a cell of dimension −8χ(Σ)). The components are parametrized by
a discrete invariant involving the multicurve on Σ controlling Choi’s
convex decomposition.
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Much more recently Choi observed that these grafted RP2-structures
with Schottky SO(2, 1)-holonomy compactify Margulis spacetimes [42].

7.3. Incomplete affine structures on closed 3-manifolds. The
classification of incomplete affine structures in dimension 3 is largely
unkown, except under rather strong assumptions on the fundamental
group. Smillie’s work [134] on closed affine manifolds with abelian holo-
nomy was generalized by Fried-Goldman-Hirsch [65] to nilpotent holo-
nomy, and leads to a classification of closed 3-manifolds with nilpotent
fundamental group. Serge Dupont [55] gave a beautiful classification of
affine structures on hyperbolic 3-manifolds, which we briefly describe
below.

7.3.1. Parallel volume. An affine manifold has parallel volume if and
only if its linear holonomy preserves volume (up to sign). Equivalently
the linear holonomy has determinant ±1. Another equivalent condition
is the existence of a coordinate atlas whose coordinate changes preserve
volume.

The obstruction to parallel volume is the class in H1(M ;R) defined
by the homomorphism

π1(M) −→ R
γ 7→ log | detL(γ)|.

When the first Betti number vanishes, every affine structure must admit
parallel volume.

Then the results of §7.3.1 below apply to give nonexistence of affine
structures on certain closed 3-manifolds.

Theorfem 7.1 (Smillie). Let M be a closed affine manifold with a
parallel exterior differential k-form which has nontrivial de Rham co-
homology class. Suppose U is an open covering of M such that for each
U ∈ U , the affine structure induced on U is radiant. Then dimU ≥ k;
that is, there exist k + 1 distinct open sets

U1, . . . , Uk+1 ∈ U

such that the intersection

U1 ∩ · · · ∩ Uk+1 6= ∅.

(Equivalently the nerve of U has dimension at least k.)

A published proof of this theorem can be found in Goldman-Hirsch [70].
Using these ideas, Carrière, d’Albo and Meignez [31] have proved

that a nontrivial Seifert 3-manifold with hyperbolic base cannot have
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an affine structure with parallel volume. This implies that the 3-
dimensional Brieskorn manifolds M(p, q, r) with

p−1 + q−1 + r−1 < 1

admit no affine structure whatsoever. (Compare Milnor [125].)

7.3.2. Hyperbolicity. The opposite of geodesic completeness is hyperbol-
icity in the sense of Vey [143] and Kobayashi [98, 97], which is equiva-
lent to the following notion: Say that an affine manifold M is completely
incomplete if there exists no affine map R −→M , that is, M admits no
complete geodesic. Similarly, an RPn-manifold is completely incomplete
if there exists no projective map R −→ M . As noted by the author
(see Kobayashi [98]), the combined results of Kobayashi [98], Wu [151],
and Vey [144] imply:

Theorem. Let M be a closed hyperbolic affine manifold. Then M is a
quotient of a sharp convex cone.

In particular M is radiant. Moreover M fibers over S1 (which implies
that χ(M) = 0 and b1(M) > 0.

For projective manifolds, taking the radiant suspension of a hyper-
bolic projective structure yields a radiant affine structure, which one
easily sees is hyperbolic. Applying the above theorem imples that M
is a quotient of a sharp convex cone.

This striking characterization of hyperbolicity uses intrinsic met-
rics in the category of affine and projective manifolds, developed by
Vey [143] and Kobayashi [98, 97]. Their constructions were inspired by
the intrinsic metrics of Carathéodory and Kobayashi in the category of
complex manifolds.

Denote by I the open unit interval
(
− 1, 1

)
and

gI :=
4

(1− u2)2
du2

its Poincaré metric.
For projective manifolds M , one defines a “universal” pseudo-metric

M ×M dM−−−→ R such that affine (respectively projective) maps I →M
are distance non-increasing with respect to gI .

The definition of dM enforces the triangle inequality by taking the
infimum of gI-distances over sequences x0 = x, x1, . . . , xm = y where xi
and xi+1 are “close” in the following sense: there are projective maps

I
fi−−→ M such that xi = fi(ai) and xi+1 = fi(bi for −1 < ai < bi < 1.

Then define dM(x, y) as the infimum over all such sequences (fi, ai, bi)



30 W. GOLDMAN

of
m−1∑
i=0

dI(ai, bi)

where dI is the distance function on the Riemannian 1-manifold
(
I, g[−1,1]

)
.

That is, dM(x, y) is the infimum of∫ b

a

f
(
γ′(t)

)
dt

over all piecewise C1 paths [a, b]
γ−−→M with γ(a) = x, γ(b) = y.

This function has an infinitesimal form, defined by a nonnegative

upper-semicontinuous function TM
φ−−→ R. For affine manifolds, com-

pleteness is equivalent to f ≡ 0.
Following Kobayashi and Vey, M is projectively hyperbolic if and

only if dM is a metric, that is, if dM(x, y) > 0 for x 6= y. Then dM is
a Finsler metric and equals the Hilbert metric on the convex domain

M̃ .
When M is affine, then Vey [144] proves that M is a quotient of a

sharp convex cone. In that case there is (in addition to the Hilbert
metric), a natural Riemannian metric introduced by Vinberg [145],
Koszul [102, 101, 104, 105] and Vesentini [142]. In particular Koszul
and Vinberg observe that this Riemannian structure is the covariant
differential ∇ω of a closed 1-form ω. In particular ω is everywhere
nonzero, so by Tischler [139], M fibers over S1.

7.3.3. Hessian manifolds. Hyperbolic affine manifolds are closely re-
lated to Hessian manifolds. If ω is a closed 1-form, then its covariant
differential ∇ω is a symmetric 2-form. Since closed forms are locally
exact, ω = df for some function; in that case ∇ω equals the Hessian
d2f . Koszul [104] showed that hyperbolicity is equivalent to the exis-
tence of a closed 1-form ω whose covariant differential ∇ω is positive
definite, that is, a Riemannian metric. More generally, Shima [133]
considered Riemannian metrics on an affine manifold which are locally
Hessians of functions, and proved that such a closed Hessian manifold
is a quotient of a convex domain, thus generalizing Koszul’s result.

7.3.4. Hyperbolic torus bundles. Although the class of affine structures
on closed 3-manifolds with nilpotent holonomy are understood, the
general case of solvable holonomy remains mysterious. However, Serge
Dupont [55] completely classifies affine structures on 3-manifolds with
solvable fundamental group. (Compare also Dupont [54].) In terms
of the Thurston geometrization, these are the geometric 3-manifolds
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modeled on Sol, that is, 3-manifolds finitely covered by hyperbolic torus
bundles: mapping tori (suspensions) of hyperbolic elements of GL(2,Z).
Dupont shows that all such structures arise from left-invariant affine
structures on the corresponding Lie group G, which is the semidirect
product of R2 by R, where R acts on R2 as a unimodular hyperbolic
one-parameter subgroup (explicitly, G is isomorphic to the identity
component in the group of Lorentz isometries of the Minkowski plane).

Two structures are particularly interesting for the behavior of geodesics
in light of the results of Vey [144]. A properly convex domain Ω ∈ An

is said to be divisible if Ω admits a discrete group Γ of projective au-
tomorphisms acting properly on Ω such that Ω/Γ is compact. (Equiv-
alently, the quotient space Ω/Γ by a discrete subgroup Γ ⊂ Aut(Ω)
is compact and Hausdorff.) Vey proved that a divisible domain is a
cone. However, dropping the properness of the action of Γ on Ω allows
counterexamples: the parabolic cylinder

Ω := {(x, y) ∈ A2 | y > x2}
is a properly convex domain which is not a cone, but admits a group
Γ of automorphisms such that Ω/Γ is compact but not Hausdorff.

Now take the product Ω×R ⊂ A3. The author [73] found a discrete
subgroup Γ ⊂ Aff(A3) acting properly on Ω× R such that:

• The quotient M = (Ω×R)/Γ is a hyperbolic torus bundle (and
in particular compact and Hausdorff);
• Ω× R is not a cone.

Clearly Ω × R is not properly convex, showing that Vey’s result is
sharp. The Kobayashi pseudometric degenerates along a 1-dimensional
foliation of M , and defines the hyperbolic structure transverse to this
foliation discussed by Thurston [137], Chapter 4.

7.4. Flat conformal structures in higher dimensions. Flat con-
formal structures generalize CP1-structures, under the identification of
CP1 with S2 with its usual conformal structure. In general the group
of conformal transformations of Sn is the group PO(n + 1, 1), where
Sn ↪→ RPn+1 embeds as a quadric invariant under the projectivized
Lorentz group PO(n+ 1, 1). See Matsumoto [122] for an excellent sur-
vey.

Flat conformal structures arise in Riemannian geometry. Specifi-
cally, a Riemannian manifold (M, g) is conformally flat if and only if
every point p ∈ M possesses an open neighborhood U and a smooth

coordinate chart U
ψ−−→ En such that the Riemannian structure on

U induced by g is conformally equivalent to the Euclidean structure.
(Sometimes this condition is called locally conformally flat.) When
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n > 2, a flat conformal structure in our sense is then equivalent to a
conformal equivalence class of conformally flat Riemannian structures.
See Kulkarni [111, 112] for more background.

Kuiper [107] initiated the subject of flat conformal structures, and in
[108], classified those with abelian fundamental group. Kulkarni [111]
defined connected sum operation between flat conformal manifolds.
The construction is based on the fact that a conformal inversion in-
terchanges the two components of the complement of a hypersphere
in Sn. In other words, the inside and the outside of a hypersphere
in Sn are conformally equivalent. Thus a closed 3-manifold need not
be geometric in Thurston’s sense to admit a flat conformal structure.
However, as shown by the author [74], 3-manifolds with nilgeometric
and solvgeometric structures do not admit flat conformal structures.
These were the first examples of 3-manifolds without flat conformal
structures.

7.5. Real projective structures in higher dimensions. In a series
of papers [17, 19, 18, 20, 21], Yves Benoist developed a vast theory of
convex RPn-structures on compact manifolds. (See Benoist [22] for a
survey.) In particular he analyzed the boundary and showed that strict
convexity is equivalent to hyperbolicity in various contexts.

All of these studies involve the projectively invariant Hilbert metric
on a properly convex domain. When the domain is bounded by a qua-
dratic, this metric is just the hyperbolic metric in the Beltrami-Klein
projective model of hyperbolic space. See Marquis [120], and in general
the collection [128] for surveys of Hilbert geometry on such manifolds.
Recently Benoist’s theory of convex RPn-structures on compact mani-
folds has been extended to the analog of finite volume hyperbolic mani-
folds. In particular we mention the work of Cooper-Long-Tillmann [47]
on cusped RPn-manifolds, as well as Choi [37], Choi-Lee-Marquis [44]
and Marquis [119].

Kapovich [94] gave examples of convex RPn-structures on compact
negatively curved Riemannian manifolds which admit no locally sym-
metric Riemannian metric.

Which closed 3-manifolds admit RP3-structures is an interesting and
difficult question. Unlike flat conformal structures, the topology of RP3

precludes any inversion such as the Steiner inversion facilitating the
Kulkarni connected-sum operation. (Indeed, the two components of the
complement of a projective hyperplane in projective space are not even
topologically equivalent.) In this direction, Weiqiang Wu [152] showed
that any compact RPn-structure bounded by a sphere on its convex side
must be a disc — as noted above, this rigidity phenomenon is evidently
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absent for flat conformal manifolds. In particular it seems notoriously
difficult to construct an RP3-structure on a connected sum. In this
vein, Cooper-Goldman [48] showed thatthe connected sum RP3#RP3

fails to admit an RP3-structure; as of yet we know very few obstructions
for a 3-manifold not to admit a flat projective structure.

7.6. Complex projective structures in higher dimensions. In
a different direction, Klingler [96] classified (holomorphic) projective
structures on complex surfaces, following earlier work by Vitter [146]
and Kobayashi-Ochiai [90, 99, 100]. Every closed CP2-manifold is
finitely covered by a manifold of one of the following types:

• the complex projective plane CP2;
• complex hyperbolic manfiolds;
• complex solvmanifolds, that is, homogeneous spaces Γ\G where
G is a 4-dimensional (real) Lie group with left-invariant complex
structure and Γ ⊂ G is a lattice;
• Hopf manifolds C2 \ {0}/Γ, where Γ is a cyclic group of linear

expansions.
• elliptic surfaces over CP1-manifolds, that is, holomorphic fibra-

tions by elliptic curves over a Riemann surface with a projective
structure.

These two latter classes are affine structures.

References

1. Herbert Abels, Properly discontinuous groups of affine transformations: a
survey, Geom. Dedicata 87 (2001), no. 1-3, 309–333. MR 1866854 1.3, 6.2

2. Herbert Abels, Gregory Margulis, and Gregory Soifer, The Auslander conjec-
ture for dimension less than 7, arXiv:1211.2525. 1.3

3. William Abikoff, The real analytic theory of Teichmüller space, Lecture Notes
in Mathematics, vol. 820, Springer, Berlin, 1980. MR 590044 6.3

4. D. K. Arrowsmith and P. M. D. Furness, Flat affine Klein bottles, Geometriae
Dedicata 5 (1976), no. 1, 109–115. MR 0433358 (55 #6334) 6.1

5. L. Auslander and L. Markus, Holonomy of flat affinely connected manifolds,
Ann. of Math. (2) 62 (1955), 139–151. MR 0072518 (17,298b) 5.2

6. , Flat Lorentz 3-manifolds, Mem. Amer. Math. Soc. No. 30 (1959), 60.
MR 0131842 (24 #A1689) 1.3

7. Louis Auslander, Examples of locally affine spaces, Ann. of Math. (2) 64
(1956), 255–259. MR 0080957 1.3

8. , The structure of complete locally affine manifolds, Topology 3 (1964),
no. suppl. 1, 131–139. MR 0161255 1.3

9. Shinpei Baba, A Schottky decomposition theorem for complex projective struc-
tures, Geom. Topol. 14 (2010), no. 1, 117–151. MR 2578302 7.1

10. , Complex projective structures with Schottky holonomy, Geom. Funct.
Anal. 22 (2012), no. 2, 267–310. MR 2929066 7.1



34 W. GOLDMAN

11. , 2π-grafting and complex projective structures, I, Geom. Topol. 19
(2015), no. 6, 3233–3287. MR 3447103 7.1

12. Thierry Barbot, Variétés affines radiales de dimension 3, Bull. Soc. Math.
France 128 (2000), no. 3, 347–389. MR 1792474 6.1.1

13. Oliver Baues, Varieties of discontinuous groups, Crystallographic groups and
their generalizations (Kortrijk, 1999), Contemp. Math., vol. 262, Amer. Math.
Soc., Providence, RI, 2000, pp. 147–158. MR 1796130 (2001i:58013) 3.3, 6.2

14. , Deformation spaces for affine crystallographic groups, Cohomology of
groups and algebraic K-theory, Adv. Lect. Math. (ALM), vol. 12, Int. Press,
Somerville, MA, 2010, pp. 55–129. MR 2655175 (2011f:57066) 6.2

15. , The deformations of flat affine structures on the two-torus, Handbook
of Teichmüller theory Vol. IV, European Mathematical Society, 2014, pp. 461–
537. 6.1

16. Oliver Baues and William M. Goldman, Is the deformation space of com-
plete affine structures on the 2-torus smooth?, Geometry and dynamics, Con-
temp. Math., vol. 389, Amer. Math. Soc., Providence, RI, 2005, pp. 69–89.
MR 2181958 (2006j:57066) 6.2

17. Yves Benoist, Automorphismes des cônes convexes, Invent. Math. 141 (2000),
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