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ERGODICITY OF MAPPING CLASS GROUP
ACTIONS ON SU(2)-CHARACTER VARIETIES

to bob zimmer on his 60th birthday

Abstract

Let� be a compact orientable surface with genus g and n boundary components

∂1, . . . , ∂n. Let b = (b1, . . . , bn) ∈ [−2, 2]n. Then the mapping class group

Mod(�) acts on the relative SU(2)-character varietyXb := Homb(π , SU(2))/SU,

comprising conjugacy classes of representations ρ with tr(ρ(∂i)) = bi. This

action preserves a symplectic structure on the open dense smooth submanifold

of Homb(π , SU(2))/SU corresponding to irreducible representations. This

subset has full measure and is connected. In this note we use the symplectic

geometry of this space to give a new proof that this action is ergodic.

1. Introduction

Let � = �g ,n be a compact oriented surface of genus g with n boundary

components ∂1(�), . . . , ∂n(�). Choose base points p0 ∈ � and pi ∈ ∂i(�). Let

π = π1(�, p0) denote the fundamental group of �. Choosing arcs from p0
to each pi identifies each fundamental group π1(∂i(�), pi) with a subgroup

π1(∂i) ↪→ π . The orientation on � induces orientations on each ∂i(�). For

each i, denote the positively oriented generator of π1(∂i�) also by ∂i.

The mapping class group Mod(�) consists of isotopy classes of orientation-

preserving homeomorphisms of �, which pointwise fix each ∂i. The Dehn-

Nielsen theorem (see, for example, Farb-Margalit [1] or Morita [19]), identifies

Mod(�) with a subgroup of Out(π ) := Aut(π )/Inn(π ).

Consider a connected compact semisimple Lie group G. Its complexifica-

tion GC is the group of complex points of a semisimple linear algebraic group

defined over R. Fix a conjugacy class Bi ⊂ G for each boundary component ∂i.

Then the relative representation variety is
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HomB(π ,G) := {ρ ∈ Hom(π ,G) | ρ(∂j) ∈ Bj , for 1 ≤ j ≤ n}.
The action of the automorphism group Aut(π ) on π induces an action on

HomB(π ,GC) by composition. Furthermore, this action descends to an action

ofMod(�) ⊂ Out(π ) on the categorical quotient or the relative character variety

XC

B (G) := HomB(π ,GC)//GC.

The moduli space XC

B (G) has an invariant dense open subset that is a smooth

complex submanifold. This subset has an invariant complex symplectic struc-

ture ωC, which is algebraic with respect to the structure of XC

B (G) as an affine

algebraic set. The pull-back ω of the real part of this complex symplectic

structure under

XB(G) := HomB(π ,G)/G −→ XC

B (G)

defines a symplectic structure on a dense open subset, which is a smooth

submanifold. The smooth measure defined by the symplectic structure is

finite [3, 13, 11] andMod(�)-invariant. The main result of Goldman [6] (when

G has SU(2)- and U(1)-factors) and Pickrell-Xia [24] (when g > 1) is

Theorem. The action of Mod(�) on each component of XB(G) is ergodic with

respect to the measure induced by ω.

The goal of this note is to give a short proof in the case that G = SU(2).

Recently, F. Palesi [23] proved ergodicity of Mod(�) on XB(SU(2)) when

� is a compact connected nonorientable surface with χ (�) ≤ −2. When � is

nonorientable, the character variety fails to possess a symplectic structure (in

fact its dimension may be odd) and it would be interesting to adapt the proof

given here to the nonorientable case.

The proof given here arose from our investigation [10] of ergodic properties

of subgroups ofMod(�) on character varieties. The closed curves on � play a

central role. Namely, every closed curve defines a conjugacy class of elements

in π , and hence a regular function

Hom(π ,GC)
fα−→ C

ρ �−→ tr(ρ(α))

for some representation GC −→ GL(N ,C). These trace functions fα are GC-

conjugate invariant and results of Procesi [25] imply that such functions

generate the coordinate ring C[XB(SL(2,C))] of XB(SL(2,C)).
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Simple closed curves α determine elements of Mod(�), namely, the Dehn

twists τα . Let S be a set of simple closed curves on �. Our methods apply to

the subgroup �S ⊂ Mod(�) generated by τα , where α ∈ S. Our proof may be

summarized: if the trace functions fα generate C[XB(SL(2,C))], then the action of

�S on each component of XB(SU(2)) is ergodic.

The original proof [6] decomposes � along a set P of 3g − 3+ 2n disjoint

curves into

2g − 2+ n = −χ (�)

3-holed spheres (a pants decomposition.) The subgroup �P of Mod(�) stabi-

lizing P is generated by Dehn twists along curves in P. The corresponding

trace functions define a map

Xb

fP−−→ [−2, 2]P,

which is an ergodic decomposition for the action of �P. Thus anymeasurable

function invariant under�P must factor through fP. ChangingP by elemen-

tary moves on 4-holed spheres, and a detailed analysis in the case of �0,4 and

�1,1, implies ergodicity under all ofMod(�). The present proof uses the com-

mutative algebra of the character ring (in particular the work of Horowitz [12],

Magnus [17], and Procesi [25]), and the identification of the twist flows with

the Hamiltonians of trace functions [4]. Although it is not used in [6], the

map fP is the moment map for the R
P-action by twist flows, as well as the

ergodic decomposition for �P. Finding sets S of simple curves whose trace

functions generate the character ring promises to be useful to prove ergodic-

ity of the subgroup of Mod(�) generated by Dehn twists along elements of S

(Goldman-Xia [10].)

In a similar direction, SeanLawtonhaspointedout that thismethodofproof

(combined with [15, 16]) implies in at least some cases ergodicity of Mod(�)

on the relative SU(3)-character varieties (except when� ≈ �0,3, where it is not

true).

We are grateful to Sean Lawton, David Fisher, and the anonymous referee

for helpful suggestions on this manuscript.

With great pleasure we dedicate this paper to Bob Zimmer. Goldman first

presented this result in Zimmer’s graduate course at Harvard University in

fall 1985, and would like to express his warm gratitude to Zimmer for the

friendship, support, and mathematical inspiration he has given over many

years.
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2. Simple Generators for the Character Ring

In this note we restrict to the case G = SU(2) and GC = SL(2,C). Conjugacy

classes in G = SU(2) are level sets of the trace function SU(2)
tr−→ [−2, 2]. Thus

a collection B = (B1, . . . ,Bn) of conjugacy classes in SU(2) corresponds to an

n-tuple

b = (b1, . . . , bn) ∈ [−2, 2]n.
We denote the relative representation variety by

Homb(π , SU(2)) := {ρ ∈ Hom(π , SU(2)) | tr(ρ(∂i)) = bi}
and its quotient, the relative character variety, by

Xb := Homb(π , SU(2))/SU(2).

theorem 2.1. There exists a finite subset S ⊂ π corresponding to simple closed

curves on � such that the set of their trace functions {fγ : γ ∈ S} generates the

coordinate ring C[Xb].

We prove this theorem in §2.1 and §2.2.

2.1. Magnus-Horowitz-Procesi Generators

The following well-known proposition is a direct consequence of the work of

Horowitz [12] and Procesi [25]. Compare alsoMagnus [17], Newstead [22], and

Goldman [8].

proposition 2.2. Let FN be the free group freely generated by A1, . . . ,AN,

and let

X(N) := Hom(FN , SL(2,C))//SL(2,C)

be its SL(2,C)-character variety. Denote by IN the collection of all

I = (i1, . . . , ik) ∈ Z
k

where

1 ≤ i1 < · · · < ik ≤ N

and k ≤ 3. For I ∈ IN, define

AI := Ai1 , . . . ,Aik
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and let

X(N)
fI−→ C

[ρ] �−→ tr(ρ(AI ))

the corresponding trace functions. Then the collection

{fI | I ∈ IN }
generates the coordinate ring C[X(N)].

We shall refer to the coordinate ring C[X(N)] as the character ring. Recall

that by definition it is the subring of the ring of regular functions

SL(2,C)N −→ C

consisting of Inn(SL(2,C))-invariant functions.

2.2. Constructing Simple Loops

Suppose that � has genus g ≥ 0 and n > 0 boundary components. (We

postpone the case when � is closed, that is n = 0, to the end of this sec-

tion.) We suppose that χ (�) = 2− 2g − n < 0. Then π1(�) is free of rank

N = 2g + n− 1. We describe a presentation of π1(�) such that the above

elements AI , for I ∈ IN , can be represented by simple closed curves on �

(compare Figures 1–4). We also identify I with the subset

{i1, . . . , ik} ⊂ {1, . . . ,N}.

Fig. 1. Simple loops on �1,2 corresponding to words A1,A2,A3,A1A3 and A−14 =
A1A2A

−1
1 A−12 A3 in free generators {A1,A2,A3}.
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Fig. 2. Simple loop corresponding to A2A3.

Fig. 3. Simple loop corresponding to A1A2.

The fundamental group π1(�) admits a presentation with generators

A1, . . . ,A2g ,A2g+1, . . . ,A2g+n

subject to the relation

A1A2A
−1
1 A−12 . . .A2g−1A2gA−12g−1A

−1
2g . . .A2g+1 . . .A2g+n = 1.

Then

π = π1(�) ∼= F2g+n−1,

freely generated by the set {A1, . . . ,A2g+n−1}.
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Fig. 4. Simple loop corresponding to A1A2A3.

To represent the elements AI ∈ π1(�) explicitly as simple loops, we realize

� as the union of a planar surface P and g handles H1, . . . ,Hg . In the notation

of [8], P ≈ �0,g+n has g + n boundary components

α1, . . . ,αg ,αg+1, . . . ,αg+n

andeachhandleHj ≈ �1,1 is a 1-holed torus. Theoriginal surface� is obtained

by attaching Hj to P along αj for j = 1, . . . , g .

We construct the curves Ai, for i = 1, . . . , 2g + n as follows. Choose a pair

of base points p+j , p
−
j on each αj for j = 1, . . . , g + n. Let α−j be the oriented

subarc of αj from p−j to p+j , and α
+
j the corresponding subarc from p+j to p−j .

Thus αj 
 α−j ∗α+j is a boundary component of P.

Choose a system of disjoint arcs βj from p+j to p−j+1, where βg+n runs from

p+g+n to p−1 in the cyclic indexing of {1, 2, . . . , g + n}. Compare Figure 5.

For I ∈ IN , the curve AI will be the concatenation EI
1 ∗ . . .EI

g+n of simple

arcs EI
j running from p−j to p−j+1. Define

E∅j := α−j ∗βj ,

so that

A∅ := E∅1 ∗ · · · ∗E∅N

is a contractible loop.

Suppose first that i > 2g . Then the curve Ai will be freely homotopic to the

oriented loop α−1i , corresponding to a component of ∂�. The arc

E+i := (α+i )−1 ∗βi
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Fig. 5. A planar surface P ≈ �0,4.

goes from p−i to p−i+1 (cyclically). Then Ai corresponds to the arc

Ai := E∅1 ∗ · · · ∗E∅2g

∗E∅2g+1 ∗ · · · ∗E+i ∗ . . .E∅2g+n−1.

For i ≤ 2g , the curves Ai will lie on the handles Hj . The curves A2j−1 and
A2j define a basis for the relative homology of Hj and the relative homology

class of the curve

A2j−1,2j := A2j−1A2j

is their sum. Compare Figures 6 and 7.

As above, we define three simple arcs γj , δj , ηj running from p−j to p+j to

build these three curves, respectively.

The boundary ∂Hj identifies with αj for j = 1, . . . , g . The two points on

∂Hj , which identify to

p±j ∈ αj ⊂ ∂P,

divide ∂Hj into two arcs. Without danger of confusion, denote these arcs by

α±j as well. On the handleHj , choose disjoint simple arcs γj , δj , and ηj running

from p+i to p−i such that the

Hj \ (γj ∪ δj)
is a hexagon. Two of its edges correspond to the arcs α±j . Its other four edges

are the two pairs obtained by splitting γj and δj . (Compare Figure 6.) Let ηj to

   You are reading copyrighted material published by University of Chicago Press. 
   Unauthorized posting, copying, or distributing of this work except as permitted under U.S. copyright law is illegal

   and injures the author and publisher.



ergodicity of mapping class group actions / 599

Fig. 6. A handle Hj ≈ �1,1.

Fig. 7. A (1, 1)-curve ηj on the handle Hj .

be a simple arc homotopic to γj ∗ (α+j )−1 ∗ δj , where ∗ denotes concatenation.
For each j ≤ g , the arcs

Eγj = γj ∗βj

Eδj = δj ∗βj

Eηj = ηj ∗βj

run from p−j to p+j and define
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A2j−1 = E∅1 ∗ · · · ∗Eγj ∗ . . .E∅g ∗ · · · ∗E∅g+n

A2j = E∅1 ∗ · · · ∗Eδj ∗ . . .E∅g ∗ · · · ∗E∅g+n

A2j−1,2j = E∅1 ∗ · · · ∗Eηj ∗ . . .E∅g ∗ · · · ∗E∅g+n.

In general, suppose that I ∈ IN . Define

AI := EI
1 ∗ · · · ∗Eg+n

where

EI
j =

⎧⎨
⎩

E∅j if j /∈ I

E+j if j ∈ I

if j > g and

EI
j =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

E∅j if 2j− 1, 2j /∈ I

Eγj if 2j− 1 ∈ I, 2j /∈ I

Eδj if 2j− 1 /∈ I, 2j ∈ I

Eηj if 2j− 1, 2j ∈ I

if j ≤ g .

Now each AI is simple: Each of the oriented arcs α±i , βi, γi, δi, ηi are embed-

ded and intersect only along p±i . In particular, each of the above oriented arcs

begins at some p±i and ends at some p∓i . Thus each

E∅j ,E
+
j ,Eγj ,E

δ
j ,E

η

j

is a simple arc running from p−j to p−j+1, cyclically. The loop AI concatenates

these arcs, which only intersect along the p−i . Each of these endpoints occurs

exactly twice, once as the initial endpoint and once as the terminal endpoint.

Therefore, the loop AI is simple.

This collection AI , for I ∈ IN , of simple curves determines a collection

of regular functions fI on XC, which generate the character ring. Since the

inclusion

XC

b ↪→ XC

is a morphism of algebraic sets, the restrictions of fI to XC

b generate the

coordinate ring of XC

b .

The case n = 0 remains. To this end, the character variety of�g ,0 appears as

the relative character variety of�g ,1 with boundary condition b1 = 2. As above,
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the restrictions of the fI from �g ,1 to the character variety of �g ,0 generate its

coordinate ring. The proof of Theorem 2.1 is complete.

3. Infinitesimal Transitivity

The application of Theorem 2.1 involves several lemmas to deduce that the

flows of the Hamiltonian vector fields Ham(fγ ), where γ ∈ S, generate a

transitive action on Xb.

lemma 3.1. Let X be an affine variety over a field k. Suppose that F ⊂ k[X ]
generates the coordinate ring k[X ]. Let x ∈ X. Then the differentials df (x), for

f ∈ F , span the cotangent space T∗x (X ).

Proof. Let Mx ⊂ k[X ] be the maximal ideal corresponding to x. Then the

functions f − f (x)1, where f ∈ F , span Mx . The correspondence

Mx −→ T∗x (X )

f �−→ df (x)

induces an isomorphism Mx/M
2
x

∼=−→ T∗x (X ). In particular, it is onto. There-

fore, the covectors df (x) span T∗x (X ) as claimed. �

lemma 3.2. Let X be a connected symplectic manifold and F be a set of functions

on X such that at every point x ∈ X, the differentials df (x), for f ∈ F , span the

cotangent space T∗x (X ). Then the group G generated by the Hamiltonian flows of

the vector fields Ham(f ), for f ∈ F , acts transitively on X .

Proof. The nondegeneracy of the symplectic structure implies that the vector

fields Ham(f )(x) span the tangent space TxX for every x ∈ X . By the inverse

function theorem, the G-orbit G · x of x is open. Since the orbits partition X

and X is connected, G · x = X as claimed. �

proposition 3.3. Let b = (b1, . . . , bm) ∈ [−2, 2]n. Then Xb is either empty

or connected.

The proof follows from Newstead [21] and Goldman [5]. Alternatively,

apply Mehta-Seshadri [18] to identify Xb with a moduli space of semistable

parabolic bundles, and apply their result that the corresponding moduli space

is irreducible.
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corollary 3.4. Let G be the group generated by the flows of the Hamiltonian

vector fields Ham(fγ ), where γ ∈ S. Then G acts transitively on Xb.

Proof. By Theorem 2.1,

{ fγ | γ ∈ S}
generatesC[Xb]. Lemma3.1 implies that at every pointx ∈ Xb the differentials

dfγ (x) span T∗x (Xb). Proposition 3.3 implies that Xb is connected. Now apply

Lemma 3.2. �

4. Hamiltonian Twist Flows

We briefly review the results of Goldman [4], describing the flows generated

by the Hamiltonian vector fields Ham(fα), when α represents a simple closed

curve. In that case the local flow of this vector field on X(G) lifts to a flow

ξt on the representation variety HomB(π ,G). Furthermore this flow admits a

simple description [4] as follows:

4.1. Invariant Functions and Centralizing 1-Parameter Subgroups

Let Ad be the adjoint representation of G on its Lie algebra g. We suppose that

Ad preserves a nondegenerate symmetric bilinear form 〈, 〉 on g. In the case

G = SU(2), this will be

〈X ,Y 〉 := tr(XY ).

LetG
f−→ R be a function invariant under the inner automorphisms Inn(G).

Following [4], we describe how f determines away to associate to every element

x ∈ G a 1-parameter subgroup

ζ t(x) = exp (tF(x))

centralizing x. Given f , define its variation function G
F−→ g by

〈F(x), υ〉 = d

dt

∣∣∣
t=0f (x exp (tυ))

for all υ ∈ g. Invariance of f under Ad(G) implies that F is G-equivariant:

F(gxg−1) = Ad(g)F(x).

Taking g = x implies that the 1-parameter subgroup

4.1 ζ t(x) := exp (tF(x))

lies in the centralizer of x ∈ G.
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Intrinsically, F(x) ∈ g is dual (by 〈, 〉) to the element of g∗ corresponding to
the left-invariant 1-form on G extending the covector df (x) ∈ T∗x (G).

There are two cases, depending onwhether α is nonseparating or separating.

Let�|α denote the surface with boundary obtained by splitting � along α. The

boundary of �|α has two components, denoted by α±, corresponding to α.

The original surface � may be reconstructed as a quotient space under the

identification of α− with α+.

4.2. Nonseparating Loops

If α is nonseparating, then π = π1(�) can be reconstructed from the

fundamental group π1(�|α) as an HNN-extension:

4.2 π ∼=
(
π1(�|α)�〈β〉

)/(
βα−β−1 = α+

)
.

A representation ρ of π is determined by

• the restriction ρ′ of ρ to the subgroup π1(�|α) ⊂ π , and
• the value β ′ = ρ(β),

which satisfies

4.3 β ′ρ′(α−)β ′−1 = ρ′(α+).

Furthermore, any pair (ρ ′,β ′) where ρ′ is a representation of π1(�|α) and
β ′ ∈ G satisfies Equation 4.3 determines a representation ρ of π .

The twist flow ξ t
α , for t ∈ R on Hom(π , SU(2)), is then defined as follows:

4.4 ξ t
α(ρ) : γ �−→

⎧⎨
⎩
ρ(γ ) if γ ∈ π1(�|α)
ρ(β)ζ t(ρ(α−)) if γ = β.

where ζ t is defined in Equation 4.1. This flow covers the flow generated by

Ham(fα) on Xb (see [4]).

4.3. Separating Loops

If α separates, then π = π1(�) can be reconstructed from the fundamental

groups π1(�i) of the two components �1,�2 of �|α, as an amalgam

4.5 π ∼= π1(�1)�〈α〉 π1(�2).

A representation ρ of π is determined by its restrictions ρi to π1(�i). Further-

more, any two representations ρi of π satisfying ρ1(α) = ρ2(α) determines a

representation of π .
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The twist flow is defined by

4.6 ξ t
α(ρ) : γ �−→

⎧⎨
⎩
ρ(γ ) if γ ∈ π1(�1)

ζ t(ρ(α)) ρ(γ ) ζ−t(ρ(α)) if γ ∈ π1(�2)

where ζ t is defined in Equation 4.1.

4.4. Dehn Twists

Let α ⊂ � be a simple closed curve. The Dehn twist along α is the mapping

class τα ∈ Mod(�) represented by a homeomorphism � −→ � supported

in a tubular neighborhood N(α) of α defined as follows. In terms of a

homeomorphism S1×[0, 1] h−→ N(α), which takes α to S1×{0}, the Dehn

twist is

τα ◦ h(ζ , t) = h(e2tπ iζ , t).

If α is essential, then τα induces a nontrivial element of Out(π ) on π =
π1(�).

If α is nonseparating, then π = π1(�) can be reconstructed from the fun-

damental group π1(�|α) as an HNN-extension as in Equation 4.2. The Dehn

twist τα induces the automorphism (τα)∗ ∈ Aut(π ) defined by

(τα)∗ : γ �−→
⎧⎨
⎩
γ if γ ∈ π1(�|α)
γα if γ = β.

The induced map (τα)∗ on Hom(π ,G) maps ρ to

4.7 (τα)∗(ρ) : γ �−→
⎧⎨
⎩
ρ(γ ) if γ ∈ π1(�|α)
ρ(γ )ρ(α)−1 if γ = β.

If α separates, then π = π1(�) can be reconstructed from the fundamental

groups π1(�i) as an amalgam as in Equation 4.5. The Dehn twist τα induces

the automorphism (τα)∗ ∈ Aut(π ) defined by

(τα)∗ : γ �−→
⎧⎨
⎩
γ if γ ∈ π1(�1)

αγα−1 if γ ∈ π1(�2).

The induced map (τα)∗ on Hom(π ,G) maps ρ to

4.8 (τα)
∗(ρ) : γ �−→

⎧⎨
⎩
ρ(γ ) if γ ∈ π1(�1)

ρ(α)−1ρ(γ )ρ(α) if γ ∈ π1(�2).
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5. The Case G = SU(2)

Now we specialize the preceding theory to the case G = SU(2). Its Lie algebra

su(2) consists of 2× 2 traceless skew-Hermitian matrices over C.

5.1. One-Parameter Subgroups

The trace function

SU(2)
f−→ [−2, 2]

x �−→ tr(x)

induces the variation function

SU(2)
F−→ su(2)

x �−→ x− tr(x)

2
I,

the projection of x ∈ SU(2) ⊂ M2(C) to su(2). Explicitly, if x ∈ SU(2), there

exists g ∈ SU(2) such that

x = g

[
eiθ 0

0 e−iθ

]
g−1.

Then f (x) = 2 cos (θ ),

F(x) = g

[
2i sin (θ ) 0

0 −2i sin (θ )

]
g−1 ∈ su(2),

and the corresponding 1-parameter subgroup is

ζ t(x) = g

[
e2i sin (θ )t 0

0 e−2i sin (θ )t

]
g−1 ∈ SU(2).

Except in two exceptional cases this 1-parameter subgroup is isomorphic to S1.

Namely, if f (x) = ±2, then x = ±I. These two elements comprise the center of

SU(2). In all other cases, −2 < f (x) < 2 and ζ t(x) is a circle subgroup. Notice

that this circle subgroup contains x:

5.1 x = ζ s(x)(x)

where

5.2 s(x) := 2√
4− f (x)2

cos−1
( f (x)

2

)
.

Furthermore,

5.3 ζ t(x) = I
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if and only if

t ∈ 4π√
4− f (x)2

Z.

(Compare Goldman [6].)

proposition 5.1. Let α ∈ π be represented by a simple closed curve, and ξ t
α

be the corresponding twist flow on Hom(π ,G) as defined in flows 4.4 and 4.6. Let

ρ ∈ Hom(π ,G). Then

(τα)∗(ρ) = ξ s(ρ(α))
α

where s is defined in Equation 5.2.

Proof. Combine Equation 5.1 with flow 4.4 when α is nonseparating and flow

4.6 when α separates. �

The basic dynamical ingredient of our proof, (like the original proof

in [6]) is the ergodicity of an irrational rotation of S1. There is a unique

translation-invariant probabilitymeasure onS1 (Haarmeasure). Furthermore,

this measure is ergodic under the action of any infinite cyclic subgroup. Recall

that an action of group � ofmeasure-preserving transformations of ameasure

space (X ,B,μ) is ergodic if and only if every invariant measurable set either

has measure 0 or has full measure (its complement has measure 0).

lemma 5.2. If cos−1 (f (x)/2)/π is irrational, then the cyclic group 〈x〉 is a dense

subgroup of the 1-parameter subgroup

{ζ t(x) | t ∈ R} ∼= S1

and acts ergodically on S1 with respect to Lebesgue measure.

For these basic facts see Furstenberg [2], Haselblatt-Katok [14], Morris [20], or

Zimmer [26].

corollary 5.3. Let α, ξ t
α and τα be as in Proposition 5.1. Then for almost every

b ∈ [−2, 2], (τα)∗ acts ergodically on the orbit

{ξ t
α([ρ])}t∈R,

when fα(ρ) = b.

Proof. Combine Proposition 5.1 with Lemma 5.2. �
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proposition 5.4. Let α ∈ S be a simple closed curve, with twist vector field

ξα and Dehn twist τα . Let Xb
ψ−→ R be a measurable function invariant under the

cyclic group 〈(τα)∗〉. Then there exists a nullset N of Xb such that the restriction of

ψ to the complement of N is constant on each orbit of the twist flow ξα .

Proof. Disintegrate the symplectic measure on Xb over the quotient map

Xb −→ Xb/ξα

as in Furstenberg [2] or Morris [20], 3.3.3, 3.3.4]. By Equation 5.3 almost all

fibers of this map are circles.

The subset

N := f−1α (2 cos (Qπ )) ⊂ Xb

has measure 0. By Corollary 5.3, the action of (τα)∗ is ergodic on each circle

in the complement of N . In particular, ψ factors through the quotient map,

as desired. �

Conclusion of proof of main theorem. Suppose that Xb
ψ−→ R is a measurable

function invariant under Mod(�); we show that ψ is almost everywhere

constant.

To this end let S be the collection of simple closed curves in Theorem 2.1.

Then, for each α ∈ S, the function ψ is invariant under the mapping (τα)∗

induced by the Dehn twist along α ∈ S. By Proposition 5.4, ψ is constant

along almost every orbit of the Hamiltonian flow ξα ofHam(fα). Thus, up to a

nullset,ψ is constant along the orbits of the groupG generated by these flows.

By Corollary 3.4, G acts transitively on Xb. Therefore ψ is almost everywhere

constant, as claimed. The proof is complete. �
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