A FORMALIZATION OF KD-TREES (WITH £ = 2)
CHASE HUTTON AND ADAM MELROD

ABSTRACT. A report on our final project for CMSC631. In this project, we formalize a kd-tree, a
space-partitioning geometric data structure, and prove various properties about them.

CONTENTS

1. What is a kd-tree?

1.1. Formalization in Coq
2. Decidability

3. Insertion Algorithm
3.1. Insertion Correctness
4. Future Work

N A BN W~

1. WHAT IS A KD-TREE?

A kd-tree is an example of a partition tree. For each node of the tree we subdivide the ambient space
by specifying a (k — 1)-dimensional axis-aligned hyperplane to split the points about a dimension.
This dimension is called the cutting dimension. The figure below gives an example of the two
dimensional case:

‘ u.cell
Pa
L]
* *P1o

e P | ps

P4, il
.

m

p.-; ll”[l p.-; ol”[ll

me Py m* Py

The kd-tree in the figure is representative of what we wish to formalize in coq. This variation of
the kd-tree concept is classified as a two dimensional point kd-tree. Observe in the figure that each
split is determined by a vertical or horizontal line equation, i.e. ¥y = c or x = c¢. We denote the
value of c as the cutting value. In what follows we will refer to the internal nodes of the tree as
split nodes and the external nodes as point nodes.

We note that the two dimensional point kd-tree data structure is easy to implement and is quite
practical. It is useful for many different types of searching problems including nearest neighbor
searching and range querying.

2 CHASE HUTTON AND ADAM MELROD

1.1. Formalization in Coq. To implement the kd-tree, we first need to describe what data a tree
consists of. As discussed above, the split nodes of the tree will need to encode the a cutting dimen-
sion, a cutting value, and references to their two children. The point nodes of the tree will encode
the data of point in two-dimensional space, which we will use the canonical rational library to do.

First, the cutting dimension should be either the along the X -axis or the Y-axis. We thus define
the following type:

Inductive Dim : Type :=

| X

| Y.

We also define the type of a vector and a (possibly empty) pair of coordinates:
Definition Vector : Type := Qc*Qc.

Definition Coord : Type := option Vector.

Using the types we have defined, we define a tree:

Inductive tree : Type :=
| Point : Coord —> tree
| Split : Dim => Qc —-> tree —> tree —> tree.

The next issue we have to resolve is how we identify kd-trees. The method we decided to take was
to treat being a kd-tree as a property of a tree with respect to a particular bounding box. This allows
us to phrase the definition as an inductive property. To make precise the notion of a bounding box,
we introduce a rectangle primitive which is described by it’s bottom left point and upper right
point:

Definition Rectangle : Type := VectorxVector.

Now we make the following definition of the KDT property (we use some auxiliary properties that
we define later):

Inductive KDT : Rectangle -> tree —> Prop :=
| KDT_Point_FEmpty : forall r, KDT r (Point None)
| KDT_Point_Coord : forall r v, Bounded r v => KDT r (Point (Some
| KDT_Split : forall rl r2 r3 d cv tl t2,
KDT rl tl1 —-> KDT r2 t2 -> Aligned cv d rl r2 ->
Merged rl r2 r3 —=> KDT r3 (Split d cv tl t2).

We now provide intuition for each of these cases. The first case makes it so that all empty trees are
kd-trees with respect to any bounding box. The second condition asserts that a point is a kd-tree
with respect to a bounding box only if the point is contained in that box. The third case asserts that
a tree is a kd-tree with respect to a bounding box R only if the left and right subtree are kd-trees
with respect to two bounding boxes that are aligned along the root node’s cutting dimension at
the cutting value and R is the union of the two bounding boxes. The definitions of the auxiliary
properties are listed below but we omit discussion of them.

Inductive Bounded : Rectangle —-> Vector —> Prop :=
| B : forall r v,
fst v < fst (snd r) -> fst (fst r) < fst v ->
snd v < snd (snd r) -> snd (fst r) < snd v —>
Bounded r wv.

v))

A FORMALIZATION OF KD-TREES (WITH k = 2) 3

Inductive Aligned : Qc —> Dim —> Rectangle —-> Rectangle —> Prop :=

CY : forall cv rl r2,
(snd (snd rl)) = cv => (fst (fst rl)) = (fst (fst r2)) ->
(snd (snd rl)) (snd (fst r2)) ->
(fst (snd rl)) (fst (snd r2)) -=> Aligned cv Y rl r2

CX : forall cv rl r2,
(fst (snd rl)) = cv => (snd (snd rl)) = (snd (snd r2)) ->
(fst (snd rl)) (fst (fst r2)) -—>
(snd (fst rl)) (snd (fst r2)) —-> Aligned cv X rl r2.

Inductive Merged : Rectangle —-> Rectangle —-> Rectangle —> Prop :=

M : forall rl r2 r3,
fst (fst r3) fst (fst rl) -> snd (fst r3)
fst (snd r3) fst (snd r2) => snd (snd r3)
Merged rl r2 r3.

snd (fst rl) ->
snd (snd r2) ->

2. DECIDABILITY

Now that we have defined the KDT property, we want to show that it is decidable. This will al-
low us to prove that various examples are kd-trees which not be easily doable without this property.

We must define a function that decides if a tree is KDT with respect to a bounding box. We do this
as follows:

Fixpoint kdt (r : Rectangle) (t : tree) : bool :=

match t with
| Point coord =>
match coord with
| None => true
| Some v => Dbounded r v
end
| Split d cv tl t2 =>
match d with
| X => (kdt ((fst r), (cv, snd (snd r))) tl) &&
(kdt ((cv, snd (fst r)), (snd r)) t2) &&
aligned cv X ((fst r), (cv, snd (snd r)))
((cv, snd (fst r)), (snd r)) &&
merged ((fst r), (cv, snd (snd r)))
((cv, snd (fst r)), (snd r)) r
| Y => (kdt ((fst r), (fst (snd r),cv)) tl) &&
(kdt ((fst (fst r),cv), (snd r)) t2) &&
aligned cv Y ((fst r), (fst (snd r),cv))
((fst (fst r),cv), (snd r)) &&
merged ((fst r), (fst (snd r),cv))
((fst (fst r),cv), (snd r)) r
end
end.

4 CHASE HUTTON AND ADAM MELROD

To prove decidability, we want to show that the kdt function outputs true if and only if the input tree
is a KDT with respect to the input bounding box. In Coq, this becomes the following statement:

Theorem kdt_iff KDT
forall (t : tree) (r : Rectangle), KDT r t <-> kdt r t = true.

We relegate the formal proof to the Coq source file. The idea is to prove the decidability of the
auxiliary properties used in the KDT definition, from which the decidability of the KDT property
will easily follow by a relatively simple inductive argument.

3. INSERTION ALGORITHM

With our KDT property inductively defined and its decidability proven, we provide an algorithm
for constructing a valid kd-tree for a given set of points in the plane. To this end, we implement
the standard point kd-tree insertion algorithm:

Fixpoint insert (v : Vector) (d : Dim) (t : tree) : tree :=
match t with
| Point ¢ => match ¢ with
| None => Point (Some V)
| Some v' => if bneqg d d v v' then
Split d (mid d v v'")
(Point (Some (min_wrt_dim d v v')))
(Point (Some (max_wrt_dim d v v')))
else
t
end
| Split X cv tl1 t2 => if g_equal (fst v) cv then t else
if (g_less_than (fst v) cv) then
[(insert v Y tl) | cv | t2 1]
else [t1 | cv | (insert v Y t2)]
| Split Y cv tl1 t2 => if g_equal (snd v) cv then t else
if (g_less_than (snd v) cv) then
[(insert v X tl) 7 cv 7 t2]
else [t1 7 cv 7 (insert v X t2)]
end.

Note that this algorithm only inserts points if they are not already present in the tree. It is recursive
and works by matching on the structure of the tree. If the tree is empty we insert the point. Else, if
the tree consist of a single point we construct a split node that splits the points about the mid point
along the current dimension. Otherwise, we are at a split node and we determine which child to
recurse on by comparing the point along the nodes splitting dimension.

3.1. Insertion Correctness. We would like to show that this algorithm is correct. To do this, we
prove that the algorithm preserves the KDT invariant. We state this more formally in the following
theorem:

Theorem insertion_correctness
forall r t v d, KDT r t => Bounded r v => KDT r (insert v d t)

The proof of this theorem is long and technical so we shall only present the major ideas here. We
refer the interested reader to the source file for the full proof. The main idea is to use induction

A FORMALIZATION OF KD-TREES (WITH k = 2) 5

on the tree structure. The empty tree case is trivial. The case of one point is technical but mostly
requires some explicit computation to demonstrate that the new tree has the KDT property. For
the inductive step, we split into two cases depending on the cutting dimension, but this is mostly
superfluous for our arguments. What remains mostly consists of some lemmas concerning the
Bounded properties of rectangles. One such example is:

Lemma generalized_ bounded_lemma_x1
forall (vl : Vector) (rl r2 r3 : Rectangle) (cv : Qc),
Bounded r3 vl =-> fst vl < cv -=> Aligned cv X rl r2 ->
Merged rl r2 r3 —> Bounded rl vl.

The main idea this lemma captures is that if a rectangle R contains a smaller rectangle R’ which
bounds a point P, then R bounds P. With these lemmas, we can easily finish the proof.

4. FUTURE WORK

An avenue for future work would be to implement the standard range counting algorithm for axis-
aligned rectangles on kd-trees and prove its correctness. The way we would go about doing this
is to first write a brute force range counting algorithm and then prove that the output of the range
counting algorithm is always equal to the output of the brute force algorithm.

In the same vein, we have ideas regarding proving the correctness of any general range counting
algorithm on kd-trees satisfying some certain axioms. This would provide a powerful framework
for verifying the correctness of a large class of algorithms on kd-trees.

One last potential extension to the project would be to implement the balanced kd-tree insertion
algorithm and prove that it preserves the KDT property.

	1. What is a kd-tree?
	1.1. Formalization in Coq

	2. Decidability
	3. Insertion Algorithm
	3.1. Insertion Correctness

	4. Future Work

