
MATH 340 Sec. 0201

Computer Assignment 1
Due Friday, October 4

You may work alone or in teams of two people. Each team must submit a single printed solution. Solutions must
contain yourrelevant MATLAB input and output (do not include commands that didn’twork), and text that indicates
what your commands are doing and interprets your results. (You may find one of the following commands useful in
preparing your solutions:publish , notebook , or diary ; see MATLAB’s online help for details.) Organization
and clarity count.
. .. .

MATLAB is first and foremost a platform for doing linear algebra, and one of its most basic operators
is the backslash (“\”), which solves linear systems. Generally speaking, to solve the systemAx = b,
type x = A\b. (Type help slash or doc mldivide for more information and other possibili-
ties.) This gives essentially the same answer as typingx = inv(A) * b or x = Aˆ(-1) * b, but using
the backslash finds the answer more efficiently, without computing the inverse. In both cases, MATLAB
uses Gaussian elimination, but with some variations that make the computation more efficient and accurate.

In your homework (problem 2.2.11) you’ll learn why the number of arithmetic operations required to
solve a system ofn linear equations inn unknowns using Gaussian elimination is, for largen, roughly
proportional ton3. The goal of this problem is to see how true this is in practicewith MATLAB, and
also to see how much longer it takes to solve a linear system byinverting the matrix (inv(A) * b)
versus the more direct approach (A\b).

The values ofn you will be using are in the thousands, and it is neither feasible nor desirable to use
a system of equations that you make up yourself. Instead, letMATLAB randomly choose a system
to solve. You can get a randomn by n matrix by typing A = randn(n) , and a random column
vector by typing b = randn(n,1) . (Try this for a small value ofn to see what the result looks
like, but for largen it is best to follow these commands with a semicolon to suppress the output.)

There are two ways to measure (more accurately than using your watch) how long a computation
takes to run in MATLAB: with the commandstic and toc , and with the commandcputime .
Each of the following command lines will display the amount of time taken to computeA\b:

tic; A \b; toc
start = cputime; A \b; cputime - start

The first command counts the actual time elapsed, while the second command counts the processor
time used (which can be more than elapsed time if your computer has mutiple processors/cores).
Neither method will give you the exact same answer each time you use it; use whichever method
gives you more consistent answers from one try to the next.

(a) Find a value ofn so that solving ann by n system usingA\b takes consistently between0.5
and1 seconds on your computer. Since the timing that MATLAB reports can vary, see how long
A\b takes for each of three consecutive runs, and do the same forinv(A) * b. Also the time
taken may depend on the specific random matrixA and vector b you generated; try different
A and b and see if the timing changes significantly. If so, you may need to average several
results to get a consistent answer.

Fall 2013 1 B. Hunt

MATH 340 Computer Assignment 1 Sec. 0201

(b) Multiply n by 3
√
2 ≈ 1.26 (then round to the nearest integer) and repeat part (a) on thesame

computer. Do this again and again, untiln reaches four times its value in part (a). This will give
you a total of seven values ofn, including the one from part (a). According to then3 rule, each
value ofn should take about twice as long as the previous value, so be patient asn increases.
If your computer runs out of memory, typeclear or restart MATLAB and try again. If you
can’t avoid running out of memory, or if MATLAB takes more than a few minutes to solve the
system, stop at that value ofn.

(c) Organize your results into a table and discuss them. For each of the two solution methods you
tried, how close did the average computation time come to doubling for each successiven? Does
it grow faster or more slowly thann3, and what do you think the reason for this is? How do the
two solution methods compare? In particular, how much longer does inv(A) * b take than
A\b whenn is large?

(d) Is either solution method more accurate? Due to round-off error, a solution you get on a com-
puter generally will not solveAx = b exactly. For a reasonably large value ofn, see how close
Ax is tob for x = A\b versus x = inv(A) * b. As before, the result may depend on the
particular choice ofA, so try more than one random choice ofA and see whether you see a
pattern.

Fall 2013 2 B. Hunt

