MATH 340 Sec. 0201

Computer Assignment 1
Due Friday, October 4

You may work alone or in teams of two people. Each team mush#ubsingle printed solution. Solutions must
contain yourrelevant MATLAB input and output (do not include commands that didmdrk), and text that indicates
what your commands are doing and interprets your resultsu (iay find one of the following commands useful in
preparing your solutiongublish |, notebook , ordiary ; see MATLAB's online help for details.) Organization
and clarity count.

MATLAB is first and foremost a platform for doing linear algab and one of its most basic operators
is the backslash ("), which solves linear systems. Generally speaking, tvesthe systemdx = b,
type x = A\b. (Type help slash or doc mldivide for more information and other possibili-
ties.) This gives essentially the same answer as typing inv(A) =*b or x = A(-1) =b, but using
the backslash finds the answer more efficiently, without ading the inverse. In both cases, MATLAB
uses Gaussian elimination, but with some variations th&ent@e computation more efficient and accurate.

In your homework (problem 2.2.11) you'll learn why the numbéarithmetic operations required to
solve a system af linear equations im unknowns using Gaussian elimination is, for largeoughly
proportional ton3. The goal of this problem is to see how true this is in practiita MATLAB, and
also to see how much longer it takes to solve a linear systeinveyting the matrix ihv(A) +b)
versus the more direct approadk\b).

The values of: you will be using are in the thousands, and it is neither fdasior desirable to use
a system of equations that you make up yourself. InsteadAGiLAB randomly choose a system
to solve. You can get a randomby n matrix by typing A = randn(n) , and a random column
vector by typingb = randn(n,1) . (Try this for a small value of. to see what the result looks
like, but for largen it is best to follow these commands with a semicolon to suggptiee output.)

There are two ways to measure (more accurately than usingwaich) how long a computation
takes to run in MATLAB: with the commandsic and toc , and with the commandputime .
Each of the following command lines will display the amouhtime taken to computeA\b:

tic;c A \b; toc
start = cputime; A \b; cputime - start

The first command counts the actual time elapsed, while tbensecommand counts the processor
time used (which can be more than elapsed time if your comghas mutiple processors/cores).

Neither method will give you the exact same answer each timeuse it; use whichever method

gives you more consistent answers from one try to the next.

(a) Find a value of: so that solving am by n system usingA\b takes consistently betweérb
and1 seconds on your computer. Since the timing that MATLAB ré&poan vary, see how long
A\b takes for each of three consecutive runs, and do the samm#A) =*b. Also the time
taken may depend on the specific random matkixand vectorb you generated; try different
A and b and see if the timing changes significantly. If so, you maydnteeaverage several
results to get a consistent answer.

Fall 2013 1 B. Hunt

MATH 340

Computer Assignment 1 Sec. 0201

(b)

©)

(d)

Fall 2013

Multiply n by /2 ~ 1.26 (then round to the nearest integer) and repeat part (a) osaine
computer. Do this again and again, umtiteaches four times its value in part (a). This will give
you a total of seven values ef including the one from part (a). According to thé rule, each
value ofn should take about twice as long as the previous value, sotiEnpasn increases.

If your computer runs out of memory, tyglear or restart MATLAB and try again. If you
can’t avoid running out of memory, or if MATLAB takes more tha few minutes to solve the
system, stop at that value of

Organize your results into a table and discuss them. &an ef the two solution methods you
tried, how close did the average computation time come tblifayifor each successive? Does

it grow faster or more slowly than?, and what do you think the reason for this is? How do the
two solution methods compare? In particular, how much lomipes inv(A) *b take than
A\b whenn is large?

Is either solution method more accurate? Due to rouh@obr, a solution you get on a com-
puter generally will not solvelx = b exactly. For a reasonably large valuengfsee how close
Axistobfor x = A\b versusx = inv(A) =*b. As before, the result may depend on the
particular choice of4, so try more than one random choice 4fand see whether you see a
pattern.

2 B. Hunt

