
MATH 340 Sec. 0201

Integration on Curves and Surfaces: MATH 340, Fall 2013

This handout is a supplement to Section 6.10 in our textbook and describes some alternative notation
and concepts that may be useful for doing the homework problems from that section.

1 Integration on curves

Throughout this section,C is a smooth curve inRn parametrized by aC1 function~γ : [a, b] → R
n.

Tangent vectors. The unit tangent vector~T (~x) toC at a point~x = ~γ(t) is

~T (~x) =
~γ ′(t)

|~γ ′(t)|
.

(Here~γ ′(t) means the same thing asD~γ(t).) The tangent vector can point in one of two directions, depend-
ing on the direction in which we parametrizeC. If C is a closed curve inR2, we conventionally assume that
C is parametrized in the counterclockwise direction. (This is the case if the unit circle is parametrized by
the polar angleθ.)

Work . To express an integral overC as an integral with respect tot, we write

|d1~x| =
√

det(D~γ(t)⊤D~γ(t)) dt = |~γ ′(t)|dt.

The “work” done by a vector field~F : Rn → R
n along the curveC is

∫

C

~F (~x) · ~T (~x)|d1~x| =

∫ b

a

~F (~γ(t)) · ~γ ′(t)dt.

In our textbook, the work is written
∫

C
W~F

; the formW~F
is equivalent to~F (~x) · ~T (~x)|d1~x| (when the curve

is oriented by the direction of~T (~x)).
In physics, if ~F (~x) represents the total force on a particle at position~x, and~γ(t) is the position of a

particle with massm at timet, then by Newton’s second law~F (~γ(t)) = m~γ ′′(t), and the work done by~F
between timea and timeb is

∫ b

a

m~γ ′′(t) · ~γ ′(t)dt =
1

2
m~γ ′(t) · ~γ ′(t)

∣

∣

∣

∣

b

a

=
1

2
m|~γ ′(b)|2 −

1

2
m|~γ ′(a)|2.

Since~γ ′(t) is the velocity of the particle at timet, this says that the work done by~F is the change in the
particle’s kinetic energy.

The fundamental theorem of calculus on curves. If f : Rn → R isC1, then by the chain rule and the
fundamental theorem of calculus, the work done by~∇f along the curveC is

∫

C

~∇f(~x) · ~T (~x)|d1~x| =

∫ b

a

~∇f(~γ(t)) · ~γ ′(t)dt = f(~γ(t))|ba = f(~γ(b))− f(~γ(a)).

This is equivalent to Theorem 6.10.1 in our textbook; the formdf is the same asW~∇f
= ~∇f(~x)· ~T (~x)|d1~x|.
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In physics, if we can write a force field~F (~x) = −~∇f(~x), then we callf the potential energy associated
with ~F , and the formula above says the work done by~F on a moving particle isminus the change in the
particle’s potential energy.

Green’s theorem. For curves inR2, one often sees integrals like
∫

C
fdx, wheref is a function of

coordinatesx andy. Heredx is equivalent to the formdg = W~∇g
for the functiong

(

x

y

)

= x. If we write

~γ(t) =

[

x(t)
y(t)

]

, then since~∇g

(

x

y

)

=

[

1
0

]

,

∫

C

fdx =

∫

C

f

(

x

y

)[

1
0

]

· ~T

(

x

y

)
∣

∣

∣

∣

d1
(

x

y

)
∣

∣

∣

∣

=

∫ b

a

f

(

x

y

)[

1
0

]

· ~γ ′(t)dt =

∫ b

a

f(~γ(t))x ′(t)dt.

Similarly,
∫

C

fdy =

∫ b

a

f(~γ(t))y ′(t)dt.

In this notation, if~F =

[

F1

F2

]

is a vector field inR2, the work done by~F alongC is

∫ b

a

~F (~γ(t)) · ~γ ′(t)dt =

∫

C

(F1dx+ F2dy).

Green’s theorem (Theorem 6.10.2) then says that the work done by ~F around a closed curveC (going
counterclockwise) is the integral ofD1F2 −D2F1 over the domain bounded byC. In R

2, the formdW~F
is

equivalent to(D1F2(~x)−D2F1(~x))|d
2~x|.

Green’s theorem is sometimes used to compute the area insidea closed curveC. Since the area is the
integral of |d2~x|, we can use Green’s theorem with any~F for which D1F2 − D2F1 = 1. Two common

choices of~F are ~F

(

x

y

)

=

[

0
x

]

and ~F

(

x

y

)

=

[

−y

0

]

. The area insideC is then

∫

C

xdy = −

∫

C

ydx.

As before, the integrals should be done counterclockwise. (This choice of direction determines which of the
two integrals is positive; going clockwise, the signs here and in Green’s theorem would be reversed.)

2 Integration on “surfaces”

Here “surface” means the boundary of a domain inR
n, or a piece thereof. Throughout this section,S is a

subset of smooth(n− 1)-dimensional manifold inRn defined by an equationh(~x) = 0, whereh : Rn → R

is C1. We assume that the gradient ofh is nonzero onS (this condition along with Theorem 3.1.10 ensures
that we have a smooth manifold).

Normal vectors. The unit normal vector~N(~x) to S at a point~x ∈ S is

~N(~x) =
Dh(~x)

|Dh(~x)|
.
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The normal vector lies along the line perpendicular toS and points in the direction thath increases. IfS is
the boundary of a domain inRn, we conventionally assume thath increases outside the domain, and~N is
called the outward unit normal toS.

Flux. The “flux” of a vector field~F : Rn → R
n acrossS in the direction of increasingh is

∫

S

~F (~x) · ~N(~x)|dn−1~x|.

In our textbook, the flux is written
∫

S
Φ~F

; the formΦ~F
is equivalent to~F (~x) · ~N(~x)|dn−1~x| (when the

surface is oriented by the direction of~N(~x)).
In physics, if ~F (~x) represents the velocity of a fluid at position~x at a particular time, the flux of~F

acrossS is the net volume of fluid per unit time that is crossingS in the direction of~N(~x).
The divergence theorem. For aC1 vector field~F : Rn → R

n, the divergence theorem says that ifS is
the boundary of a bounded domainM ⊂ R

n, then the flux of~F acrossS in the outward direction is equal
to the integral overM of the divergence of~F :

∫

S

~F (~x) · ~N(~x)|dn−1~x| =

∫

M

~∇ · ~F (~x)|dn~x|.

In our textbook, this theorem is stated only forn = 3 (Theorem 6.10.6), but it is in fact true for alln. The
form dΦ~F

= M~∇·~F
there is equivalent to~∇ · ~F (~x)|dn~x|.

Again if ~F is the velocity field of a fluid, the divergence of~F represents the rate at which the fluid is
expanding (positive divergence) or contracting (negativedivergence) at a given point. In these terms, for
an expanding fluid (such as a gas at the time of an explosion), the divergence theorem says that the amount
of gas leaving a domain per unit time is given by the integral over the domain of the expansion rate. Some
fluids, such as water, are essentially “incompressible”, meaning that they don’t expand or contract. The
divergence of the velocity field of such a fluid is always zero,and hence the flux of the fluid across the
boundary of any bounded domain is also zero (equal amounts ofthe fluid move into and out of the domain
at any given time).

More generally, the divergence theorem relates the integral of the partial derivative of any function over
a bounded domain inRn to an integral involving the function on the boundary of the domain. To integrate
Djf for someC1 functionf : Rn → R and1 ≤ j ≤ n, let ~F be the vector field whosejth coordinate isf
and all of whose other coordinates are zero; then~∇ · ~F = Djf and we can apply the divergence theorem to
~F .

Stokes’s theorem. For a surfaceS in R
3 bounded by a curveC, Stokes’s theorem (Theorem 6.10.4)

says that the work done by a vector field~F aroundC is equal to the flux of the curl of~F acrossS:
∫

C

~F (~x) · ~T (~x)|d1~x| =

∫

S

(~∇× ~F (~x)) · ~N(~x)|d2~x|.

In order for the integrals to have the same sign, we must traverseC in the counterclockwise direction looking
from the side ofS into which ~N points. InR3, the formdW~F

= Φ~∇×~F
in our textbook is equivalent to

(~∇× ~F (~x)) · ~N(~x)|d2~x| (when the surface is oriented by the direction of~N(~x)).
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