MATH 340 Sec. 0201

Integration on Curves and Surfaces: MATH 340, Fall 2013

This handout is a supplement to Section 6.10 in our textbowkdescribes some alternative notation
and concepts that may be useful for doing the homework pmobfeom that section.

1 Integration on curves

Throughout this sectiort;’ is a smooth curve ifR™ parametrized by &' function : [a, b] — R".
Tangent vectors The unit tangent vectdf (X) to C' at a pointx = () is

=/
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(Here¥y'(t) means the same thing &%y (¢).) The tangent vector can point in one of two directions, depe
ing on the direction in which we parametrize If C'is a closed curve iiR?, we conventionally assume that
C is parametrized in the counterclockwise direction. (Thithie case if the unit circle is parametrized by
the polar anglé.)

Work . To express an integral ovér as an integral with respect tpwe write

4] = \[det (DT(H)T DT (1)) dt = 17'(1)ldr.

The “work” done by a vector field : R" — R" along the curve’ is
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In our textbook, the work is writterfi, T ; the form¥V  is equivalent taF (%) - T(X)|d' | (when the curve
is oriented by the direction of(X)).

In physics, ifﬁ(i) represents the total force on a particle at positorand¥(t) is the position of a
particle with massn at timet, then by Newton’s second lai(7(t)) = m7”(t), and the work done by’
between time: and timeb is

1 b 1

b
/a my"(t) - 7' ()dt = omy' () -7'(#)| = 5T O = 5mlF (@),

Since¥’(t) is the velocity of the particle at timg this says that the work done Wy is the change in the
particle’s kinetic energy.

The fundamental theorem of calculus on curveslf f : R® — Ris C', then by the chain rule and the
fundamental theorem of calculus, the work dontﬁbﬁalong the curve is

b
/Cﬁf(i) - T(%)|d'%| =/ VIGE®) -7 (@)dt = FEO)l = FE®) - f(7(a)-

This is equivalent to Theorem 6.10.1 in our textbook; thefdrf is the same abl/g . = Vf(R)-T(X)|d'R|.
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In physics, if we can write a force fieIEf(fc‘) = -Vf (X), then we callf the potential energy associated

—

with ', and the formula above says the work donefbyn a moving particle isninus the change in the
particle’s potential energy.
Green’s theorem For curves inR?, one often sees integrals Iilgéc fdx, where f is a function of

coordinates: andy. Heredx is equivalent to the formlg = W% for the functiong <z> = z. If we write

F(t) = [zg”,then sinceVg <z> = [(1)]
O R L o e

Similarly, ,
Lﬁw:/fwmy@w

Fy

In this notation, ifF = [
Fy

] is a vector field inR?, the work done by?3 alongC'is

b—»
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Green’'s theorem (Theorem 6.10.2) then says that the work bgrﬁ around a closed curv€' (going
counterclockwise) is the integral &}, F», — D, F; over the domain bounded lgy. In R?, the formdW is
equivalent tc(Dng(i) — Do F}y (i))|d2i|

Green'’s theorem is sometimes used to compute the area msildsed curve’. Since the area is the
integral of |d?%|, we can use Green’s theorem with aﬁyfor which D1 F, — Dy, F; = 1. Two common

choices ofF are F (i) = [2] andF <z> = [ _g } . The area insid€’ is then

/azdy:—/yda:.
C C

As before, the integrals should be done counterclockwiBleis(choice of direction determines which of the
two integrals is positive; going clockwise, the signs herd m Green’s theorem would be reversed.)

2 Integration on “surfaces”

Here “surface” means the boundary of a domaitRih or a piece thereof. Throughout this sectiéhis a
subset of smootfrn — 1)-dimensional manifold ifR™ defined by an equatioh(x) = 0, whereh : R — R
is C''. We assume that the gradient/ofs nonzero orf (this condition along with Theorem 3.1.10 ensures
that we have a smooth manifold).

Normal vectors. The unit normal vectoN (X) to S at a pointZ € S is

. Dh(®)
NE) = BT
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The normal vector lies along the line perpendiculattand points in the direction thatincreases. I is
the boundary of a domain iR", we conventionally assume thatincreases outside the domain, aNds
called the outward unit normal t®.

Flux. The “flux” of a vector fieldE' : R" — R™ acrossS in the direction of increasing is

/F dn 1—»|

In our textbook, the flux is writterf @ z; the form @  is equivalent toF (%) - N(X)|d"~'%| (when the
surface is oriented by the direction Bf(X)).

In physics, ifﬁ(i) represents the velocity of a fluid at positighat a particular time, the flux of'
acrossS is the net volume of fluid per unit time that is crossifign the direction ofN (%).

The divergence theorem For aC' vector fieldF : R® — R", the divergence theorem says that'ifs
the boundary of a bounded domai C R", then the flux ofF' acrossS in the outward direction is equal
to the integral ove/ of the divergence of :

/F R)|d" 1*|—/ V- F(R)|d"|.

In our textbook, this theorem is stated only fo= 3 (Theorem 6.10.6), but it is in fact true for all The
formd® ; = Mg, ; there is equivalent t& - F(X)|d"x|.

Again if Fis the velocity field of a fluid, the divergence Efrepresents the rate at which the fluid is
expanding (positive divergence) or contracting (negativergence) at a given point. In these terms, for
an expanding fluid (such as a gas at the time of an explosioaYjivergence theorem says that the amount
of gas leaving a domain per unit time is given by the integvardhe domain of the expansion rate. Some
fluids, such as water, are essentially “incompressible”amirg that they don't expand or contract. The
divergence of the velocity field of such a fluid is always zeang hence the flux of the fluid across the
boundary of any bounded domain is also zero (equal amourkedfuid move into and out of the domain
at any given time).

More generally, the divergence theorem relates the intefithe partial derivative of any function over
a bounded domain iR"™ to an integral involving the function on the boundary of tleedin. To integrate
D;f for someC" function f : R” — Randl < j < n, let ' be the vector field whosgth coordinate isf
and all of whose other coordinates are zero; tRenF = D, f and we can apply the divergence theorem to
F.

Stokes’s theorem For a surfaceS in R? bounded by a curv€’, Stokes’s theorem (Theorem 6.10.4)
says that the work done by a vector figlcaroundC is equal to the flux of the curl of acrosss:

/ F(®) - T(®)|d'7 = /(ﬁ « F(%)) - N(®)|d2R.
c s
In order for the integrals to have the same sign, we mustrisag¢ein the counterclockwise direction looking

from the side ofS into which N points. InRR3, the formdWz = &g in our textbook is equivalent to
(V x F()) - N(%)|d2%| (when the surface is oriented by the direction\ofx)).
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