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1 Multiple Regression

We have observations yi,...,y, such that each y; depends on its covariates
214, .-, Tk; Dy a linear model:

Yi = Bo + Bz + - Brrpi +e, 1=1,..,n

where, as in simple linear regression, the y; are random variables, the x’s are
design non-random variables, and the ¢; are random errors such that:

E(El) =0

Var(e;) = o?

Cov(ei,€j) =0, i #j

So we have:

y1 = Po + Pixi1 + - Prxr1 + €
y2 = PBo + Pixiz + - - PrTre + €2

Yn = Po + B1x1 + - BrTen + €

It is convenient to use matrix notation:

Y1 1 211 21 . . . T Bo €1
Y2 1 w2 ma2 . . . T B1 €2
= +
Yn 1 Tin T2n - - . Tkn Bk €n
Or
y=XB+e

To estimate 3 we use the least squares method by minimizing €'e w.r.t. 8 :

B=(X'X)""Xy



where we assume that X has full rank for the inverse to exist.

We can show:

E(B) = B

Var(B) = o?(X'X)~1

Gauss-Markov: ¢/ is the Best Linear Unbiased Estimate (BLUE) of ¢/g.

Again, we have the same basic decomposition of the total (corrected) sum of
squares:
Z(yz -9)? = Z(yz — )% + Z(Z)z - 7)?
Or with p=k+ 1, k = p — 1 (number of slopes),
SST(df =n—1)=SSE(df =n—p)+ SSR(p—1)
and to test Hy : 1 = --- B = 0 we use the test statistics,

SSR/k .
SSE/(n—p) ~ TE"T

Example: Antelope

The data (X1, X2, X3, X4) are for each year.
X1 = spring fawn count/100

X2 = size of adult antelope population/100
X3 = annual precipitation (inches)

X4 = winter severity index (1=mild,
B=severe)

DATA ANTELOPE;\\
INPUT X1 X2 X3 X4;\\
DATALINES;\\

2.9 9.2 13.2 2
2.4 8.7 11.53
2.07.210.8 4
2.3 8.5 12.3 2
3.2 9.6 12.6 3
1.9 6.8 10.6 5
3.49.714.1 1
2.17.911.23

PROC REG DATA=ANTELOPE;
/*PRESICTED, RESIDUALS*/
MODEL X1=X2 X3 X4/P R;
RUN;



The REG Procedure

Model: MODEL1

Dependent Variable: x1

Number of Observations Read 8
Number of Observations Used 8

Analysis of Variance

Source DF SS MS
Model 3 2.21651 0.738
Error 4 0.05849 0.014

Corrected Total 7 2.27500

Root MSE 0.12093
Dependent Mean 2.52500
Coeff Var 4.78921

Parameter Estimates

F Value
84 50.52

62

Pr > F
0.0012

R-Square 0.9743
Adj R-Sq 0.9550

Variable DF Parameter Estimate Standard Error t Value Pr > |t
Intercept 1 -5.92201 1.25562 -4.72 0.0092
x2 1 0.33822 0.09947 3.40 0.0273
x3 1 0.40150 0.10990 3.65 0.0217
x4 1 0.26295 0.08514 3.09 0.0366
The REG Procedure
Model: MODEL1
Dependent Variable: x1
Output Statistics
Obs gy i SE g Resid SE Resid Student Resid Cook’s D

1 2.9 3.0153 0.0645 -0.1153 0.102 -1.128 0.126

2 2.4 24266 0.0847 -0.0266 0.0863 -0.308 0.023

3 2.0 19012 0.0684  0.0988 0.0997 0.991 0.116

4 2.3 24172 0.0728 -0.1172 0.0965 -1.214 0.210

5 3.2 3.1727 0.1054  0.0273 0.0593 0.461 0.167

6 1.9 1.9485 0.1058 -0.0485 0.0585 -0.830 0.564

7 3.4 3.2828 0.0955  0.1172 0.0742 1.580 1.034

8 2.1 2.0356 0.0758  0.0644 0.0943 0.683 0.075



Application of Multiple Regression: Fitting a Sinusoid
We wish to fit a sinusoid to data x;.

z¢ = u+ acos(wt) + Bsin(wt) + ¢, t=1,..N

where ¢; are iid N(0,02), and N is even.

The problem is to estimate w. For that, we'll fix w and first estimate
w, a, B by least squares. This will give us a clue as to how to estimate w.

For w,A € Q = {%’{,—k,k =1,.., % — 1} we have the following orthogonality
relationships.

N N
Z cos(wt) = Z sin(wt) =0

N
Zcos(wt) sin(At) =0, VA w € Q
t=1

N

Zcos(wt) cos(At) = 0, \#£w

t=1

= N/2, \=w

N
Zsin(wt) sin(AM) = 0, A£w

t=1

= N/2, \=w
Now, in matrix notation we have,
x1 1 cos(w) sin(w) €1
T 1 cos(2w)  sin(2w) B €2
= o +
. . ﬁ .
TN 1 cos(Nw) sin(Nw) EN
Or
r = A0 + €
Therefore

6= (AA) Az
Applying the orthogonality relationships we get:



T
N

= % Etﬁl x¢ cos(wt)

23 oy sin(wt)

>
I
= O =

Therefore,
N ~ _ ~ A
R — Zt:l(xt - x)Q _ %(O‘Q + ﬁz)

S (e =32 Y (xr — T)?2

But d,B are functions of w! Therefore

R?* = R*(w)
and we choose w which mazimizes R*(w).

We can show that )

N
Z x¢ exp(iwt)

t=1

2
2
R*(w) x

The resulting estimate w is very precise.

An Unbiased Estimate for o2

Using non-bold notation:
e=x—F=A0+e— A= A0 +e— A[(AA)T A (AD+e)] = [I - A(A'A)"A')e
Or with idempotent M =1 — A(A’A)~ A4,

e= Me

Hence,
E(c'e) = E[tr(€ Me)] = E[tr(Mee')] = tr(c* M)

Or

E(e'e) = o”[tr(I) — tr[(A’A) " A’ A]] = tr[[ (v« )] — tr[I(zxs)] = 0*(N = 3)
Therefore,
e
- N-3
is unbiased for o2, In general, in the full rank case with p ’s (including inter-
cept):

S2

is unbiased for o2.



Model Selection Methods

When fitting a regression model, it is a good idea to fit several models and select
the “best” model based on some criterion. SAS offsrs several criteria as follows.

1. Forward selection. It is a step-wise selection method by which a variable
which enters never leaves when other variables are entertained.

2. Stepwise selection. It is a step-wise selection method by which a variable
which enters could leave the model in subsequent steps.

3. A Information Criterion (AIC) invented by Hirotugo Akaike (1927-2009).
We choose a model which minimizes with respect to p the quantity:

AIC(p) = —2log L(B) + 2p

where 3 is p-dimensional. Thus, p is the number of estimated parameters.

Note that as p increases, —2log L(3) decreases while the “penalty” term
2p increases.

4. Bayesian Information Criterion (BIC) invented by Gideon Schwartz (1933-
2007). As in the AIC, we choose a model which minimizes with respect
to p the quantity:

BIC(p) = —2log L(B) + plog(N)

where N is the number of data points. In general, the AIC and BIC results
are close. That is, the optimal models are similar.

5. Mallows’ C,, invented by Colin Mallows (1930-). It is a predecessor of the
AIC. Again we choose a model which minimizes with respect to p the
quantity:

SSE
Cp = 7521) —N+2p

where SSE, is the residual SS from a reduced model with p parameters,
N is the number of data points, and S? = 62 from the full model with all
the covariates.

Cook’s distance D

Cook’s distance D; measures the influence of an observation y; on the regression
estimates. That is, D; tells us if y; stands out. |D;| > 2 is considered large. If
S0, y; deserves some special scrutiny.

Get the jth predicted value §j; from y1, ..., yn. Similarly, get the predicted value
(i) after deleting y;. Then,

S (G5 = U))?
pS?

D; =



where



