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1 The General Problem of Linear Regression

Consider a set of non-random predictors or explanatory variables or covariates
x1, ..., xk and the corresponding random response variable y. The regression
problem is to relate y to its covariates x1, ..., xk. That is, we wish to regress
y on the corresponding covariates x1, ..., xk. This fundamental problem can be
approached in a number of ways, one of which is referred to as multiple linear
regression, where

E(y) = β0 + β1x1 + · · ·βkxk
The problem is to estimate the β’s. Many of the ideas of multiple regression are
illustrated in terms of simple linear regression.

1.1 Simple Linear Regression

Suppose we decided to to fill a car gas tank with x gallons of gas (added to a
constant quantity already in the tank) and measure the corresponding number
of travel miles y. Clearly, x is a fixed (i.e. not random) quantity that we control.
On the other hand, the number of travel miles y is random. The problem is
how to relate a random variable y to a non-random variable x.

Consider the pairs (x1, y1), (x2, y2), ..., (xn, yn), where x1, ..., xn are non-
random covariates and y1, ..., yn are random observations.

Assume the model:

yi = α+ β(xi − x̄) + εi, i = 1, 2, ..., n

where:
ε1, ..., ε2 are uncorrelated: Cov(εi, εj) = 0, for i 6= j.
E(εi) = 0
V ar(εi) = σ2 is the same for all i.
E(yi) = α+ β(xi − x̄)
V ar(yi) = σ2.

Are the yi iid? Are the xi iid?
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By centering the xi we gain a mathematical simplification which helps in the
description of the main ideas.

1.1.1 Least Squares Estimation

The parameters α, β are estimated by the method of least squares where the
sum of squares

n∑
i=1

ε2i =

n∑
i=1

[yi − α− β(xi − x̄)]2

is minimized w.r.t. α and β.

1. ∂
∂α

∑n
i=1 ε

2
i = −2

∑n
i=1[yi − α− β(xi − x̄)] = 0

2. ∂
∂β

∑n
i=1 ε

2
i = −2

∑n
i=1[yi − α− β(xi − x̄)](xi − x̄) = 0

Fact:
∑n
i=1(xi − x̄) = 0

Using the fact: The LSE’s are given by

α̂ = ȳ

β̂ =

∑
(xi−x̄)yi∑
(xi−x̄)2

=

∑
(xi−x̄)(yi−ȳ)∑

(xi−x̄)2

Regression line:

ŷ = α̂+ β̂(x− x̄)

In particular,
ŷi = α̂+ β̂(xi − x̄)

Statistical properties of LSE’s:

α̂ and β̂ are LINEAR and UNBIASED:
E(α̂) = α, E(β̂) = β

V ar(α̂) =
1

n2

∑
V ar(yi) =

nσ2

n2
=
σ2

n

V ar(β̂) =
1

[
∑

(xi − x̄)2]2

∑
(xi − x̄)2σ2 =

σ2∑
(xi − x̄)2

Does it makes sense to choose xi = 7 for all i?
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Theorem (Gauss-Markov): The variances of the LSE are the smallest in the
class of all linear unbiased estimates.

Proof: We want to show β̂ has the smallest variance in the class of all lin-
ear unbiased estimates. So let b′ =

∑
ciyi another linear unbiased estimate.

Then, for all β,

E(b′) =
∑

ciE(yi) =
∑

ci(α+ β(xi − x̄)) = α
∑

ci + β
∑

(xi − x̄)ci = β

This is an IDENTITY in β!!! Therefore,∑
ci = 0,

∑
(xi − x̄)ci = 1

and hence,

V ar(b′) =
∑

c2iV ar(yi) = σ2
∑

c2i = σ2
∑[(

ci −
xi − x̄∑
(xj − x̄)2

)
+

xi − x̄∑
(xj − x̄)2

]2

The middle term in 0. Therefore,

V ar(b′) = σ2
∑(

ci −
xi − x̄∑
(xj − x̄)2

)2

+
σ2∑

(xj − x̄)2

which is minimized for

ci =
xi − x̄∑
(xj − x̄)2

Therefore,

b′ =
∑

ciyi =
∑ xi − x̄∑

(xj − x̄)2
yi =

∑
(xi − x̄)yi∑
(xj − x̄)2

=

∑
(xi − x̄)(yi − ȳ)∑

(xj − x̄)2
= β̂

Hence β̂ has minimum variance.

We can show the same for α̂. Suppose a′ =
∑
ciyi is linear unbiased for α.

Then

E(a′) =
∑

ci[α+ β(xi − x̄)] = α
∑

ci + β
∑

(xi − x̄)ci = α

This is an identity in α. Therefore∑
ci = 1,

∑
(xi − x̄)ci = 0

and

V ar(a′) = σ2
∑

c2i = σ2
∑

[(ci − 1/n) + 1/n]2

= σ2
∑[(

ci −
1

n

)2

+
2

n

(
ci −

1

n

)
+

1

n2

]

= σ2

[∑(
ci −

1

n

)2

+
2

n
(1− 1) +

1

n

]
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which is minimized for ci = 1/n. Hence a′ = ȳ = α̂ has minimum variance.
This result is stated as follows: The LSE are Best Linear Unbiased

Estimates or BLUE.

1.1.2 Basic Decomposition of Total Sum of Squares

To judge the goodness of fit of the linear regression model it is useful to consider
the residuals yi− ŷi, i = 1, ..., n. Smaller residuals which do not appear to follow
any particular pattern point to a reasonable fit.

Consider now the identity:

yi − ŷi = (yi − ȳ)− (ŷi − ȳ)

Then ∑
(yi − ŷi)2 =

∑
[(yi − ȳ)− (ŷi − ȳ)]2

Since the middle term is equal to
∑

(ŷi − ȳ)2,∑
(yi − ŷi)2 =

∑
(yi − ȳ)2 − 2

∑
(ŷi − ȳ)2 +

∑
(ŷi − ȳ)2

By rearranging terms, we arrive at the basic decomposition of the total sum of
squares∑

(yi − ȳ)2(= SST ) =
∑

(yi − ŷi)2(= SSE) +
∑

(ŷi − ȳ)2(= SSR)

From this we define a well known quantity:

R2 =

∑
(ŷi − ȳ)2∑
(yi − ȳ)2

=
SSR

SST

Obviously,
0 ≤ R2 ≤ 1

The closer R2 to 1, the better is the fit.

R2 =
SSR/n

SST/n
=
Explained variance

Total variance

R2 is also known as the coefficient of determination.

We observe that in simple linear regression R2 is equal to the the sample corre-
lation between x and y squared:

r2
xy =

[
∑

(xi − x̄)(yi − ȳ)]2∑
(xi − x̄)2

∑
(yi − ȳ)2

×
∑

(xi − x̄)2∑
(xi − x̄)2

=
β̂2
∑

(xi − x̄)2∑
(yi − ȳ)2

=

∑
(ŷi − ȳ)2∑
(yi − ȳ)2

= R2
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1.2 Hypothesis Testing

To test hypotheses we need distributions. For that we shall assume that:

The εi, i = 1, ..., n, are independent N(0, σ2)

With this assumption we can get the distributions of test statistics as well as
confidence intervals.

1.2.1 Degrees of Freedom

Definition: The number of degrees of freedom of a sum of squares (SS) is the
number of variables minus the number of linear relationships between them.

Example: Consider
∑n
i=1(x− x̄)2. This SS has n variables,

(x1 − x̄), ..., (xn − x̄)

which satisfy the linear restriction
∑n
i=1(xi − x̄) = 0. Hence df = n− 1.

Example: Consider our centered regression model. We have,

n∑
i=1

(ŷi − ȳ)2 =

n∑
i=1

(ȳ − β̂(xi − x̄)− ȳ)2 = β̂2
n∑
i=1

(xi − x̄)2

Only ONE variable is involved β̂. Therefore the number of df of
∑n
i=1(ŷi − ȳ)2

is 1.

Example: Consider SSE.

1.
∑

(yi − ŷi) =
∑

[(yi − ȳ)− β̂(xi − x̄)] = 0

That is, the sum of the residuals is 0. Therefore,

2.
∑

(yi − ŷi)xi =
∑

(yi − ŷi)(xi − x̄) =
∑

[(yi − ȳ)− β̂(xi − x̄)](xi − x̄)

=
∑

yi(xi − x̄)− ȳ
∑

(xi − x̄)− β̂
∑

(xi − x̄)2

=
∑

yi(xi − x̄)− β̂
∑

(xi − x̄)2

=

∑
(yi − ȳ)(xi − x̄)∑

(xj − x̄)2

∑
(xj − x̄)2 − β̂

∑
(xi − x̄)2

= β̂
∑

(xj − x̄)2 − β̂
∑

(xi − x̄)2 = 0

Therefore, SSE =
∑n
i=1(yi − ŷi)2 has n− 2 df.
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This gives the basic ANOVA:

Source SS df
Model SSR=

∑
(ŷi − ȳ)2 1

Error SSE=
∑

(yi − ŷi)2 n− 2
Corrected Total SST=

∑
(yi − ȳ)2 n− 1

From the normality of the εi we have.

Theorem: The following quantities are independent.

a. n(α̂−α)2

σ2 ∼ χ2
(1)

b. (β̂−β)2

σ2

∑
(xi − x̄)2 ∼ χ2

(1)

c.

∑n

i=1
(yi−ŷi)2

σ2 ∼ χ2
(n−2)

Proof of b: Since the εi are iid N(0, σ2) the yi are independent normal obsrva-

tions. Since β̂ is linear in the yi’s it is normal as well with mean β and variance
(from above) σ2/

∑
(xi − x̄)2. Therefore

(β̂ − β)

σ

√∑
(xi − x̄)2 ∼ N(0, 1)

But the square of N(0, 1) is a χ2
(1), hence b.

We now define:

S2 =
1

n− 2

n∑
i=1

(yi − ŷi)2

From c we see that S2 is unbiased for σ2:

E(S2) = σ2

Also: V ar(S2) = 2σ4

n−2

1.2.2 t and F Tests

From the theorem we see that:

T = (β̂−β0)
S [

∑
(xi − x̄)2]1/2 ∼ t(n−2)

Hence, in testing H0 : β = β0 vs H1 : β 6= β0, H0 is rejected when

|T | > t(n−2,α/2)
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Squaring T we get
F = T 2 ∼ F(1,n−2)

Hence, under H0 : β = 0,

F =
β̂2
∑

(xi − x̄)2

S2
=

∑
(ŷi − ȳ)2/1∑

(yi − ŷi)2/(n− 2)
=

SSR/1

SSE/(n− 2)
∼ F(1,n−2)

and we reject for large values. THIS IS THE FIRST TEST PERFORMED BY
SAS IN SIMPLE LINEAR REGRESSION.

1.2.3 Prediction Intervals

For a new covariate x0 we want to compute a prediction interval for an unob-
served y0. Clearly, E(y0 − ŷ0) = 0.

Since y0 is independent of ŷ0 = ŷ0(y1, ..., yn),

V ar(y0 − ŷ0) = V ar(y0) + V ar(ŷ0) = σ2

[
1 +

1

n
+

(x0 − x̄)2∑
(xi − x̄)2

]
From the definition of the t distribution,

y0 − ŷ0

S

[
1 + 1

n + (x0−x̄)2∑
(xi−x̄)2

]1/2
∼ t(n−2)

and a 95% prediction interval for y0 is

ŷ0 ± t(0.025,n−2)S

[
1 +

1

n
+

(x0 − x̄)2∑
(xi − x̄)2

]1/2

SAS output provides plots of such prediction intervals. The prediction intervals
are wider than confidence intervals for E(y0).

1.3 Simple Linear Regression in SAS

Remark: SAS uses the non-centered model

yi = α+ βxi + εi

All the above assumptions and results also hold for this model except that

α̂ = ȳ − β̂x̄

From now on we shall use the SAS model as well.
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Example: model Weight = Height

Simple Linear Regression

title ’Simple Linear Regression’;

data Class;

input Name $ Height Weight Age @@;

datalines;

Alfred 69.0 112.5 14 Alice 56.5 84.0 13 Barbara 65.3 98.0 13

Carol 62.8 102.5 14 Henry 63.5 102.5 14 James 57.3 83.0 12

Jane 59.8 84.5 12 Janet 62.5 112.5 15 Jeffrey 62.5 84.0 13

John 59.0 99.5 12 Joyce 51.3 50.5 11 Judy 64.3 90.0 14

Louise 56.3 77.0 12 Mary 66.5 112.0 15 Philip 72.0 150.0 16

Robert 64.8 128.0 12 Ronald 67.0 133.0 15 Thomas 57.5 85.0 11

William 66.5 112.0 15

;

proc reg;

model Weight = Height;

run;

The REG Procedure

Model: MODEL1

Dependent Variable: Weight

Number of Observations Read 19

Number of Observations Used 19

Analysis of Variance

Source DF Sum of Squares Mean Square F Value Pr > F

Model 1 7193.24912 7193.24912 57.08 <.0001

Error 17 2142.48772 126.02869

Correct Total 18 9335.73684

Root MSE 11.22625 R-Square 0.7705

Dependent Mean 100.02632 Adj R-Sq 0.7570

Coeff Var 11.22330

Parameter Estimates

Variable DF Param Est SE t Value Pr > |t|

Intercept 1 -143.02692 32.27459 -4.43 0.0004

Height 1 3.89903 0.51609 7.55 <.0001
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Example: WEIGHT=HEIGHT

DATA SET1;

INPUT GENDER $ HEIGHT WEIGHT AGE;

DATALINES;

M 68 155 23

F 61 99 20

F 63 115 21

M 70 205 45

M 69 170 .

F 65 125 30

M 72 220 48

;

PROC REG DATA=SET1;

MODEL WEIGHT=HEIGHT; (Weight = a + b*Height + e)

RUN;

The REG Procedure

Model: MODEL1

Dependent Variable: WEIGHT

Number of Observations Read 7

Number of Observations Used 6

Number of Observations with Missing Values 1

Analysis of Variance:

Source DF SS MS F Value Pr > F

Model 1 8309.27052 8309.27052 61.47 0.0014

Error 4 540.72948 135.18237

Corrected Total 5 8850.00000

Check p-val=P(F(1,4)>61.47)=1-pf(61.47,1,4)=0.001429331

Root MSE 11.62680 R-Square 0.9389

Dependent Mean 165.00000 Adj R-Sq 0.9236

Coeff Var 7.04654

Parameter Estimates

Variable DF Param Est SE t Value Pr > |t|

Intercept 1 -670.03040 106.61338 -6.28 0.0033

HEIGHT 1 12.31003 1.57014 7.84 0.0014

9


