
GAUSSIAN User’s Manual

Boris Kozintsev

August 17, 1999

2

This is the documentation for the GAUSSIAN library, a collection of C
routines for generating stationary Gaussian random fields over regular grids,
and estimation of discrete random fields obtained by quantization (clipping) of
such Gaussian fields.

The library was written in 1998-99 during my Ph.D. studies at the Math-
ematics Department, University of Maryland, where I was fortunate to have
Professor Benjamin Kedem as an advisor. I would like to extend my most
deep gratitude to him. I also appreciate the support from the NASA Grant
NAG52783.

For more information on the underlying theory and algorithms see the paper
“Generation of ‘Similar’ Images From a Given Discrete Image” by B. Kozintsev
and B. Kedem. See also the ISR Technical Report Ph.D. 99-3, http://www.isr.umd.
edu/TechReports/ISR/1999/PhD 99-3/PhD 99-3.phtml.

For an example of some of the GAUSSIAN library capabilities, see the
interactive CGI script for visualization of clipped Gaussian random fields at
http://www.math.umd.edu/~bak/gaussian/generate.cgi.

Contents

1 Mathematical Definitions 5
1.1 Stationary Gaussian fields . 5
1.2 Covariance Functions . 5
1.3 Clipping . 6

2 Installation 7
2.1 FFTW Library . 7
2.2 GAUSSIAN Library . 8
2.3 Linking Your Programs Against GAUSSIAN 9

3 Running the Demonstration Programs 11
3.1 File Formats . 11

3.1.1 PPM Image File Format 11
3.1.2 Numeric File Formats . 12
3.1.3 Initialization Files . 13

3.2 Unconditional Field Generation (field demo) 13
3.3 Estimation (em demo) . 15
3.4 Conditional Field Generation (z given x demo) 17
3.5 Converting Numbers to Pictures (num2ppm demo) 20

4 Programmer’s Guide 21
4.1 General information . 21

4.1.1 How The Random Fields Are Stored 21
4.1.2 Random Number Generation 22

4.2 Library Functions . 22
4.2.1 Univariate Random Variables (rv.c) 22
4.2.2 File I/O (formats.c) . 23
4.2.3 Random Fields (fields.c) 27

4.3 Other Routines . 35

3

4 CONTENTS

Chapter 1

Mathematical Definitions

1.1 Stationary Gaussian fields

First we define a regular grid. A regular grid S ⊂ R2 is a set of points S = {sij}
such that for fixed horizontal and vertical steps x and y,

sij = s00 + iyv2 + ixv1, i = 0, . . . , n1 − 1, j = 0, . . . , n2 − 1,
where v1 = (1, 0) and v2 = (0, 1).

Next we define a stationary zero-mean Gaussian random field Z over S with
covariance function

r : R2 → R.

Having such a field means that for any finite set of points

s1, s2, . . . , sn ∈ S

we have random variables

Z(s1), Z(s2), . . . , Z(sn),

which are jointly normal with mean zero and covariances

Cov(Z(si), Z(sj)) = r(si − sj).

1.2 Covariance Functions

The GAUSSIAN library has the following four built-in covariance functions.

Exponential correlation:

rθ(l) = θl
θ2

1 ,

where θ1 ∈ (0, 1) and θ2 ∈ (0, 2].

5

6 CHAPTER 1. MATHEMATICAL DEFINITIONS

Matérn correlation:

rθ(l) =


1

2θ2−1Γ(θ2)

(
l

θ1

)θ2
Kθ2

(
l

θ1

)
, l 6= 0,

1, l = 0,

where θ1 > 0, θ2 > 0 and Kθ2 is a modified Bessel function of the third kind of
order θ2.

Rational quadratic correlation:

rθ(l) =
(

1 +
l2

θ2
1

)−θ2
,

where θ1 > 0 and θ2 > 0.

Spherical correlation:

rθ(l) =

1− 3
2

(
l

θ

)
+

1
2

(
l

θ

)3

, l ≤ θ,

0, otherwise,

where θ > 0.
Note that these functions depend on scalar l, the distance between the points

at which the covariance is computed, which means that the resulting fields will
be isotropic. Note also that here r(0) = 1. These two properties, although
present, are not used in any special way by the library. Therefore, if you want
to add your own covariance function, neither of them has to hold. You may add
a non-isotropic covariance function having an arbitrary positive value at zero.

1.3 Clipping

Now we define discrete random fields and clipping. We say that we have a
discrete random field X over S if at each point s ∈ S there is a discrete random
variable X(s) which takes values 0, 1, 2, . . . , k.

In the GAUSSIAN library, discrete fields are modeled as clipped Gaussian
fields. That is, we assume that for a vector of thresholds c = (c1, c2, . . . , ck),
the field X is a quantization of Z at levels c. At each point s ∈ S,

X(s) = 0 whenever Z(s) ≤ c1,
X(s) = j whenever cj < Z(s) ≤ cj+1, j = 1, . . . , k − 1,
X(s) = k whenever Z(s) > ck.

Chapter 2

Installation

2.1 FFTW Library

The computations in the GAUSSIAN library are based on the fast Fourier trans-
form, which is performed using the FFTW library by M. Frigo and S. G. John-
son. The name “FFTW” is an acronym for “Fastest Fourier Transform in the
West.” FFTW is free software, released under the GNU General Public License
(GPL). FFTW is available for download at http://www.fftw.org/. If you
want to install and use GAUSSIAN, you also have to install FFTW.

To install FFTW, follow the instructions on the FFTW website. In a nut-
shell, you must download the file fftw-2.1.2.tar.gz (the exact file name de-
pends upon the current version). Then you have to unpack it by typing

$ gunzip fftw-2.1.2.tar.gz
$ tar -xvf fftw-2.1.2.tar

This creates a directory fftw-2.1.2 containing the files necessary to build the
library. Now type

$ cd fftw-2.1.2
$./configure
$ make

This compiles the library. Note that when building the library under Solaris, the
correct C compiler must be used – see FFTW FAQ at http://www.fftw.org/
faq/section2.html#solarisSucks.

If the compilation is successful, among other things that happen, the follow-
ing two files are created:

~/fftw-2.1.2/fftw/fftw.h
~/fftw-2.1.2/fftw/.libs/libfftw.a

You can now copy these files to some convenient location by typing, for example,

7

8 CHAPTER 2. INSTALLATION

$ mkdir ~/FF
$ cp ~/fftw-2.1.2/fftw/fftw.h ~/FF
$ cp ~/fftw-2.1.2/fftw/.libs/libfftw.a ~/FF

and then delete the fftw-2.1.2 directory tree.
In case of problems with building the FFTW library, one could try runnning

$ make distclean
$./configure --with-gcc
$ make

2.2 GAUSSIAN Library

Once you installed FFTW, you should download and build GAUSSIAN. Down-
load the file gaussian.tar.gz, and type the following commands:

$ gunzip gaussian.tar.gz
$ tar -xvf gaussian.tar
$ cd GAUSSIAN
$ make FFTW_LIB=/home6/bak/FF FFTW_H=/home6/bak/FF

In the last command, you should change the italic text to match your FFTW
installation. FFTW LIB and FFTW H are the directories where the files libfftw.a
and fftw.h, respectively, are.

This will compile the library and the demonstration programs. You will have
the directories

LIB with the GAUSSIAN library and its source;

DEMOS with the demonstration programs;

DOC with this manual;

CGI with the CGI script from http://www.math.umd.edu/~bak/gaussian/
generate.cgi.

In case of problems one could try running

$ make clean
$ make CC=gcc FFTW_LIB=/home6/bak/FF FFTW_H=/home6/bak/FF

On DEC Alpha, to get the correct results one sometimes has to run

$ make clean
$ make CC="cc -std" FFTW_LIB=/home6/bak/FF FFTW_H=/home6/bak/FF

2.3. LINKING YOUR PROGRAMS AGAINST GAUSSIAN 9

2.3 Linking Your Programs Against GAUSSIAN

The program that uses functions from the GAUSSIAN library must #include
"gaussian.h" and "fftw.h", and should be linked against gaussian.a, libfftw.a,
and libm.a, in this order. Suppose the following code is stored in useless.c:

#include <stdio.h>
#include "fftw.h"
#include "gaussian.h"
int main (int argc, char **argv) {

ghandle handle;
handle = create_ghandle (16, 16, FFTW_ESTIMATE);
if (handle) {

printf ("Success!\n");
destroy_ghandle (handle);

}
else printf ("Not enough memory.\n");
return 0;

}

To compile it, create the following Makefile:

FFTW_H = directory with fftw.h

FFTW_LIB = directory with libfftw.a

GAUSSIAN_H = directory with gaussian.h

GAUSSIAN_LIB = directory with gaussian.a

CFLAGS = -I${FFTW_H} -I${GAUSSIAN_H} -O
LIBS = ${GAUSSIAN_LIB}/gaussian.a ${FFTW_LIB}/libfftw.a -lm
.c:

${CC} ${CFLAGS} ${LDFLAGS} $< ${LIBS} -o $@

Note that the last line begins with the TAB character.
Now you can type make useless to compile the program.

10 CHAPTER 2. INSTALLATION

Chapter 3

Running the Demonstration
Programs

There are four demonstration programs that come with the GAUSSIAN library:
field demo, em demo, z given x demo, and num2ppm demo.

The program field demo illustrates generation of Gaussian and clipped
Gaussian random fields. Its functionality is identical to the CGI program at
http://www. math.umd.edu/~bak/gaussian/generate.cgi, except that its
memory is not limited by the web server and hence it is able to generate larger
fields.

The program em demo illustrates estimation of the covariance parameters
in the unobserved Gaussian field from its observed clipped version by the EM
algorithm. The input for the program is a discrete random field.

The program z given x demo also takes discrete random field as an input
and generates a Gaussian field that would produce the given discrete field after
clipping at the specified levels.

The program num2ppm demo performs a conversion from the numerical for-
mat to the PPM (picture) format. The PPM images can be viewed by the
shareware XV program available at http://www.trilon.com/xv/, and by other
programs.

3.1 File Formats

3.1.1 PPM Image File Format

The GAUSSIAN library stores images as PPM (P6) files. Their format is as
follows:

– A “magic number” for identifying the file type. A ppm file’s magic number
is the two characters P6.

– Whitespace (blanks, TABs, CRs, LFs).

11

12 CHAPTER 3. RUNNING THE DEMONSTRATION PROGRAMS

– A width, formatted as ASCII characters in decimal.

– Whitespace.

– A height, again in ASCII decimal.

– Whitespace.

– The maximum color-component value, again in ASCII decimal (less or
equal to 255).

– Whitespace.

– Width × height pixels, starting at the top-left corner of the pixmap, pro-
ceeding in normal English reading order. Each pixel takes three bytes,
each between 0 and the specified maximum value. The three values for
each pixel represent red, green, and blue, respectively; a value of 0 means
that color is off, and the maximum value means that color is maxxed out.

For additional information, see http://hegel.ittc.ukans.edu/topics/linux/
man-pages/man5/ppm.5.html.

3.1.2 Numeric File Formats

In addition to creating PPM (image) files, the GAUSSIAN library can output
fields in the numeric form, in one of the two formats.

The first format, referred to as ’3’, includes a number of comment lines
starting with #, followed by lines of X Y Z values, like in this example of a 2×3
field:

Gaussian 2x3 r.f. with Spherical (5.000000) correlation
and mean 0.

0 0 -0.246575
0 1 0.237055
0 2 -0.322522
1 0 -0.593353
1 1 0.027527
1 2 0.129377

The second format, referred to as ’Z’, stores Z values only, like in this version
of the same field:

Gaussian 2x3 r.f. with Spherical (5.000000) correlation
and mean 0.

-0.246575 0.237055 -0.322522 -0.593353
0.027527 0.129377

You should choose one or another format depending on the software to which
you intend to feed the resulting file.

3.2. UNCONDITIONAL FIELD GENERATION (FIELD DEMO) 13

3.1.3 Initialization Files

The programs field demo, em demo, and z given x demo obtain their input
from the initialization files. These are plain text files which can be edited with
any text editor. The lines starting with the # character are comments. All the
other lines have the form

parameter = value

or

parameter : value

You should edit the values to the right of the semicolons or equality signs, and
leave the left hand sides unchanged. The best way to create a new initialization
file is to copy one of the files distributed with the library and make the necessary
changes. The meaning of the parameters for each program is explained in the
next three sections.

Note that the library provides functions for reading such files, so you can
use a similar technique in your own projects.

3.2 Unconditional Field Generation (field demo)

The field demo program takes its input from a text initialization file. To run
the program, type

$ field demo field.ini

In the command above, field.ini is the sample initialization file provided
with the program. Its entries have the following meaning.

• wn1 = 32
wn2 = 32

These two lines specify the height and width of the grid for the desired
random field.

• n1 = 128
n2 = 128

The values n1 and n2 specify the height and the width of the grid that will
actually be used for random field generation, and should not be smaller
than wn1 and wn2 respectively. You may have to specify high values for n1
and n2 to achieve positive embedding of the covariance matrix. Generally,
n1 and n2 should be large enough so that the covariance between the field
values on the opposite sides of the grid is almost zero. Upon successful
generation, a wn1 × wn2 portion will be taken from the upper left corner
of the larger n1 × n2 field. Note that high values of n1 and n2 make the
program use more memory and work slower.

14 CHAPTER 3. RUNNING THE DEMONSTRATION PROGRAMS

• covtype = s
theta1 = 10
theta2 = 1

These lines define the covariance structure of the field. The possible values
for covtype are

m for Matérn correlation,

e for exponential correlation,

r for rational quatdratic correlation, and

s for spherical correlation.

See Section 1.2 for definitions of these covariance functions. For spherical
correlation, the parameter theta2 is ignored.

• nlevels=2
c1=0.33
c2=0.33

These parameters determine how the generated Gaussian field will be
clipped to obtain a discrete field. If you are interested in the Gaussian
field only and not in the discrete field, they are not important to you.

The value of nlevels is the number of clipping thresholds (equals k in
the definition of clipping in Section 1.3). One threshold produces a binary
image, two thresholds produce a three-color image, and so on. To produce
a three color image, like in this example, the values of the Gaussian field
below the first threshold will be assigned the first color in the list of colors
(see below), the values between the thresholds will be assigned the second
color, and the remaining values which are above the second threshold will
be assigned the third color. The thresholds will be chosen depending on
the values of c1 and c2 that specify the desired proportions of the first
and second color respectively. Together they define the proportion of the
third color (1-c1-c2). In our example, the resulting three color image will
have equal number of pixels of each color.

In general, for nlevels=j you must add more lines so that you have entries
c1, c2,..., cj , the sum of which is less than 1.

• numeric file format : 3

This line determines the format in which the Gaussian and discrete fields
will be output (see Section 3.1). The possible values are

3 for X Y Z values, and

Z for Z values only.

3.3. ESTIMATION (EM DEMO) 15

If you only want image files (PPM), this parameter is not important.

• numerical file for a Gaussian field : a.txt

This specifies the name of the file into which the Gaussian field will be
output in the numeric form, according to the above numeric file format
parameter. If left blank, the file will not be created.

• numerical file for a discrete field : ad.txt

This specifies the name of the file into which the discrete (clipped Gaus-
sian) field will be output in the numeric form, according to the above
numeric file format parameter. If left blank, the file will not be cre-
ated.

• ppm file for a Gaussian field : a.ppm

This specifies the name of the image file (PPM format) into which the
Gaussian field will be output in the gray levels form. If left blank, the file
will not be created.

• ppm file for a discrete field : ad.ppm

This specifies the name of the image file (PPM format) into which the
discrete (clipped Gaussian) field will be output in colors specified below.
If left blank, the file will not be created.

• red0=101
green0=178
blue0=232
..........
red13=201
green13=107
blue13=6

The rest of the file defines 14 colors for use in the discrete PPM file. Each
color is determined by its red, green, and blue levels which are integers
between 0 and 255.

3.3 Estimation (em demo)

The em demo program takes its input from a text initialization file. To run the
program, type

$ em demo em.ini

16 CHAPTER 3. RUNNING THE DEMONSTRATION PROGRAMS

In the command above, em.ini is the sample initialization file provided with
the program. Its entries have the following meaning.

• Discrete data file name: ad.txt
Discrete data file format: 3

These lines determine the name and the format of the file with the given
discrete field. The possible values for format are

3 for X Y Z values,

Z for Z values only, and

p for PPM file.

• n1 = 32
n2 = 32

These lines determine the height and width of the grid. They will be
ignored if the input file is in the PPM format, since this format includes
the image dimensions.

• covtype = s
theta1 = 1
theta2 = 1

These lines define the covariance structure of the unobserved Gaussian
field, and the starting values for θ in the EM algorithm. The possible
values for covtype are

m for Matérn correlation,

e for exponential correlation,

r for rational quatdratic correlation, and

s for spherical correlation.

See Section 1.2 for definitions of these correlation functions. For spherical
correlation, the parameter theta2 is ignored.

• nlevels=2
threshold1=-0.284290
threshold2= 0.486082

These parameters determine how the unobserved Gaussian field was clipped
to obtain the given discrete field. The value of nlevels is the number of
clipping thresholds (equals k in the definition of clipping in Section 1.3).
One threshold produces a binary image, two thresholds produce a three-
color image, and so on. To produce a three color image, like in this exam-
ple, the values of the Gaussian field below -0.284290 have been assigned

3.4. CONDITIONAL FIELD GENERATION (Z GIVEN X DEMO) 17

the first code (see the next entry), the values between -0.284290 and
0.486082 have been assigned the second code, and the remaining values
which are above 0.486082 have been assigned the third code.

In general, for nlevels=j you must add more lines so that you have entries
threshold1, threshold2,..., thresholdj with increasing values.

• code1=0
code2=1

These lines determine how the discrete field is coded. The entry codej is
the value in the discrete field that resulted from the value in the Gaus-
sian field between the (j -1)-st and j -th threshold, or between −∞ and
threshold1 for j=1.

For numeric files, the codes are Z-values. For PPM files, the codes are the
levels of red (for simplicity it is assumed that all the colors used in the
discrete image have distinct red levels).

In general, for nlevels=j you must add more lines so that you have entries
code1, code2,..., codej . Note that the number of codes is less than the
number of colors in the image by one. This is because all the codes but
one together with the given image define the remaining code implicitly.

• em_steps=300
gibbs_iterations=10

These lines determine the number of EM algorithm steps to perform, and
the number of Gibbs iterations to perform at each step.

• optimizaion=0

This line is used for the spherical covariance only and determines whether
to use FMINBR or HOOKE optimization in one dimension. The value of
0 specifies to use the FMINBR procedure (recommended).

• log file name: em.log

This line gives the name of the file to which the EM algorithm trajectory
will be written to. You should plot the values in this file to assess the
convergence.

3.4 Conditional Field Generation (z given x demo)

The z given x demo program generates a Gaussian field Z given the discrete
field X, the covariance structure, and the clipping levels, such that Z would
result in X after clipping. The program takes its input from a text initialization
file. To run the program, type

18 CHAPTER 3. RUNNING THE DEMONSTRATION PROGRAMS

$ z given x demo z given x.ini

In the command above, z given x.ini is the sample initialization file provided
with the program. Its entries have the following meaning.

• Discrete data file name: ad.txt
Discrete data file format: 3

These lines determine the name and format of the file with the given
discrete field. The possible values for format are

3 for X Y Z values,

Z for Z values only, and

p for PPM file.

• n1 = 32
n2 = 32

These lines determine the height and width of the grid. They will be
ignored if the input file is in the PPM format, since this format includes
the image dimensions.

• covtype = s
theta1 = 10
theta2 = 1

These lines define the covariance structure of the unobserved Gaussian
field, and the starting values for θ in the EM algorithm. The possible
values for covtype are

m for Matérn correlation,

e for exponential correlation,

r for rational quatdratic correlation, and

s for spherical correlation.

See Section 1.2 for definitions of these correlation functions. For spherical
correlation, the parameter theta2 is ignored.

• nlevels=2
threshold1=-0.284290
threshold2= 0.486082

These parameters determine how the unobserved Gaussian field was clipped
to obtain the given discrete field. The value of nlevels is the number of
clipping thresholds (equals k in the definition of clipping in Section 1.3).

3.4. CONDITIONAL FIELD GENERATION (Z GIVEN X DEMO) 19

One threshold produces a binary image, two thresholds produce a three-
color image, and so on. To produce a three color image, like in this exam-
ple, the values of the Gaussian field below -0.284290 have been assigned
the first code (see the next entry), the values between -0.284290 and
0.486082 have been assigned the second code, and the remaining values
which are above 0.486082 have been assigned the third code.

In general, for nlevels=j you must add more lines so that you have entries
threshold1, threshold2,..., thresholdj with increasing values.

• code1=0
code2=1

These lines determine how the discrete field is coded. The entry codej is
the value in the discrete field that resulted from the value in the Gaus-
sian field between the (j -1)-st and j -th threshold, or between −∞ and
threshold1 for j=1.

For numeric files, the codes are Z-values. For PPM files, the codes are the
levels of red (for simplicity it is assumed that all the colors used in the
discrete image have distinct red levels).

In general, for nlevels=j you must add more lines so that you have entries
code1, code2,..., codej . Note that the number of codes is less than the
number of colors in the image by one. This is because all the codes but
one together with the given image define the remaining code implicitly.

• gibbs_iterations=10

This line determines the number of Gibbs iterations to perform.

• numerical file for a Gaussian field : a.txt

This specifies the name of the file into which the Gaussian field will be
output in the numeric form. If left blank, the file will not be created.

• numerical file for a discrete field : a1.txt

This specifies the name of the file into which the discrete (clipped Gaus-
sian) field will be output in the numeric form, according to the above
numeric file format parameter. This discrete field is provided for test-
ing purposes. You may compare it to the input discrete field to verify that
they are identical. If the parameter value is left blank, the file will not be
created.

• ppm file for a Gaussian field : a.ppm

20 CHAPTER 3. RUNNING THE DEMONSTRATION PROGRAMS

This specifies the name of the image file (PPM format) into which the
Gaussian field will be output in the gray levels form. If left blank, the file
will not be created.

• ppm file for a discrete field : ad1.ppm

This specifies the name of the image file (PPM format) into which the
discrete (clipped Gaussian) field will be output in colors specified below.
This discrete field is provided for testing purposes. You may compare it to
the input discrete field to verify that they are identical. If the parameter
value is left blank, the file will not be created.

• red0=101
green0=178
blue0=232
..........
red13=201
green13=107
blue13=6

The rest of the file defines 14 colors for use in the discrete PPM file. Each
color is determined by its red, green, and blue levels which are integers
between 0 and 255.

3.5 Converting Numbers to Pictures (num2ppm demo)

The num2ppm demo performs a conversion from one of the two numerical formats
to the PPM format. This program does not use initialization files and takes
input interactively from the keyboard. Suppose that you want to convert the
file a.txt which has a 128 × 128 field stored in the X-Y-Z form. You would
enter

$ num2ppm demo

Input file name [none]: a.txt

File format (<3> for X Y Z values, <Z> for Z values alone) [3]: 3

Output file name [a.txt.ppm]: a.ppm

Grid height [256]: 128

Grid height [128]: 128

Created file ’a.ppm’
$

By this point, the desired PPM file is created. Note that what you type is
typeset in italics; the values in the brackets are the default answers.

Chapter 4

Programmer’s Guide

4.1 General information

The GAUSSIAN library consists of the following files:

• rv.c – functions for generating univariate random variables;

• fields.c – functions for processing random fields;

• formats.c – functions for reading and writing files in different formats;

• z.c – functions for evaluating the Gaussian distribution function and its
inverse;

• fminbr.c – one-dimensional optimization;

• hooke.c – multidimensional optimization;

• rkbesl.c – Bessel function evaluation;

• gaussian.h – function declarations.

4.1.1 How The Random Fields Are Stored

The GAUSSIAN library utilizes FFTW for computations. Therefore, we follow
the FFTW conventions. By including <fftw.h>, you will have access to the
following definitions:

typedef double FFTW_REAL;
typedef struct {

FFTW_REAL re, im;
} FFTW_COMPLEX;
#define c_re(c) ((c).re)
#define c_im(c) ((c).im)

21

22 CHAPTER 4. PROGRAMMER’S GUIDE

The rectangular fields are stored as one-dimensional arrays of FFTW COMPLEX
numbers. Each array therefore can hold two fields – one in its real and one
in its imaginary part. The storage order within an array is row major. In
particular, to allocate memory for an nrows × ncols field, we use

FFTW_COMPLEX *f;
f = (FFTW_COMPLEX *) malloc (nrows * ncols

* sizeof (FFTW_COMPLEX));

The (10, 15)-th element of the field stored in the real part of *f is then given
by c re(f[15 + 10*ncols]).

4.1.2 Random Number Generation

All the GAUSSIAN random number algorithms are based on the standard
drand48() function from stdlib. If you do not initialize it, you will get the
same random number sequence each time you run the program. This could
be useful for debugging and experiments. However, if you want a new random
sequence for each program run, insert the following call at the beginning of your
code:

srand48(time(NULL));

4.2 Library Functions

4.2.1 Univariate Random Variables (rv.c)

There are five functions in the GAUSSIAN library for univariate random number
generation.

• double runif (double rmin, double rmax);

runif returns a realization of a random variable uniformly distributed
between rmin and rmax.

• int discrv (int v[], double p[], int n);

discrv returns a realization of a discrete random variable taking n differ-
ent values v[] with probabilities p[].

• double n01 ();

n01 returns a realization of a N(0, 1) random variable.

• double normal (double mu, double sigma2);

normal returns a realization of a N(µ, σ2) random variable.

• double trunc_normal (double mu, double sigma2,
double a, double b);

trunc normal returns a realization of Z ∼ N(µ, σ2) conditional on Z ∈
[a, b).

4.2. LIBRARY FUNCTIONS 23

4.2.2 File I/O (formats.c)

Four file formats are used in the GAUSSIAN library: two file formats for storing
random fields as numerical data (as X Y Z triples and as Z values only), one
image format (PPM), and a format for initialization files. There are 10 functions
to work with these formats.

• int write_clipped_ppm (FFTW_COMPLEX *inpic,
int which,
int nlevels,
double *c,
int *r,
int *g,
int *b,
char *fname,
int rows,
int cols);

This function is used to clip a Gaussian field and write it into an image
file in the PPM format. The parameters have the following meaning:

� inpic – a rows ×cols array of FFTW COMPLEX where the Gaussian
field is stored;

� which – specifies whether to use the real (which==0) or imaginary
(which==1) part of inpic;

� nlevels – the number of clipping thresholds in the array c (equals
k − 1 in the definition of clipping in Section 1.2). One threshold
produces a binary image, two thresholds produce three-color image,
and so on;

� c – the array of the clipping thresholds, having nlevels elements;

� r, g, b – levels of red, green, and blue defining the colors to use in
the PPM file. Each array has (nlevels+1) element;

� fname – the name of the PPM file to create;

� rows, cols – the dimensions of the field.

The function returns 0 for success, -1 if the file cannot be written.

• int write_clipped_numeric (FFTW_COMPLEX *inpic,
int which,
char format,
int nlevels,
double *c,
char *fname,
int rows,
int cols,
char *comment);

24 CHAPTER 4. PROGRAMMER’S GUIDE

This function is used to clip a Gaussian field and write it into a file in
one of the two numeric file formats. The parameters have the following
meaning:

� inpic – a rows ×cols array of FFTW COMPLEX where the Gaussian
field is stored;

� which – specifies whether to use the real (which==0) or imaginary
(which==1) part of inpic;

� format – specifies the numeric file format. The value of ’Z’ outputs
the field values only row-wise (i.e. in the English reading order). The
value of ’3’ outputs the field as X Y Z triples;

� nlevels – the number of clipping thresholds in the array c (equals
k − 1 in the definition of clipping in Section 1.2). One threshold
produces a binary image, two thresholds produce three-color image,
and so on;

� c – the array of the clipping thresholds, having nlevels elements;

� fname – the name of the file to create;

� rows, cols – the dimensions of the field;

� comment – the comment line to put at the beginning of the file.

The function returns 0 for success, -1 if the file cannot be written.

• int write_numeric (FFTW_COMPLEX *inpic,
int which,
char format,
char *fname,
int rows,
int cols,
char *comment);

This function is used to write a field into a file in one of the two numeric
file formats. The parameters have the following meaning:

� inpic – a rows ×cols array of FFTW COMPLEX where the Gaussian
field is stored;

� which – specifies whether to use the real (which==0) or imaginary
(which==1) part of inpic;

� format – specifies the numeric file format. The value of ’Z’ outputs
the field values only row-wise (i.e. in the English reading order). The
value of ’3’ outputs the field as X Y Z triples;

� fname – the name of the file to create;

� rows, cols – the dimensions of the field;

� comment – the comment line to put at the beginning of the file.

The function returns 0 for success, -1 if the file cannot be written.

4.2. LIBRARY FUNCTIONS 25

• int write_ppm(FFTW_COMPLEX *m,
int which,
char *fname,
int rows,
int cols);

This function is used to write a field into a PPM image file as grey levels.
The parameters have the following meaning:

� m – a rows ×cols array of FFTW COMPLEX where the Gaussian field is
stored;

� which – specifies whether to use the real (which==0) or imaginary
(which==1) part of inpic;

� fname – the name of the file to create;

� rows, cols – the dimensions of the field;

� comment – the comment line to put at the beginning of the file.

The function returns 0 for success, -1 if the file cannot be written.

• int read_numeric (FFTW_COMPLEX *m,
int which,
char format,
char *fname,
int rows,
int cols);

This function is used to read a field from a data file written in one of the
two numeric formats. The parameters have the following meaning:

� m – a rows ×cols initialized array of FFTW COMPLEX where the field
will be stored.

� which – specifies whether to use the real (which==0) or imaginary
(which==1) part of m;

� format – specifies the numeric file format. The possible values are
’3’ and ’Z’ and have the same meaning as in the write numeric
function;

� fname – the name of the file to read;

� rows, cols – the dimensions of the field;

The function returns 0 for success, -1 if the file cannot be opened for
reading.

• int get_constraints_ppm (char *fname,
int *n1,
int *n2,
int nlevels,
double *c,

26 CHAPTER 4. PROGRAMMER’S GUIDE

int *r,
double **a,
double **b);

This function is used to collect information about a random field Z from
its clipped version X. Namely, from the PPM image of X and the clipping
thresholds we construct two fields a and b such that a ≤ Z < b coordinate-
wise. The possible values of the components of a and b are the thresholds
and the values of -1000 and 1000 that are used as surrogate −∞ and ∞.
The parameters of the function have the following meaning.

� fname – the name of the PPM file to read;

� n1, n2 – the variables into which to put the image dimensions read
from the PPM file;

� nlevels – the number of clipping thresholds in the array c (equals
k − 1 in the definition of clipping in Section 1.2). One threshold
produces a binary image, two thresholds produce three-color image,
and so on;

� c – the array of the clipping thresholds, having nlevels elements;

� r – the array with (nlevels+1) elements of the levels of red in the
colors used in the PPM file. It is assumed that all the colors have
different levels of red.

� a, b – pointer variables which will be initialized to point to the new
arrays with (*n1)*(*n2) elements each with the fields a and b. The
memory is obtained by a call to malloc.

The function returns 0 for success, -1 if the file cannot be opened for
reading.

• int get_constraints_num (char *fname,
char file_format,
int n1,
int n2,
int nlevels,
double *c,
int *codes,
double **a,
double **b);

This function is used to collect information about a random field Z from
its clipped version X. Namely, from the file containing X in one of the
two numeric formats, and from the clipping thresholds we construct two
fields a and b such that a ≤ Z < b coordinate-wise. The possible values
of the components of a and b are the thresholds and the values of -1000
and 1000 that are used as surrogate −∞ and ∞. The parameters of the
function have the following meaning.

4.2. LIBRARY FUNCTIONS 27

� fname – the name of the file to read;

� file format – specifies the numeric file format. The possible values
are ’3’ and ’Z’ and have the same meaning as in the write numeric
function;

� n1, n2 – the variables specifying the image dimensions;

� nlevels – the number of clipping thresholds in the array c (equals
k − 1 in the definition of clipping in Section 1.2). One threshold
produces a binary image, two thresholds produce three-color image,
and so on;

� c – the array of the clipping thresholds, having nlevels elements;

� r – the array with (nlevels+1) elements of the levels of red in the
colors used in the PPM file. It is assumed that all the colors have
different levels of red.

� a, b – pointer variables which will be initialized to point to the new
arrays with n1*n2 elements each with the fields a and b. The memory
is obtained by a call to malloc.

The function returns 0 for success, -1 if the file cannot be opened for
reading.

• int getint_ini (char *fname, char *lhs);

This function returns the integer value from the string in the initialization
file fname specified by lhs.

• double getdouble_ini (char *fname, char *lhs);

This function returns the double precision value from the string in the
initialization file fname specified by lhs.

• char *getstring_ini (char *fname, char *lhs);

This function returns a pointer to a newly allocated string read from the
line in the initialization file fname specified by lhs.

4.2.3 Random Fields (fields.c)

All the functions dealing with random fields use the following structure defined
in <gaussian.h>:

struct ghandle_struct{
FFTW_COMPLEX *w;
FFTW_COMPLEX *k;
int n1;
int n2;
fftwnd_plan plan;
fftwnd_plan planb;
int status;

28 CHAPTER 4. PROGRAMMER’S GUIDE

};
typedef struct ghandle_struct *ghandle;

The structure contains field dimensions n1 and n2, pointers to two arrays allo-
cated to store the embedded versions of the field, FFTW information (“plan”)
required to perform the forward and backward Fourier transforms of these ar-
rays, and the error status. To create a ghandle, you must provide the numbers
n1 and n2 to the following function.

• ghandle create_ghandle(int n1, int n2, int method);

� n1 and n2 are the field’s dimensions;

� method is the option that specifies how the handle is created. The
possible values are the constants FFTW ESTIMATE and FFTW MEASURE
defined in <fftw.h>. If you use FFTW ESTIMATE, the ghandle will be
created relatively fast. However, it will have sub-optimal character-
istics in terms of the speed of the Fourier transform. On the other
hand, if you use FFTW MEASURE, it will take some time to create a
ghandle with the best possible performance on your particular ma-
chine. Therefore, whether to use FFTW ESTIMATE or FFTW MEASURE
depends on how many operations you intend to perform with a given
ghandle.
Other than performance, the method parameter does not affect any-
thing.

The function returns a pointer to the newly created structure, or NULL if
the structure cannot be created because of insufficient memory.

The ghandle’s that are no longer needed are destroyed by the following
function.

• int destroy_ghandle(ghandle handle);

� ghandle is a pointer to the structure to be destroyed.

The function always returns 0.

All the covariance models in the Gaussian library are defined in the following
function:

• double cov (int i,
int j,
int cols,
double *theta,
char covtype);

The parameters of the function have the following meaning.

4.2. LIBRARY FUNCTIONS 29

� i and j are the numbers of the grid points at which the covariance
is to be computed. The points are numbered in the English reading
order starting at zero in the upper left corner of the grid;
� cols is the number of columns in the grid;
� theta is the array of covariance function parameters;
� covtype is the covariance function type. Currently the possible val-

ues are
’m’ for Matérn correlation,
’e’ for exponential correlation,
’r’ for rational quatdratic correlation, and
’s’ for spherical correlation,
see Section 1.2 for definitions.

The function returns the covariance between the point #i and point #j.
The return value of 10 for the Matérn correlation signifies that an error
occurred while evaluating the Bessel function.

If you want to add new covariance models, you should modify this function.

• FFTW_COMPLEX *fill_in_encompassing_matrix
(ghandle handle, double *theta, char covtype);

This function populates the first column of C – the block circulant with
circulant blocks covariance matrix of the encompassing field.

� handle is the handle returned by the create ghandle function;
� theta is the array of covariance function parameters;
� covtype is the the covariance function type. Currently the possible

values are
’m’ for Matérn correlation,
’e’ for exponential correlation,
’r’ for rational quatdratic correlation, and
’s’ for spherical correlation,
see Section 1.2 for definitions.

The function puts the first column of C into the real part of handle->k
and returns a pointer to its first element, or NULL in case when the Matérn
correlation cannot be computed.

• FFTW_COMPLEX *generate_w (ghandle handle);

This function generates two independent realizations of the encompassing
Gaussian field W with the given first column of C – the block circulant with
circulant blocks covariance matrix. The first column is stored in the real
part of handle->k, and is usually obtained usually by a call to fill in
encompassing matrix. The function puts the two resulting realization

of W into real and imaginary parts of handle->k and returns a pointer
to its first element, or NULL in case of failure (negative embedding).

30 CHAPTER 4. PROGRAMMER’S GUIDE

• FFTW_COMPLEX *generate_w_given_x (ghandle handle,
int gibbs_iterations,
double *enc_a,
double *enc_b,
double *theta,
char covtype);

generate w given x generates a realization of the encompassing Gaussian
field W conditional on a < W ≤ b component-wise. The parameters are
as follows.

� handle is the handle returned by the create ghandle function;

� gibbs iterations is the number of Gibbs iterations to perform;

� enc a and enc b are the arrays of the constrains, each of 4*handle->
n1*handle->n2 elements;

� theta is the array of covariance function parameters;

� covtype is the the covariance function type. Currently the possible
values are

’m’ for Matérn correlation,
’e’ for exponential correlation,
’r’ for rational quatdratic correlation, and
’s’ for spherical correlation,

see Section 1.2 for definitions.

The function puts the resulting realization of W into the real part of
handle->w and returns a pointer to its first element, or NULL in case of
failure (negative embedding).

• FFTW_COMPLEX *z_from_w (ghandle handle);

This function recovers the field Z from the encompassing field W. The
encompassing fields must be stored in the real and imaginary parts of
handle->k. The resulting handle->n1 × handle->n2 fields Z will be put
into the corresponding parts of handle->w. The function returns a pointer
to its first element.

• FFTW_COMPLEX *generate_z (ghandle handle,
double *theta,
char covtype);

This function generates two independent realizations of the Gaussian field
Z.

� handle is the handle returned by the create ghandle function;

� theta is the array of the covariance parameters;

� covtype is the covariance function type. Currently the possible val-
ues are

4.2. LIBRARY FUNCTIONS 31

’m’ for Matérn correlation,
’e’ for exponential correlation,
’r’ for rational quatdratic correlation, and
’s’ for spherical correlation,

see Section 1.2 for definitions.

The function puts the two resulting realization of Z into real and imaginary
parts of handle->w, and returns a pointer to its first element, or NULL in
case of failure (negative embedding).

• int write_field (int n1,
int n2,
int wn1,
int wn2,
double *theta,
char covtype,
char *fname_gaussian_ppm,
char *fname_gaussian_num,
char *fname_clipped_ppm,
char *fname_clipped_num,
char format,
int nlevels,
int *r, int *g, int *b,
double *c,
int thresholds);

This function is used to generate Gaussian and clipped Gaussian random
fields and output them to files. Its use is demonstrated in the field demo
program. The parameters have the following meaning.

� n1, n2, wn1, and wn2 specify the height and the width of the grid that
will actually be used for random field generation, and of the grid that
will be output, respectively. You may have to specify high values for
n1 and n2 to achieve positive embedding of the covariance matrix.
Generally, n1 and n2 should be large enough so that the covariance
between the field values on the opposite sides of the grid is almost
zero.
Upon successful generation, a wn1 × wn2 portion will be taken from
the upper left corner of the larger n1 × n2 field. Note that high
values of n1 and n2 make the program use more memory and work
slower;

� theta is an array of the covariance parameters;

� covtype determines the covariance family used. Currently the avail-
able choices are

m for Matérn correlation,
e for exponential correlation,

32 CHAPTER 4. PROGRAMMER’S GUIDE

r for rational quatdratic correlation, and
s for spherical correlation,

see Section 1.2 for definitions.

� fname gaussian ppm is the name of the image file (PPM format) into
which the Gaussian field will be output as grey levels. If NULL, the
file will not be created.

� fname gaussian num is the name of the file into which the Gaussian
field will be output in the numeric form, according to the format
parameter. If NULL, the file will not be created.

� fname clipped ppm is the name of the image file (PPM format) into
which the discrete (clipped Gaussian) field will be output in colors
according to r, g, and b parameters. If NULL, the file will not be
created.

� fname clipped num is the name of file into which the discrete (clipped
Gaussian) field will be output in the numeric form, according to the
format parameter. If NULL, the file will not be created.

� format specifies the format in which the Gaussian and discrete fields
will be output (see Section 3.1). The possible values are

3 for X Y Z values, and
Z for Z values only.

If you only want the images (PPM), this parameter is not important.

� nlevels is the number of clipping thresholds (equals k in the defini-
tion of clipping in Section 1.3).

� r, g, and b are the arrays of nlevels elements each, which determine
the colors used in the discrete PPM file. If you are only interested in
a discrete random field, these parameters are not important and can
be specified as NULL’s.

� c is the array of nlevels thresholds or percentages (depending upon
the thresholds parameter). These determine how the generated
Gaussian field will be clipped to obtain a discrete field.
For example, to produce a three color image, nlevels should be set
to 2, and two thresholds or percentage values should be supplied
through c.
If you are providing the thresholds, set thresholds parameter to 1.
In this case, the values of the Gaussian field below the first threshold
will be assigned the first color in the list of colors (see r, g, b), the
values between the thresholds will be assigned the second color, and
the remaining values which are above the second threshold will be
assigned the third color.
Otherwise, if you are providing the percentages, set the thresholds
parameter to 0. Then the thresholds will be chosen after the Gaussian

4.2. LIBRARY FUNCTIONS 33

image is generated in such a way that the resulting discrete image
will have exactly the specified percentage of each color.
If you are interested in the Gaussian field only and not in the discrete
field, this parameter is not important and can be specified as NULL.

� thresholds specifies what is provided in the c array. The value of
1 stands for actual thresholds for use when clipping, and the value
of 0 stands for the requested percentages of each color, based on
which the thresholds will be determined after the Gaussian image is
generated.

The function returns one of the following:

0 – success;

-1 – negative embedding;

-2 – out of memory;

-3 – can’t compute correlation (for Matérn only).

• double minus_likelihood (double *theta, int n);

This function returns minus log likelihood of the encompassing Gaussian
field W.

� theta is the covariance parameter vector (array);

� n is the number of elements in theta.

Before the function is called, the global variable likelihood params must
be initialized. It is declared in gaussian.h as follows:

struct likelihood_params_struct{
char covtype;
ghandle handle;

};
struct likelihood_params_struct *likelihood_params;

Here likelihood params->covtype is one of the following:

’m’ for Matérn correlation,

’e’ for exponential correlation,

’r’ for rational quatdratic correlation, and

’s’ for spherical correlation,

see Section 1.2 for definitions, and likelihood params->handle is the
current working handle. The Fourier transform of the data for which the
likelihood is computed is stored in likelihood params->handle->w.

34 CHAPTER 4. PROGRAMMER’S GUIDE

• int EM (double *a,
double *b,
int n1,
int n2,
int gibbs_iterations,
int em_iterations,
char covtype,
double *theta,
int ntheta,
int usehooke,
char *log_fname);

This function estimates the covariance parameter vector θ in the Gaussian
model from the observed clipped data by the SEM algorithm. The use
of the function is demonstrated in the em demo program. The parameters
have the following meaning.

� a and b are n1 × n2 arrays of constrains given by the observed data.
For the unobserved Gaussian field Z, we know that a < Z ≤ b
coordinate-wise;

� n1 and n2 are the dimensions of the discrete field;

� gibbs iterations is the number of Gibbs iterations to perform at
each SEM step;

� em iterations is the number of SEM steps to perform;

� covtype determines the covariance family used. Currently the avail-
able choices are

m for Matérn correlation,
e for exponential correlation,
r for rational quatdratic correlation, and
s for spherical correlation,

see Section 1.2 for definitions;

� theta is the starting value for θ in the SEM algorithm. The array
has ntheta elements;

� ntheta is the dimension of θ;

� usehooke determines whether the HOOKE (usehooke==1) or FMINBR
(usehooke==0) optimization routines should be used in case ntheta==1.
It is recommended to use FMINBR;

� log fname is the name of the file to which the SEM path will be
written. You should plot the values from this file to evaluate the
convergence.
The function returns 0 for success or -1 in case of the out of memory
condition.

4.3. OTHER ROUTINES 35

4.3 Other Routines

The files z.c, fminbr.c, hooke.c, and rkbesl.c were downloaded from Netlib,
http://www.netlib.org. See the comments sections of these files for docu-
mentation.

